Has the Construction of National Intellectual Property Model Cities Reduced PM2.5 Concentration and Standard Deviation? New Evidence from Counties in China
Abstract
1. Introduction
2. Policy Background and Research Hypotheses
2.1. Policy Background
2.2. Research Hypothesis
2.2.1. Concentration and Standard Deviation of NIPMC and PM2.5
2.2.2. National Intellectual Property Model City and Innovation
2.2.3. National Intellectual Property Model City and Industrial Structure
3. Model Setting and Variable Description
3.1. Model Setting
3.1.1. Difference-in-Differences with Multiple Time Periods
3.1.2. Mediator Effect Model
3.2. Variable Description
3.2.1. Explanatory Variable
3.2.2. Explained Variable
3.2.3. Control Variables
3.3. Sample Selection and Data Source
4. Empirical Analysis
4.1. Benchmark Regression
4.2. Parallel Trend Test
4.3. Robustness Test
4.3.1. Replace Variables
4.3.2. One Delayed Period
4.3.3. Replace Sample Intervals
4.3.4. PSM-DID
4.3.5. Exclusion of Contemporaneous Policies
4.4. Placebo Test
4.5. Endogeneity Test
4.5.1. SYS-GMM
4.5.2. 2SLS
4.6. Mechanism Analysis
4.6.1. Innovation Effect
4.6.2. Industrial Structure Effect
5. Analysis of Heterogeneity
5.1. Heterogeneity of Intellectual Property Rights Protection Level
5.2. Urban Grade Heterogeneity
5.3. Regional Heterogeneity
6. Conclusions and Policy Recommendations
6.1. Conclusions
6.2. Discussion
6.3. Policy Recommendations
- (1)
- Expand demonstration zones in a region-specific manner, with full attention to heterogeneity. Evidence indicates that the NIPMC significantly suppresses PM2.5 concentrations in the eastern and central regions, while the effect is less pronounced in the west. The underlying reasons include a stronger technological base and higher marketization in the east, ongoing industrial upgrading and rising innovation potential in the central region, and the west’s continued absorption of some high-pollution industry transfers from the east and central regions. Accordingly, expansion of demonstration zones should be differentiated: in the east, establish sites in counties with weaker industrial bases but strong innovation potential, and deepen the integration of IP protection with high-tech industries; in the central region, align with the “Rise of Central China” strategy, select critical nodes along traditional energy-intensive value chains, and build pilots that integrate “technological retrofitting—green supply chains—coordinated governance”; in the west, prioritize cities (or industrial parks) with better resource conditions and urgent upgrading needs, coupled with infrastructure and talent-attraction policies, and avoid negative effects from the simple relocation of high-pollution industries.
- (2)
- Amplify innovation and industrial restructuring effects in a targeted, region-appropriate way. The NIPMC reduces pollution primarily by fostering technological innovation and optimizing industrial structure, but the operative pathways differ across regions: the east should emphasize frontier environmental technologies and patent quality (e.g., carbon capture and energy storage), build IP operation and service platforms, and accelerate commercialization; the central region should focus on “stock retrofitting + incremental upgrading,” implement differentiated emission standards and green-finance support in steel, building materials, chemicals, and related chains, and build green supply chains; the west should prioritize basic energy-efficiency improvements and clean-energy substitution, deploy solar and wind technologies to lower baseline emissions, and strengthen vocational training and university–industry collaboration to build a sustainable pipeline of technical talent.
- (3)
- Strengthen institutions and capabilities in areas with weak IP protection. Studies suggest that where IP protection is weaker, the NIPMC’s PM2.5-reduction effects are more pronounced. Pilot expansion should therefore prioritize these regions and establish a closed-loop system of enforcement, adjudication, and public services: set up fast-track IP protection channels and specialized tribunals, enhance administrative enforcement coordination, and improve public IP service platforms to provide search, portfolio design, and commercialization guidance for firms. Promote green-technology demonstration projects jointly led by universities, research institutes, firms, and local governments, and encourage pilots in data IP and software patents. Complementary fiscal, tax, and insurance instruments should lower firms’ innovation risk premia in weaker IP environments and incentivize local technological upgrading.
