Behavior Prediction of Connections in Eco-Designed Thin-Walled Steel–Ply–Bamboo Structures Based on Machine Learning for Mechanical Properties
Abstract
1. Introduction
- (1)
- Eight new machine learning models were applied to tackle the problem of connection classification within TWS structures, and the best model was selected by comparing their accuracy.
- (2)
- Five hyperparameter optimization algorithms, including grid search and simulated annealing, were employed to fine-tune the performance of existing machine learning models, effectively avoiding overfitting or underfitting and enhancing generalization ability.
- (3)
- A thin-walled steel–ply–bamboo composite structure was introduced, combining the strengths of TWS structures with those of bamboo panels. Its performance under different conditions was studied, demonstrating its advantages.
- (4)
- Factor analysis and data processing were integrated to assess the optimal mechanical properties of the connections within TWS structures.
- (5)
- The combination of this innovative material with intelligent predictive models has the potential to facilitate more efficient material selection, supporting the promotion of thin-walled steel–ply–bamboo composites and meeting a broader range of applications.
2. Notation
3. Materials
3.1. Ply–Bamboo Panels
3.2. Thin-Walled Steel Studs
3.3. Self-Drilling Screws
4. Manufacture of Specimens and the Experimental Setup
5. Experimental Results
6. Correlation Analysis and Normality Test
6.1. Normality Test
6.2. Correlation Coefficient
7. Factor Analysis
7.1. Determining the Number of Factors
7.2. Principal Factors’ Weights
7.3. Analysis Results
8. Strength Prediction Model Based on Machine Learning
8.1. Data Preprocessing
8.2. Machine Learning Models
8.3. Model Training
8.4. Performance Evaluation of the Machine Learning Models
Algorithm 1: Pseudo-code of RF (with Simulated Annealing Optimization) |
Input: x, y, initial_params Output: best_params, accuracy 1. import RandomForestClassifier from sklearn.ensemble 2. import train_test_split, cross_val_score from sklearn.model_selection 3. import basinhopping from scipy.optimize 4. import numpy as np 5. # Generate simulation data 6. Set random seed: np.random.seed(42) 7. X = Generate random data with shape (1000, 7) 8. y = Generate random binary labels with shape (1000,) 9. # Partition Training and Test Sets 10. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 42) 11. # Define Random Forest Classifier function 12. Define function random_forest_classifier(params): 13. Extract n_estimators, max_depth, min_samples_split, min_samples_leaf from params 14. Initialize RandomForestClassifier with given parameters and random_state = 42 15. Perform cross-validation and store the scores 16. Return negative mean score from cross-validation 17. # Initial parameters for optimization 18. Set initial_params = [100, 10, 2, 1] 19. # Bounds for hyperparameters 20. Set bounds = [(10, 500), (1, 50), (2, 50), (1, 50)] 21. # Optimize hyperparameters using Simulated Annealing 22. result = basinhopping(random_forest_classifier, initial_params, niter = 100, T = 100, stepsize = 1, minimizer_kwargs = {“bounds”: bounds}, disp = True) 23. # Extract best parameters from the optimization result 24. best_params = result.x 25. # Print best parameters found 26. Print “Best parameters found: ”, best_params 27. # Train the model with best parameters and evaluate performance 28. Initialize RandomForestClassifier with best_params and random_state = 42 29. Fit model to X_train and y_train 30. Calculate accuracy on the test set: accuracy = best_clf.score(X_test, y_test) 31. # Print accuracy on the test set 32. Print “Accuracy on test set: ”, accuracy |
9. Hyperparameter Optimization Experiment
9.1. Hyperparameter Optimization Algorithm
9.2. Performance Evaluation of the Hyperparameter Optimization Algorithms
Algorithm 2: Pseudo-code of RF (with Bayesian Optimization of Hyperparameters). |