- (4)
- Build differentiated implementation and evaluation mechanisms. Regional heterogeneity also manifests in regulatory intensity, education investment, and industrial structure. We therefore recommend a zoned performance and dynamic adjustment framework: the east should focus on high-quality innovation outputs and international collaboration (e.g., counts of high-value green patents, participation in international standards); the central region should emphasize enforcement consistency and cross-jurisdictional joint action (e.g., river-basin and city-cluster air-quality governance, transparency of enforcement); the west should prioritize basic emission-reduction outcomes and clean-technology penetration (e.g., declines in energy use and emissions per unit of output, shares of wind/solar capacity). Local governments should set annual targets, conduct mid-term evaluations, adjust policy parameters based on observed outcomes, and deploy a mix of incentives and sanctions via fiscal and financial tools to ensure continuous improvement and regionally balanced progress.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IP | Intellectual Property |
NIPMC | National Intellectual Property Model Cities |
References
- Burke, M.; Childs, M.L.; de la Cuesta, B.; Qiu, M.; Li, J.; Gould, C.F.; Heft-Neal, S.; Wara, M. The Contribution of Wildfire to PM2.5 Trends in the USA. Nature 2023, 622, 761–766. [Google Scholar] [CrossRef]
- Colmer, J.; Hardman, I.; Shimshack, J.; Voorheis, J. Disparities in PM2.5 Air Pollution in the United States. Science 2020, 369, 575–578. [Google Scholar] [CrossRef]
- Currie, J.; Voorheis, J.; Walker, R. What Caused Racial Disparities in Particulate Exposure to Fall? New Evidence from the Clean Air Act and Satellite-Based Measures of Air Quality. Am. Econ. Rev. 2023, 113, 71–97. [Google Scholar] [CrossRef]
- Wu, X.; Braun, D.; Schwartz, J.; Kioumourtzoglou, M.A.; Dominici, F. Evaluating the Impact of Long-Term Exposure to Fine Particulate Matter on Mortality among the Elderly. Sci. Adv. 2020, 6, eaba5692. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Ayala, A. Fine Particle Air Pollution and Lung Cancer Risk: Extending the Long List of Health Risks. Cell 2023, 186, 2285–2287. [Google Scholar] [CrossRef]
- Feng, Y.; Castro, E.; Wei, Y.; Jin, T.; Qiu, X.; Dominici, F.; Schwartz, J. Long-Term Exposure to Ambient PM2.5, Particulate Constituents and Hospital Admissions from Non-Respiratory Infection. Nat. Commun. 2024, 15, 1518. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.; Lim, E.L.; Weeden, C.E.; Lee, C.; Augustine, M.; Chen, K.; Kuan, F.-C.; Marongiu, F.; Evans, E.J.; Moore, D.A.; et al. Lung Adenocarcinoma Promotion by Air Pollutants. Nature 2023, 616, 159–167. [Google Scholar] [CrossRef]
- Delavar, M.A.; Jahani, M.a.; Sepidarkish, M.; Alidoost, S.; Mehdinezhad, H.; Farhadi, Z. Relationship between Fine Particulate Matter (PM2.5) Concentration and Risk of Hospitalization Due to Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. BMC Public Health 2023, 23, 2229. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, Y.; Wang, J.; Xu, D.; Yin, Z.; Chen, H.; Lv, Y.; Luo, J.; Zeng, Y.; Liu, Y.; et al. All-Cause Mortality Risk Associated with Long-Term Exposure to Ambient PM2.5 in China: A Cohort Study. Lancet Public Health 2018, 3, E470–E477. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Xie, M.; Zhao, W.; Wang, T.; Gao, D.; Chen, P.; Tian, J.; Zhu, K.; Li, S.; Zhuang, B.; et al. Quantifying the Seasonal Variations in and Regional Transport of PM2.5 in the Yangtze River Delta Region, China: Characteristics, Sources, and Health Risks. Atmos. Chem. Phys. 2023, 23, 9837–9852. [Google Scholar] [CrossRef]
- Nan, N.; Yan, Z.; Zhang, Y.; Chen, R.; Qin, G.; Sang, N. Overview of PM2.5 and Health Outcomes: Focusing on Components, Sources, and Pollutant Mixture Co-Exposure. Chemosphere 2023, 323, 138181. [Google Scholar] [CrossRef]
- Feng, X.; Tian, Y.; Xue, Q.; Song, D.; Huang, F.; Feng, Y. Measurement Report: Spatiotemporal and Policy-Related Variations of PM2.5 Composition and Sources during 2015–2019 at Multiple Sites in a Chinese Megacity. Atmos. Chem. Phys. 2021, 21, 16219–16235. [Google Scholar] [CrossRef]
- Srivastava, D.; Xu, J.; Vu, T.V.; Liu, D.; Li, L.; Fu, P.; Hou, S.; Moreno Palmerola, N.; Shi, Z.; Harrison, R.M. Insight into PM2.5 Sources by Applying Positive Matrix Factorization (PMF) at Urban and Rural Sites of Beijing. Atmos. Chem. Phys. 2021, 21, 14703–14724. [Google Scholar] [CrossRef]