Input: x, y, bounds, initial_guess Output: best_params, best_score 1. import numpy as np 2. from sklearn.ensemble import RandomForestClassifier 3. from sklearn.model_selection import train_test_split, cross_val_score 4. from scipy.optimize import minimize 5. # Data shuffling and partitioning ratio 6. shuffle_data = True 7. train_ratio = 0.7 8. cross_validation = 6 9. #data loading 10. X, y = np.array([[1, 2, 3, 4, 5, 6, 7], [2, 3, 4, 5, 6, 7, 8]]).T, np.array([0, 1]) 11. if shuffle_data: 12. indices = np.arange(len(X)) 13. np.random.shuffle(indices) 14. X, y = X[indices], y[indices] 15. X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = train_ratio) 16. # Random forest classifier 17. rf = RandomForestClassifier() 18. # Cross-verify the score function 19. def score(params): 20. n_estimators, max_depth = int(params [0]), int(params [1]) 21. rf.set_params(n_estimators = n_estimators, max_depth = max_depth) 22. return -np.mean(cross_val_score(rf, X_train, y_train, cv = cross_validation)) 23. #Bayesian optimization hyperparameters 24. bounds = [(10, 200), (1, 50)] 25. initial_guess = [100, 10] 26. result = minimize(score, initial_guess, method = ‘L-BFGS-B’, bounds = bounds) 27. best_params = result.x 28. best_score = -result.fun 29. print(“Optimum hyperparameter: ”, best_params) 30. print(“Best cross-validation score: ”, best_score) |
10. Discussion
11. Conclusions
- (1)
- This study proposed a new theoretical framework for column design based on machine learning (ML) technology. The shortcomings of structural type prediction for matching the performance of thin-walled steel–ply–bamboo structures were addressed. The prediction results were explained and analyzed with emphasis on the importance of features, as shown in Figure 11. Then, in combination with hyperparameter optimization, a second comparison was carried out to determine the main influencing parameters and optimize the model to obtain the optimal selection.
- (2)
- The design stage provided a feasible method for the mechanical property evaluation of thin-walled steel–ply–bamboo composite walls based on factor analysis and data analysis. The performance of TWS composite structure connections was most affected by Ke, Fm, and Fu, and least by μ. According to the comprehensive scoring model of the factor analysis, the optimal structure was SS-DL-4.2STS30-MT15 (the reader is referred to Section 7.3. (Analysis Results) for the specific designation).
- (3)
- A dataset of 249 data samples reflecting the mechanical performance of TWS composite structure connections was compiled from tests on 51 distinct connection types (designed using an orthogonal experimental approach). Statistical analysis and machine learning methods were employed to investigate how key parameters (such as initial stiffness, yield load and its corresponding displacement, peak load and its corresponding displacement, failure load, and the ductility coefficient) affect the connection performance. The applicability of eight machine learning classification models (XGBoost, SVM, KNN, RF, NB, BPNN, ExTrees, and LR) was compared. The results showed that the prediction accuracy of BPNN was relatively poor, while RF and ExTrees models achieved much higher predictive performance, with the RF model slightly outperforming ExTrees on the test data.
- (4)
- Hyperparameter optimization is a crucial process for ensuring the optimal performance of machine learning algorithms. The optimization effects of five hyperparameter optimization algorithms—namely, GS, GA, PSO, SA, and BO—were compared. After comparison, the Bayesian algorithm was found to be relatively superior in terms of accuracy, recall rate, precision, and F1 score (50 iterations).
- (5)
- The integration of bamboo with thin-walled steel in connection design provides a clear sustainability benefit. Bamboo’s rapid renewability and carbon sequestration capacity allow these “eco-designed” composite connections to significantly reduce the overall environmental footprint compared with conventional all-steel connections. Leveraging machine learning to optimize the connection configurations, this study demonstrated the utility of a data-driven approach to green structural design, identifying high-performance connection types that make use of sustainable materials and potentially reducing the need for resource-intensive trial-and-error testing [54].
- (6)
- Limitations and future work: The classification accuracy of the best model (RF with BO) reached about 67%, which—while the highest in our study—leaves room for improvement. The relatively small dataset (249 samples) and the complexity of distinguishing 51 connection types may have constrained the achievable accuracy. In future research, larger datasets and additional input features (e.g., geometric details or long-term performance factors) could be utilized to improve model generalization. Moreover, exploring advanced or hybrid models (such as deep learning approaches) might further enhance the prediction performance. Finally, beyond static tests, future studies should investigate the dynamic behaviors and long-term durability of TWS–ply–bamboo connections, in addition to conducting life-cycle assessments to quantify the environmental advantages of these eco-designed structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Supplementary Data
Appendix A.1
Predicted Results | Test Series |
---|---|
CD-3.5S15-M15 | CD-3.5S15-M15 |
SS-UF-4.2STS10-CL15 | SS-UF-4.2STS10-CL15 |
SS-UF-4.2STS15-CL15 | CD-4.2S30-M15 |
CU-4.2S30-M15 | CU-4.2S30-M15 |
SS-UF-4.2STS30-CL15 | SS-UF-4.2STS30-CL15 |
CU-4.2S15-M15 | CU-4.2S15-M15 |
SS-DL-4.2STS10-MT15 | SS-DL-4.2STS10-MT15 |
CD-4.2S10-C15 | CD-4.2S10-C15 |
CD-4.2S30-C15 | CD-4.2S30-C15 |
SS-DL-4.2STS10-CL15 | SS-UF-4.2STS10-CL15 |
SS-DL-4.2STS15-CL15 | SS-DL-4.2STS15-CL15 |
SS-UF-3.5STS15-CL15 | SS-DL-4.2STS15-MT2.5 |
SS-UF-4.2STS15-CL15 | CD-4.2S30-M2.5 |
SS-DL-4.2STS10-CL15 | SS-DL-4.2STS10-CL15 |
SS-DL-3.5PTS15-CL15 | SS-UF-4.2STS30-CL15 |
SS-UF-4.2STS10-CL15 | CD-4.2S15-M2.5 |
CU-4.2S10-C15 | CD-4.2S10-M15 |
SS-UF-4.2STS30-CL15 | SS-UF-4.2STS30-CL15 |
SS-DL-3.5STS15-CL15 | SS-DL-3.5STS15-CL15 |
CD-3.5S15-C15 | CD-3.5P15-M15 |
CD-4.2S10-C15 | CD-4.2S10-C15 |
SS-UF-4.2STS15-MT30 | SS-UF-4.2STS15-MT30 |
CU-4.2S15-C15 | CD-4.2S30-C2.5 |
SS-DL-3.5PTS15-MT15 | SS-DL-3.5PTS15-MT15 |
SS-DL-4.2STS10-CL15 | SS-DL-4.2STS10-CL15 |
CD-4.2S15-C15 | CD-4.2S15-C15 |