- Song, C.; He, J.; Wu, L.; Jin, T.; Chen, X.; Li, R.; Ren, P.; Zhang, L.; Mao, H. Health Burden Attributable to Ambient PM2.5 in China. Environ. Pollut. 2017, 223, 575–586. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.; Long, X. What Causes PM2.5 Pollution? Cross-Economy Empirical Analysis from Socioeconomic Perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- Shen, H.; Tao, S.; Chen, Y.; Ciais, P.; Guneralp, B.; Ru, M.; Zhong, Q.; Yun, X.; Zhu, X.; Huang, T.; et al. Urbanization-Induced Population Migration Has Reduced Ambient PM2.5 Concentrations in China. Sci. Adv. 2017, 3, e1700300. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of Meteorological Conditions on PM2.5 Concentrations across China: A Review of Methodology and Mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef]
- Ma, Y.-R.; Ji, Q.; Fan, Y. Spatial Linkage Analysis of the Impact of Regional Economic Activities on PM2.5 Pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
- He, G.; Liu, T.; Zhou, M. Straw Burning, PM2.5, and Death: Evidence from China. J. Dev. Econ. 2020, 145, 102468. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The Short-Term Impacts of COVID-19 Lockdown on Urban Air Pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Lin, W.; He, Q.; Xiao, Y.; Yang, J. Do City Lockdowns Effectively Reduce Air Pollution? Technol. Forecast. Soc. Change 2023, 197, 122885. [Google Scholar] [CrossRef]
- Chen, G.; Guo, Y.; Yue, X.; Tong, S.; Gasparrini, A.; Bell, M.L.; Ben, A.; Schwartz, J.; Jaakkola, J.J.K.; Zanobetti, A.; et al. Mortality Risk Attributable to Wildfire-Related PM2.5 Pollution: A Global Time Series Study in 749 Locations. Lancet Planet. Health 2021, 5, E579–E587. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Y.; Woodward, R.T.; Zhang, Y.-J. Has Carbon Emissions Trading Reduced PM2.5 in China? Environ. Sci. Technol. 2021, 55, 6631–6643. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Chang, X.; Hao, J. The Impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 Concentrations in Jing-Jin-Ji Region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef]
- Yue, H.; He, C.; Huang, Q.; Yin, D.; Bryan, B.A. Stronger Policy Required to Substantially Reduce Deaths from PM2.5 Pollution in China. Nat. Commun. 2020, 11, 1462. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Li, M.; Gou, P.; Cheng, Y. Assessing the Evolution of PM2.5 and Related Health Impacts Resulting from Air Quality Policies in China. Environ. Impact Assess. Rev. 2022, 93, 106727. [Google Scholar] [CrossRef]
- Chen, J.; Luo, W.; Ren, X.; Liu, T. The Local-Neighborhood Effects of Low-Carbon City Pilots Program on PM2.5 in China: A Spatial Difference-in-Differences Analysis. Sci. Total Environ. 2023, 857, 159511. [Google Scholar] [CrossRef]
- Cui, H.; Cao, Y. Do Smart Cities Have Lower Particulate Matter 2.5 (PM2.5)? Evidence from China. Sustain. Cities Soc. 2022, 86, 104082. [Google Scholar] [CrossRef]
- Zhu, X.; Dai, C.; Wei, Y. Does the Opening of High-Speed Railway Improve Air Quality? Evidence from China. Socioecon. Plann. Sci. 2022, 84, 101381. [Google Scholar] [CrossRef]
- Wang, K.; Yin, H.; Chen, Y. The Effect of Environmental Regulation on Air Quality: A Study of New Ambient Air Quality Standards in China. J. Clean. Prod. 2019, 215, 268–279. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, N.; Ge, L. How Do Intellectual Property Demonstration Cities Contribute to Low-Carbon Development? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 92007–92026. [Google Scholar] [CrossRef]
- Qian, L.; Zhou, Y.; Sun, Y.; Zhou, Q.; Zhang, M. Carbon Emission Reduction Effects of Intellectual Property Institution Construction in China. Environ. Sci. Pollut. Res. 2023, 30, 70569–70591. [Google Scholar] [CrossRef]
- Lv, K.; Pan, M.; Huang, L.; Song, D.; Qian, X. Can Intellectual Property Rights Protection Reduce Air Pollution? A Quasi-Natural Experiment from China. Struct. Change Econ. Dyn. 2023, 65, 210–222. [Google Scholar] [CrossRef]
- Bodenhausen, G.H.C. (Ed.) Guide to the Application of the Paris Convention for the Protection of Industrial Property; World Intellectual Property Organization: Geneva, Switzerland, 1969; ISBN 978-92-805-0368-5. [Google Scholar]
- Campi, M.; Duenas, M. Intellectual Property Rights and International Trade of Agricultural Products. World Dev. 2016, 80, 1–18. [Google Scholar] [CrossRef]
- Li, W.; Yu, X. China’s Intellectual Property Protection Strength and Its Evaluation-Based on the Accession to TRIPS Agreement (Agreement on Trade-Related Aspects of Intellectual Property Rights). R&D Manag. 2015, 45, 397–410. [Google Scholar] [CrossRef]
- Zhuang, W. Intellectual Property Rights and Climate Change: Interpreting the TRIPS Agreement for Environmentally Sound Technologies; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-15808-5. [Google Scholar]