SS-UF-4.2STS15-CL15 | SS-UF-4.2STS15-CL15 |
CD-4.2S15-M2.5 | CD-4.2S15-M2.5 |
CU-3.5S15-C15 | CU-3.5S15-C15 |
CU-4.2S10-M15 | CU-4.2S10-M15 |
CU-4.2S30-C15 | CD-4.2S30-C30 |
SS-UF-3.5PTS15-CL15 | SS-UF-3.5PTS15-CL15 |
SS-UF-4.2STS30-MT15 | SS-UF-4.2STS30-MT15 |
SS-DL-3.5PTS15-CL15 | SS-DL-3.5PTS15-CL15 |
CD-4.2S30-C2.5 | CD-4.2S30-C2.5 |
SS-DL-4.2STS30-CL15 | SS-DL-4.2STS30-CL15 |
SS-DL-4.2STS15-CL15 | SS-DL-4.2STS15-MT2.5 |
SS-DL-4.2STS10-CL15 | SS-DL-4.2STS10-CL15 |
SS-DL-4.2STS15-MT30 | SS-DL-4.2STS15-MT30 |
SS-UF-4.2STS15-CL15 | CD-4.2S30-C15 |
CD-4.2S15-M2.5 | CU-4.2S15-M15 |
CU-4.2S40-M15 | CU-4.2S15-M2.5 |
CD-4.2S30-M15 | SS-UF-4.2STS30-CL15 |
CU-3.5P15-C15 | CD-3.5P15-M15 |
SS-UF-4.2STS15-MT2.5 | SS-UF-4.2STS15-MT2.5 |
SS-UF-3.5PTS15-CL15 | SS-UF-3.5PTS15-CL15 |
SS-DL-3.5STS15-CL15 | SS-DL-4.2STS15-MT15 |
CD-4.2S15-M2.5 | CU-3.5P15-M15 |
CD-4.2S15-M15 | CD-4.2S15-M15 |
CD-4.2S30-C15 | CU-3.5P15-C15 |
SS-UF-4.2STS10-CL15 | CD-4.2S15-M15 |
SS-UF-4.2STS15-MT2.5 | SS-UF-4.2STS15-MT2.5 |
SS-DL-3.5STS15-MT15 | SS-DL-3.5STS15-MT15 |
SS-DL-4.2STS30-CL15 | SS-DL-4.2STS30-CL15 |
CD-4.2S30-C30 | CD-4.2S30-C30 |
SS-UF-4.2STS10-MT15 | SS-UF-4.2STS10-MT15 |
CU-4.2S40-M15 | CU-4.2S40-M15 |
CU-3.5P15-M15 | CU-3.5P15-M15 |
CU-3.5P15-C15 | CU-3.5P15-C15 |
CD-4.2S30-C2.5 | CU-4.2S15-C15 |
CD-4.2S10-C15 | CU-4.2S15-M2.5 |
CU-3.5S15-C15 | CU-3.5P15-C15 |
SS-DL-4.2STS15-MT2.5 | SS-DL-4.2STS15-MT30 |
CU-3.5P15-C15 | CD-3.5P15-M15 |
SS-DL-4.2STS15-CL15 | SS-DL-4.2STS15-CL15 |
SS-DL-4.2STS30-CL15 | SS-DL-4.2STS30-CL15 |
CD-4.2S15-C15 | CD-4.2S15-C15 |
SS-UF-4.2STS15-MT15 | SS-UF-4.2STS15-MT15 |
SS-DL-3.5STS15-CL15 | SS-DL-3.5STS15-CL15 |
CU-4.2S30-C15 | CU-4.2S30-C15 |
CD-3.5S15-C15 | CD-3.5S15-C15 |
SS-UF-3.5STS15-CL15 | SS-UF-3.5STS15-CL15 |
SS-UF-4.2STS15-CL15 | SS-UF-4.2STS15-CL15 |
SS-DL-4.2STS10-MT15 | SS-DL-4.2STS10-MT15 |
SS-UF-4.2STS10-CL15 | SS-UF-4.2STS10-CL15 |
Appendix A.2
Test Series | No. | Ke | δy | δm | Fm | δu | Fu | μ |
---|---|---|---|---|---|---|---|---|