- OECD. Patents in Environment-Related Technologies: Technology Diffusion and Patent Protection (Edition 2021); Organisation for Economic Co-Operation and Development: Paris, France, 2022. [Google Scholar]
- Hall, B.H.; Helmers, C. The Role of Patent Protection in (Clean/Green) Technology Transfer; National Bureau of Economic Research: Cambridge, MA, USA, 2010. [Google Scholar]
- Palm, A. Innovation Systems for Technology Diffusion: An Analytical Framework and Two Case Studies. Technol. Forecast. Soc. Change 2022, 182, 121821. [Google Scholar] [CrossRef]
- Leung, D.M.; Tai, A.P.K.; Mickley, L.J.; Moch, J.M.; van Donkelaar, A.; Shen, L.; Martin, R.V. Synoptic Meteorological Modes of Variability for Fine Particulate Matter (PM2.5) Air Quality in Major Metropolitan Regions of China. Atmos. Chem. Phys. 2018, 18, 6733–6748. [Google Scholar] [CrossRef]
- Giannossa, L.C.; Cesari, D.; Merico, E.; Dinoi, A.; Mangone, A.; Guascito, M.R.; Contini, D. Inter-Annual Variability of Source Contributions to PM10, PM2.5, and Oxidative Potential in an Urban Background Site in the Central Mediterranean. J. Environ. Manag. 2022, 319, 115752. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Gao, B.; Liang, B.; Chen, J.; Dong, L.; Wang, Z.; Tian, M. Distinct Seasonal Variability of Source-Dependent Health Risks from PM2.5-Bound PAHs and Related Derivatives in a Megacity, Southwest China: Implications for the Significance of Secondary Formation. Sci. Total Environ. 2023, 885, 163742. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Vijayan, N.; Mandal, T.K. Investigating the Seasonal Variability in Source Contribution to PM2.5 and PM10 Using Different Receptor Models during 2013–2016 in Delhi, India. Environ. Sci. Pollut. Res. 2021, 28, 4660–4675. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Rojas, M.G.; Saldanha, T.J.V.; Kathuria, A.; Khuntia, J.; Boh, W. How Information Technology Overcomes Deficiencies for Innovation in Small and Medium-Sized Enterprises: Closed Innovation vs. Innovation. Inf. Syst. Res. 2024, 35, 1981–2012. [Google Scholar] [CrossRef]
- Donges, A.; Meier, J.-M.; Silva, R.C. The Impact of Institutions on Innovation. Manag. Sci. 2023, 69, 1951–1974. [Google Scholar] [CrossRef]
- Xiao, F. Non-Competes and Innovation: Evidence from Medical Devices. Res. Policy 2022, 51, 104527. [Google Scholar] [CrossRef]
- Mehlig Sweet, C.; Eterovic Maggio, D.S. Do Stronger Intellectual Property Rights Increase Innovation? World Dev. 2015, 66, 665–677. [Google Scholar] [CrossRef]
- Song, Q.; Zhong, Q.; Zeng, S. Intellectual Property Protection, Financial Innovation and Corporate Innovation: Evidence from a Quasi-Natural Experiment in China. Emerg. Mark. Financ. Trade 2024, 60, 358–370. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X. Intelligent Manufacturing, Green Technological Innovation and Environmental Pollution. J. Innov. Knowl. 2023, 8, 100384. [Google Scholar] [CrossRef]
- Zhou, X.; Cai, Z.; Tan, K.H.; Zhang, L.; Du, J.; Song, M. Technological Innovation and Structural Change for Economic Development in China as an Emerging Market. Technol. Forecast. Soc. Change 2021, 167, 120671. [Google Scholar] [CrossRef]
- Su, Y.; Fan, Q. Renewable Energy Technology Innovation, Industrial Structure Upgrading and Green Development from the Perspective of China’s Provinces. Technol. Forecast. Soc. Change 2022, 180, 121727. [Google Scholar] [CrossRef]
- Chen, F.; Wang, M.; Pu, Z. The Impact Impact of Technological Innovation on Air Pollution: Firm-Level Evidence from China. Technol. Forecast. Soc. Change 2022, 177, 121521. [Google Scholar] [CrossRef]
- Popp, D. International Innovation and Diffusion of Air Pollution Control Technologies: The Effects of NOx and SO2 Regulation in the US, Japan, and Germany. J. Environ. Econ. Manag. 2006, 51, 46–71. [Google Scholar] [CrossRef]
- Davis, D.R. The Home Market, Trade, and Industrial Structure. Am. Econ. Rev. 1998, 88, 1264–1276. [Google Scholar]
- Griffin, J.M.; Karolyi, G.A. Another Look at the Role of the Industrial Structure of Markets for International Diversification Strategies. J. Financ. Econ. 1998, 50, 351–373. [Google Scholar] [CrossRef]
- Lan, J.; Wei, Y.; Guo, J.; Li, Q.; Liu, Z. The Effect of Green Finance on Industrial Pollution Emissions: Evidence from China. Resour. Policy 2023, 80, 103156. [Google Scholar] [CrossRef]
- Su, W.; Xie, C. High-Speed Rail, Technological Improvement, and PM2.5: Evidence from China. Econ. Anal. Policy 2023, 80, 1349–1362. [Google Scholar] [CrossRef]
- Baker, A.C.; Larcker, D.F.; Wang, C.C.Y. How Much Should We Trust Staggered Difference-in-Differences Estimates? J. Financ. Econ. 2022, 144, 370–395. [Google Scholar] [CrossRef]
- Card, D.; Krueger, A.B. Minimum Wages and Employment: A Case Study of the Fast Food Industry in New Jersey and Pennsylvania; National Bureau of Economic Research: Cambridge, MA, USA, 1993. [Google Scholar]
- Imbens, G.W.; Wooldridge, J.M. Recent Developments in the Econometrics of Program Evaluation. J. Econ. Lit. 2009, 47, 5–86. [Google Scholar] [CrossRef]
- Beck, T.; Levine, R.; Levkov, A. Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The Moderator–Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Jiang, T. Mediating and Moderating Effects in Empirical Studies of Causal Inference. China Ind. Econ. 2022, 5, 100–120. [Google Scholar] [CrossRef]
- Shen, S.; Li, C.; van Donkelaar, A.; Jacobs, N.; Wang, C.; Martin, R.V. Enhancing Global Estimation of Fine Particulate Matter Concentrations by Including Geophysical a Priori Information in Deep Learning. ACS ES&T Air 2024, 1, 332–345. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef]
- Han, D.; Attipoe, S.G.; Han, D.; Cao, J. Does Transportation Infrastructure Construction Promote Population Agglomeration? Evidence from 1838 Chinese County-Level Administrative Units. Cities 2023, 140, 104409. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Q.; Zhang, Q. Carbon Mitigation Performance of Top-down Administrative and Fiscal Decentralizations: Evidence from Quasi-Natural Experiments in China’s Pilot Counties. Sci. Total Environ. 2022, 852, 158404. [Google Scholar] [CrossRef] [PubMed]
- Donald, S.G.; Lang, K. Inference with Difference-in-Differences and Other Panel Data. Rev. Econ. Stat. 2007, 89, 221–233. [Google Scholar] [CrossRef]
- Bertrand, M.; Duflo, E.; Mullainathan, S. How Much Should We Trust Differences-In-Differences Estimates? Q. J. Econ. 2004, 119, 249–275. [Google Scholar] [CrossRef]
- Li, P.; Lu, Y.; Wang, J. Does Flattening Government Improve Economic Performance? Evidence from China. J. Dev. Econ. 2016, 123, 18–37. [Google Scholar] [CrossRef]
- Guo, Q.; Zhong, J. The Effect of Urban Innovation Performance of Smart City Construction Policies: Evaluate by Using a Multiple Period Difference-in-Differences Model. Technol. Forecast. Soc. Change 2022, 184, 122003. [Google Scholar] [CrossRef]
- Callaway, B.; Sant’Anna, P.H.C. Difference-in-Differences with Multiple Time Periods. J. Econom. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Abadie, A.; Imbens, G.W. Matching on the Estimated Propensity Score. Econometrica 2016, 84, 781–807. [Google Scholar] [CrossRef]
- Caliendo, M.; Kopeinig, S. Some Practical Guidance for the Implementation of Propensity Score Matching. J. Econ. Surv. 2008, 22, 31–72. [Google Scholar] [CrossRef]
- La Ferrara, E.; Chong, A.; Duryea, S. Soap Operas and Fertility: Evidence from Brazil. Am. Econ. J. Appl. Econ. 2012, 4, 1–31. [Google Scholar] [CrossRef]
- Caragliu, A.; Del Bo, C.F. Smart Innovative Cities: The Impact of Smart City Policies on Urban Innovation. Technol. Forecast. Soc. Change 2019, 142, 373–383. [Google Scholar] [CrossRef]
- Cornaggia, J.; Mao, Y.; Tian, X.; Wolfe, B. Does Banking Competition Affect Innovation? J. Financ. Econ. 2015, 115, 189–209. [Google Scholar] [CrossRef]
- Gan, C.; Zheng, R.; Yu, D. An Empirical Study on the Effects of Industrial Structure on Economic Growth and Fluctuations in China. Econ. Res. Chin. 2011, 46, 4–16+31. [Google Scholar]
Variable | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
PM2.5 | 32,989 | 0.422 | 0.198 | 0.010 | 1.393 |
PM2.5b | 32,989 | 3.049 | 2.882 | 0.058 | 46.84 |
NIPMC | 32,989 | 0.071 | 0.256 | 0 | 1 |
budget | 32,989 | 0.333 | 0.312 | 0.010 | 17.37 |
sav | 32,989 | 0.731 | 0.380 | 0 | 5.649 |
welfare | 32,989 | 0.260 | 0.245 | 0 | 4.776 |
student | 32,989 | 0.504 | 0.175 | 0.007 | 2.069 |
hos | 32,989 | 0.339 | 0.197 | 0 | 3.248 |
pop | 32,989 | 0.031 | 0.0310 | 0 | 0.630 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5b | PM2.5b | PM2.5b | PM2.5b | |
NIPMC | −0.030 *** | −0.031 *** | −0.031 *** | −0.029 *** | −0.198 *** | −0.198 *** | −0.200 *** | −0.199 *** |
(−17.260) | (−17.584) | (−17.618) | (−16.890) | (−8.095) | (−8.066) | (−8.099) | (−8.106) | |
budget | 0.029 *** | 0.032 *** | 0.030 *** | 0.105 *** | 0.128 *** | 0.123 *** | ||
(3.974) | (4.109) | (4.456) | (3.409) | (3.910) | (3.941) | |||
sav | −0.039 *** | −0.038 *** | −0.041 *** | −0.096 *** | −0.086 *** | −0.096 *** | ||
(−14.744) | (−14.573) | (−16.475) | (−3.645) | (−3.303) | (−3.697) | |||
welfare | 0.009 *** | 0.012 *** | 0.109 *** | 0.136 *** | ||||