CD-3.5P15-M15-1 | 1 | 590.94 | 3.14 | 5.13 | 1402.00 | 6.27 | 1191.70 | 2.00 |
CD-3.5P15-M15-2 | 2 | 706.42 | 2.83 | 4.17 | 1321.00 | 4.55 | 1122.85 | 1.61 |
CD-3.5P15-M15-3 | 3 | 447.93 | 3.63 | 4.89 | 1327.00 | 4.89 | 1127.95 | 1.35 |
CD-3.5P15-M15-AVG | AVG | 581.76 | 3.20 | 4.73 | 1350.00 | 5.24 | 1147.50 | 1.65 |
CD-3.5S15-M15-1 | 1 | 205.41 | 4.24 | 5.85 | 1195.00 | 6.34 | 1015.75 | 1.50 |
CD-3.5S15-M15-2 | 2 | 217.53 | 4.33 | 5.90 | 1253.00 | 6.42 | 1065.05 | 1.48 |
CD-3.5S15-M15-3 | 3 | 360.38 | 4.38 | 5.50 | 1228.00 | 6.40 | 1043.80 | 1.46 |
CD-3.5S15-M15-AVG | AVG | 261.11 | 4.32 | 5.75 | 1225.33 | 6.39 | 1041.53 | 1.48 |
CD-4.2S10-M15-1 | 1 | 756.77 | 2.09 | 3.99 | 1523.00 | 4.61 | 1294.55 | 2.20 |
CD-4.2S10-M15-2 | 2 | 1194.73 | 4.41 | 4.41 | 1359.00 | 5.56 | 1155.15 | 1.26 |
CD-4.2S10-M15-3 | 3 | 963.14 | 2.91 | 2.80 | 1411.00 | 3.78 | 1199.35 | 1.30 |
CD-4.2S10-M15-AVG | AVG | 971.55 | 3.14 | 3.73 | 1431.00 | 4.65 | 1216.35 | 1.59 |
CD-4.2S15-M2.5-1 | 1 | 1102.48 | 1.61 | 5.56 | 1447.00 | 5.77 | 1229.95 | 3.59 |
CD-4.2S15-M2.5-2 | 2 | 638.97 | 2.95 | 4.35 | 1492.00 | 5.52 | 1268.20 | 1.87 |
CD-4.2S15-M2.5-3 | 3 | 1119.55 | 2.09 | 3.20 | 1503.00 | 5.52 | 1277.55 | 2.65 |
CD-4.2S15-M2.5-AVG | AVG | 953.67 | 2.21 | 4.37 | 1480.67 | 5.60 | 1258.57 | 2.70 |
CD-4.2S15-M15-1 | 1 | 371.23 | 2.35 | 3.69 | 1484.00 | 4.90 | 1261.40 | 2.09 |
CD-4.2S15-M15-2 | 2 | 529.78 | 3.50 | 4.45 | 1592.00 | 6.28 | 1353.20 | 1.79 |
CD-4.2S15-M15-3 | 3 | 373.48 | 3.35 | 4.71 | 1563.00 | 5.95 | 1328.55 | 1.78 |
CD-4.2S15-M15-AVG | AVG | 424.83 | 3.07 | 4.28 | 1546.33 | 5.71 | 1314.38 | 1.89 |
CD-4.2S30-M2.5-1 | 1 | 484.00 | 3.28 | 4.57 | 1838.00 | 5.65 | 1562.30 | 1.72 |
CD-4.2S30-M2.5-2 | 2 | 735.17 | 2.85 | 4.71 | 1735.00 | 7.42 | 1474.75 | 2.60 |
CD-4.2S30-M2.5-3 | 3 | 695.46 | 2.81 | 4.68 | 1723.00 | 5.66 | 1464.55 | 2.01 |
CD-4.2S30-M2.5-AVG | AVG | 638.21 | 2.98 | 4.65 | 1765.33 | 6.24 | 1500.53 | 2.11 |
CD-4.2S30-M15-1 | 1 | 355.63 | 3.91 | 6.05 | 1699.00 | 6.88 | 1444.15 | 1.76 |
CD-4.2S30-M15-2 | 2 | 362.75 | 4.20 | 5.60 | 1646.00 | 5.59 | 1399.10 | 1.33 |