(4.160) | (5.534) | (3.398) | (4.163) | |||||
student | −0.048 *** | −0.033 *** | −0.442 *** | −0.348 *** | ||||
(−15.211) | (−10.264) | (−11.213) | (−7.870) | |||||
hos | −0.057 *** | −0.325 *** | ||||||
(−14.478) | (−5.462) | |||||||
pop | −1.932 *** | 1.435 | ||||||
(−13.114) | (1.269) | |||||||
_cons | 0.424 *** | 0.443 *** | 0.463 *** | 0.537 *** | 3.064 *** | 3.099 *** | 3.279 *** | 3.299 *** |
(1398.428) | (200.628) | (167.458) | (95.944) | (721.167) | (162.555) | (118.414) | (68.496) | |
County FE | √ | √ | √ | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ | √ | √ | √ |
N | 32,969 | 32,969 | 32,969 | 32,969 | 32,969 | 32,969 | 32,969 | 32,969 |
R2 | 0.940 | 0.941 | 0.942 | 0.944 | 0.943 | 0.943 | 0.943 | 0.943 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
---|---|---|---|---|---|---|---|---|---|
PM1 | PM2 | PM3 | PM2.5 | PM2.5b | PM2.5 | PM2.5b | PM2.5 | PM2.5b | |
NIPMC | −0.029 *** | −0.025 *** | −0.034 *** | −0.016 *** | −0.143 *** | −0.026 *** | −0.203 *** | ||
(−11.170) | (−15.623) | (−17.533) | (−9.022) | (−5.365) | (−14.994) | (−8.226) | |||
L.NIPMC | −0.029 *** | −0.213 *** | |||||||
(−11.722) | (−5.839) | ||||||||
budget | 0.038 *** | 0.028 *** | 0.033 *** | 0.027 *** | 0.148 *** | 0.034 *** | 0.195 *** | 0.062 *** | −0.112 |
(5.304) | (4.370) | (4.691) | (4.226) | (3.798) | (5.043) | (4.502) | (11.913) | (−1.436) | |
sav | −0.026 *** | −0.038 *** | −0.043 *** | −0.052 *** | −0.129 *** | −0.024 *** | −0.016 | −0.044 *** | −0.057 ** |
(−7.553) | (−17.008) | (−16.138) | (−15.750) | (−3.495) | (−9.440) | (−0.483) | (−17.161) | (−1.973) | |
welfare | 0.020 *** | 0.008 *** | 0.013 *** | 0.015 *** | 0.157 *** | 0.006 ** | 0.120 *** | 0.012 *** | 0.142 *** |
(5.903) | (4.162) | (5.340) | (5.437) | (3.995) | (2.458) | (3.117) | (5.505) | (4.226) | |
student | −0.052 *** | −0.025 *** | −0.037 *** | −0.042 *** | −0.497 *** | −0.002 | −0.376 *** | −0.040 *** | −0.349 *** |
(−9.212) | (−8.860) | (−10.234) | (−9.913) | (−8.216) | (−0.779) | (−7.216) | (−11.764) | (−7.599) | |
hos | −0.128 *** | −0.049 *** | −0.064 *** | −0.060 *** | −0.258 *** | −0.031 *** | −0.286 *** | −0.053 *** | −0.327 *** |
(−16.366) | (−15.313) | (−13.955) | (−10.462) | (−2.946) | (−6.726) | (−2.905) | (−13.234) | (−5.430) | |
pop | −1.503 *** | −1.890 *** | −1.886 *** | −3.270 *** | 0.375 | −1.138 *** | 2.650 ** | −1.863 *** | 1.809 |
(−7.997) | (−13.195) | (−13.085) | (−12.074) | (0.182) | (−8.205) | (2.123) | (−12.884) | (1.581) | |
_cons | −2.411 *** | 0.460 *** | 0.613 *** | 0.573 *** | 3.381 *** | 0.499 *** | 3.325 *** | 0.543 *** | 3.274 *** |
(−316.89) | (86.545) | (108.034) | (68.116) | (47.358) | (90.854) | (53.823) | (96.647) | (63.771) | |
County FE | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ | √ | √ | √ | √ |
N | 32,969 | 32,969 | 32,969 | 19,795 | 19,795 | 27,034 | 27,034 | 31,361 | 31,361 |
R2 | 0.990 | 0.945 | 0.939 | 0.946 | 0.946 | 0.960 | 0.953 | 0.942 | 0.935 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5 | PM2.5b | PM2.5b | PM2.5b | PM2.5b | PM2.5b | |
ipc | nic | smart | bbc | ipc | nic | smart | bbc | |||
NIPMC | −0.034 *** | −0.038 *** | −0.021 *** | −0.041 *** | −0.028 *** | −0.202 *** | −0.159 *** | −0.018 | −0.171 *** | 0.180 *** |
(−16.219) | (−16.857) | (−10.184) | (−11.720) | (−6.993) | (−6.656) | (−5.154) | (−0.645) | (−3.385) | (3.173) | |
budget | 0.031 *** | 0.030 *** | 0.030 *** | 0.029 *** | 0.028 *** | 0.120 *** | 0.114 *** | 0.163 *** | 0.133 *** | 0.162 *** |
(4.409) | (4.425) | (4.343) | (4.297) | (4.336) | (3.888) | (3.696) | (4.336) | (3.836) | (4.070) | |
sav | −0.042 *** | −0.044 *** | −0.049 *** | −0.048 *** | −0.056 *** | −0.106 *** | −0.081 *** | −0.114 *** | −0.088 *** | −0.082 ** |
(−16.748) | (−17.196) | (−16.942) | (−17.165) | (−17.324) | (−4.050) | (−3.011) | (−3.627) | (−2.979) | (−2.370) | |
welfare | 0.014 *** | 0.013 *** | 0.007 *** | 0.016 *** | 0.013 *** | 0.152 *** | 0.141 *** | 0.048 | 0.180 *** | 0.091 * |
(6.326) | (5.809) | (2.871) | (5.991) | (4.578) | (4.500) | (4.000) | (1.135) | (4.486) | (1.835) | |
student | −0.032 *** | −0.030 *** | −0.035 *** | −0.033 *** | −0.039 *** | −0.395 *** | −0.376 *** | −0.417 *** | −0.394 *** | −0.506 *** |
(−9.584) | (−9.041) | (−9.178) | (−8.600) | (−8.589) | (−8.804) | (−8.249) | (−7.613) | (−7.494) | (−7.946) | |
hos | −0.058 *** | −0.054 *** | −0.051 *** | −0.055 *** | −0.045 *** | −0.289 *** | −0.245 *** | −0.233 *** | −0.276 *** | −0.150 * |
(−14.196) | (−13.179) | (−11.726) | (−11.893) | (−9.343) | (−4.749) | (−4.013) | (−3.315) | (−3.862) | (−1.883) | |
pop | −2.196 *** | −2.217 *** | −1.913 *** | −2.214 *** | −1.950 *** | 3.439 *** | 2.605 ** | −3.199 ** | 1.312 | −1.783 |
(−11.296) | (−11.017) | (−10.821) | (−9.768) | (−7.828) | (2.888) | (2.216) | (−2.463) | (1.036) | (−1.268) | |
_cons | 0.539 *** | 0.534 *** | 0.520 *** | 0.533 *** | 0.497 *** | 3.221 *** | 3.185 *** | 3.408 *** | 3.289 *** | 3.349 *** |
(80.187) | (77.048) | (80.840) | (71.126) | (65.000) | (65.430) | (64.076) | (61.260) | (62.184) | (57.275) | |
County FE | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
N | 31,398 | 29,854 | 22,958 | 24,176 | 17,602 | 31,398 | 29,854 | 22,958 | 24,176 | 17,602 |
R2 | 0.944 | 0.945 | 0.946 | 0.945 | 0.947 | 0.943 | 0.944 | 0.948 | 0.947 | 0.951 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
PM2.5 | PM2.5b | NIPMC | PM2.5 | PM2.5b | |
L.PM2.5 | 0.798 *** | ||||
(0.017) | |||||
L.PM2.55b | 1.333 *** | ||||
(0.402) | |||||
NIPMC | −0.027 *** | −0.292 *** | −0.327 *** | −0.391 *** | |
(0.010) | (0.250) | (0.018) | (0.148) | ||
IV | 0.008 *** | ||||
(3.271) | |||||
budget | 0.029 | 4.392 *** | −0.258 *** | −0.312 *** | −1.543 *** |
(0.022) | (0.665) | (2.976) | (0.019) | (0.350) | |
sav | −0.074 *** | 0.375 | −0.081 *** | 0.031 *** | 0.555 *** |
(0.011) | (0.238) | (3.287) | (0.005) | (0.081) | |
welfare | −0.003 | 0.181 | 0.113 | 0.109 *** | 0.373 *** |
(0.021) | (0.532) | (0.278) | (0.007) | (0.106) | |
student | 0.013 | −0.111 | −0.093 *** | −0.025 ** | 0.488 *** |
(0.014) | (0.283) | (3.281) | (0.011) | (0.137) | |
hos | −0.157 *** | −3.671 *** | 0.028 ** | −0.066 *** | 0.576 *** |
(0.028) | (0.699) | (2.111) | (0.011) | (0.118) | |
pop | 1.384 *** | −14.997 *** | 0.670 *** | 2.685 *** | −10.740 *** |
(0.164) | (3.641) | (4.278) | (0.113) | (0.626) | |
_cons | 0.123 *** | 1.104 *** | 0.090 *** | 0.381 *** | 2.258 *** |
(0.016) | (0.351) | (3.982) | (0.011) | (0.151) | |
AR(1) | 0.000 *** | 0.000 *** | |||
AR(2) | 0.251 | 0.374 | |||
Sargan test | 1.35 | 1.62 | |||
Kleibergen−Paap rk LM statistic | 25.872 *** | 30.281 *** | |||
Cragg−Donald Wald F statistic | 40.389 [16.38] | 21.728 [16.38] | |||
County FE | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ |
N | 38,999 | 38,999 | 16,507 | 16,507 | |
R2 | 0.257 | 0.051 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
innov1 | innov2 | innov3 | innov4 | innov5 | is1 | is2 | is3 | |
NIPMC | 0.738 *** | 8.661 *** | 1.200 *** | 5.693 *** | 0.870 *** | 0.022 *** | 0.076 *** | 0.007 *** |
(0.049) | (0.563) | (0.236) | (0.299) | (0.051) | (0.001) | (0.019) | (0.002) | |
budget | 0.005 | 2.328 *** | −0.017 | 0.468 * | 0.171 ** | −0.009 *** | −0.167 *** | −0.007 ** |
(0.052) | (0.831) | (0.142) | (0.250) | (0.073) | (0.002) | (0.056) | (0.003) | |
sav | −0.216 *** | −3.800 *** | −0.283 *** | −1.814 *** | −0.283 *** | 0.072 *** | 0.940 *** | 0.003 |
(0.029) | (0.369) | (0.083) | (0.165) | (0.043) | (0.002) | (0.048) | (0.003) | |
welfare | 0.300 *** | 1.931 *** | 0.112 | 1.081 *** | 0.515 *** | −0.007 *** | −0.108 *** | −0.013 *** |
(0.039) | (0.434) | (0.127) | (0.202) | (0.053) | (0.002) | (0.029) | (0.002) | |
student | 0.146 *** | 1.177 | −0.568 * | 1.244 *** | 0.218 *** | 0.035 *** | 0.100 ** | 0.050 *** |
(0.043) | (1.017) | (0.316) | (0.414) | (0.051) | (0.003) | (0.049) | (0.004) | |
hos | 0.145 ** | −1.658 * | −0.847 *** | −0.042 | 0.124 * | 0.003 | −0.158 *** | 0.012 *** |
(0.057) | (0.990) | (0.313) | (0.391) | (0.067) | (0.004) | (0.058) | (0.004) | |
pop | 8.599 ** | 259.066 *** | 60.308 *** | 149.098 *** | −1.595 | 1.138 *** | 0.103 | 1.640 *** |
(4.073) | (68.640) | (20.714) | (40.415) | (3.593) | (0.118) | (1.034) | (0.163) | |
_cons | −0.176 | −5.523 ** | −0.495 | −3.574 *** | 0.260 * | 0.267 *** | 0.609 *** | 2.078 *** |
(0.161) | (2.585) | (0.671) | (1.351) | (0.146) | (0.004) | (0.061) | (0.006) | |
County FE | √ | √ | √ | √ | √ | √ | ||
Year FE | √ | √ | √ | √ | √ | √ | ||
N | 20,257 | 17,880 | 23,815 | 27,413 | 20,257 | 32,963 | 32,963 | 32,963 |
R2 | 0.714 | 0.734 | 0.640 | 0.627 | 0.703 | 0.821 | 0.614 | 0.874 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
PM2.5 | PM2.5 | PM2.5 | PM2.5b | PM2.5b | PM2.5b | |
High ipl | Low ipl | High ipl | Low ipl | |||
NIPMC | −0.004 *** | −0.036 *** | −0.034 *** | −0.021 | −0.308 *** | −0.317 *** |
(−2.631) | (−13.446) | (−12.900) | (−0.859) | (−8.151) | (−8.419) | |
NIPMC_ipl | 0.011 *** | 0.270 *** | ||||
(3.760) | (6.301) | |||||
budget | 0.042 *** | 0.029 *** | 0.030 *** | −0.922 *** | 0.129 *** | 0.121 *** |
(3.476) | (4.445) | (4.455) | (−6.428) | (4.013) | (3.891) | |
sav | −0.064 *** | −0.040 *** | −0.040 *** | 0.249 *** | −0.106 *** | −0.090 *** |
(−12.959) | (−15.386) | (−16.409) | (4.624) | (−3.792) | (−3.468) | |
welfare | 0.022 *** | 0.011 *** | 0.012 *** | −0.039 | 0.155 *** | 0.128 *** |
(5.681) | (4.681) | (5.379) | (−0.855) | (4.154) | (3.915) | |
student | −0.032 *** | −0.033 *** | −0.033 *** | 0.183 *** | −0.458 *** | −0.348 *** |
(−6.104) | (−9.180) | (−10.262) | (2.930) | (−9.118) | (−7.867) | |
hos | −0.049 *** | −0.059 *** | −0.057 *** | −0.165 * | −0.332 *** | −0.317 *** |
(−6.924) | (−13.884) | (−14.394) | (−1.787) | (−5.120) | (−5.340) | |
pop | −0.427 *** | −2.334 *** | −1.906 *** | 9.570 *** | −0.694 | 2.068 * |
(−4.127) | (−10.541) | (−12.947) | (5.952) | (−0.508) | (1.815) | |
_cons | 0.520 *** | 0.537 *** | 0.536 *** | 1.684 *** | 3.594 *** | 3.274 *** |
(73.566) | (78.621) | (95.876) | (16.169) | (69.716) | (67.865) | |
County FE | √ | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ | √ |
N | 5487 | 27,482 | 32,969 | 5487 | 27,482 | 32,969 |
R2 | 0.968 | 0.942 | 0.944 | 0.906 | 0.944 | 0.943 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
PM2.5 | PM2.5 | PM2.5b | PM2.5b | |
High-Level Cities | General City | High-Level Cities | General City | |
NIPMC | −0.001 | −0.036 *** | 0.092 | −0.227 *** |
(−0.158) | (−20.763) | (1.535) | (−8.232) | |
budget | −0.060 *** | 0.031 *** | −0.252 | 0.127 *** |
(−3.398) | (4.370) | (−1.100) | (3.949) | |
sav | −0.022 *** | −0.042 *** | −0.329 *** | −0.069 ** |
(−2.892) | (−16.432) | (−3.764) | (−2.551) | |
welfare | −0.001 | 0.014 *** | 0.266 ** | 0.126 *** |
(−0.129) | (6.166) | (2.069) | (3.799) | |
student | −0.034 ** | −0.033 *** | 0.155 | −0.391 *** |
(−2.571) | (−9.970) | (0.873) | (−8.671) | |
hos | −0.069 *** | −0.057 *** | −1.161 *** | −0.263 *** |
(−5.351) | (−13.959) | (−7.171) | (−4.234) | |
pop | −1.548 *** | −1.995 *** | −1.043 | 3.628 *** |
(−6.497) | (−11.112) | (−0.380) | (3.128) | |
_cons | 0.624 *** | 0.530 *** | 4.098 *** | 3.160 *** |
(44.705) | (83.012) | (23.775) | (64.766) | |
County FE | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ |
N | 3112 | 29,857 | 3112 | 29,857 |
R2 | 0.931 | 0.945 | 0.937 | 0.945 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
PM2.5 | PM2.5 | PM2.5 | PM2.5b | PM2.5b | PM2.5b | |
Eastern | Central | Western | Eastern | Central | Western | |
NIPMC | −0.017 *** | −0.011 *** | −0.026 *** | −0.157 *** | −0.248 *** | −0.197 *** |
(−6.407) | (−3.829) | (−8.675) | (−4.122) | (−5.408) | (−3.634) | |
budget | −0.070 *** | 0.055 *** | 0.022 *** | −1.001 *** | −0.166 | 0.003 |
(−5.071) | (6.356) | (6.237) | (−5.842) | (−1.531) | (0.042) | |
sav | −0.040 *** | 0.004 | −0.017 *** | 0.170 *** | −0.035 | −0.109 ** |
(−9.307) | (1.362) | (−5.536) | (3.591) | (−0.816) | (−1.979) | |
welfare | 0.018 *** | 0.005 | 0.000 | 0.312 *** | 0.065 | −0.051 |
(4.444) | (1.551) | (0.022) | (4.171) | (1.474) | (−1.310) | |
student | −0.103 *** | −0.006 | 0.001 | −0.449 *** | −0.378 *** | −0.090 |
(−14.121) | (−1.190) | (0.341) | (−5.599) | (−5.706) | (−1.194) | |
hos | −0.065 *** | −0.091 *** | −0.041 *** | −0.579 *** | −0.567 *** | −0.170 * |
(−7.324) | (−13.131) | (−9.226) | (−5.116) | (−7.242) | (−1.784) | |
pop | −2.150 *** | −2.967 *** | −0.009 | 7.968 *** | 1.006 | 0.979 |
(−12.395) | (−7.271) | (−0.049) | (4.743) | (0.476) | (0.558) | |
_cons | 0.720 *** | 0.580 *** | 0.374 *** | 2.719 *** | 3.528 *** | 3.350 *** |
(69.828) | (40.213) | (76.303) | (24.409) | (36.751) | (52.152) | |
County FE | √ | √ | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ | √ | √ |
N | 8469 | 9453 | 11,249 | 8469 | 9453 | 11,249 |
R2 | 0.951 | 0.937 | 0.942 | 0.919 | 0.921 | 0.957 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, S.; Zhou, Z.; Zhong, S. Has the Construction of National Intellectual Property Model Cities Reduced PM2.5 Concentration and Standard Deviation? New Evidence from Counties in China. Sustainability 2025, 17, 8467. https://doi.org/10.3390/su17188467
Wang Y, Chen S, Zhou Z, Zhong S. Has the Construction of National Intellectual Property Model Cities Reduced PM2.5 Concentration and Standard Deviation? New Evidence from Counties in China. Sustainability. 2025; 17(18):8467. https://doi.org/10.3390/su17188467
Chicago/Turabian StyleWang, Yuheng, Sihan Chen, Zhicheng Zhou, and Shen Zhong. 2025. "Has the Construction of National Intellectual Property Model Cities Reduced PM2.5 Concentration and Standard Deviation? New Evidence from Counties in China" Sustainability 17, no. 18: 8467. https://doi.org/10.3390/su17188467
APA StyleWang, Y., Chen, S., Zhou, Z., & Zhong, S. (2025). Has the Construction of National Intellectual Property Model Cities Reduced PM2.5 Concentration and Standard Deviation? New Evidence from Counties in China. Sustainability, 17(18), 8467. https://doi.org/10.3390/su17188467