CD-4.2S30-M15-3 | 3 | 498.47 | 2.73 | 5.46 | 1706.00 | 6.93 | 1450.10 | 2.54 |
CD-4.2S30-M15-AVG | AVG | 405.62 | 3.61 | 5.70 | 1683.67 | 6.47 | 1431.12 | 1.88 |
CD-4.2S30-M30-1 | 1 | 502.79 | 3.88 | 6.10 | 1668.00 | 6.78 | 1417.80 | 1.75 |
CD-4.2S30-M30-2 | 2 | 433.64 | 3.48 | 5.31 | 1521.00 | 6.45 | 1292.85 | 1.86 |
CD-4.2S30-M30-3 | 3 | 347.84 | 4.11 | 6.08 | 1627.00 | 7.31 | 1382.95 | 1.78 |
CD-4.2S30-M30-AVG | AVG | 428.09 | 3.82 | 5.83 | 1605.33 | 6.85 | 1364.53 | 1.79 |
CD-3.5P15-C15-1 | 1 | 224.26 | 3.84 | 4.13 | 1026.00 | 8.28 | 872.10 | 2.16 |
CD-3.5P15-C15-2 | 2 | 416.00 | 4.03 | 5.44 | 1092.00 | 8.63 | 928.20 | 2.14 |
CD-3.5P15-C15-3 | 3 | 373.51 | 4.20 | 4.97 | 1128.00 | 8.30 | 958.80 | 1.98 |
CD-3.5P15-C15-4 | 4 | 394.43 | 4.19 | 4.04 | 1134.00 | 7.35 | 963.90 | 1.75 |
CD-3.5P15-C15-5 | 5 | 583.26 | 4.76 | 6.21 | 1254.00 | 9.08 | 1065.90 | 1.91 |
CD-3.5P15-C15-AVG | AVG | 398.29 | 4.20 | 4.96 | 1126.80 | 8.33 | 957.78 | 1.99 |
CD-3.5S15-C15-1 | 1 | 401.55 | 4.20 | 4.96 | 1295.00 | 6.83 | 1100.75 | 1.63 |
CD-3.5S15-C15-2 | 2 | 379.85 | 3.20 | 4.89 | 1263.00 | 6.53 | 1073.55 | 2.04 |
CD-3.5S15-C15-3 | 3 | 411.93 | 4.04 | 4.99 | 1278.00 | 7.30 | 1086.30 | 1.81 |
CD-3.5S15-C15-4 | 4 | 361.19 | 4.53 | 6.62 | 1219.00 | 8.59 | 1036.15 | 1.90 |
CD-3.5S15-C15-5 | 5 | 503.96 | 4.93 | 4.02 | 1241.00 | 6.31 | 1054.85 | 1.28 |
CD-3.5S15-C15-AVG | AVG | 411.69 | 4.18 | 5.10 | 1259.20 | 7.11 | 1070.32 | 1.73 |
CD-4.2S10-C15-1 | 1 | 1807.50 | 4.41 | 4.96 | 1446.00 | 7.01 | 1229.10 | 1.59 |
CD-4.2S10-C15-2 | 2 | 2074.07 | 3.31 | 3.95 | 1400.00 | 5.91 | 1190.00 | 1.79 |
CD-4.2S10-C15-3 | 3 | 1720.35 | 3.73 | 3.28 | 1458.00 | 7.19 | 1239.30 | 1.93 |
CD-4.2S10-C15-4 | 4 | 1397.65 | 3.80 | 0.47 | 1485.00 | 8.76 | 1262.25 | 2.31 |
CD-4.2S10-C15-5 | 5 | 2358.40 | 2.95 | 3.99 | 1474.00 | 6.51 | 1252.90 | 2.21 |
CD-4.2S10-C15-AVG | AVG | 1871.60 | 3.64 | 3.33 | 1452.60 | 7.08 | 1234.71 | 1.96 |
CD-4.2S15-C15-1 | 1 | 2454.40 | 2.42 | 4.96 | 1534.00 | 7.44 | 1303.90 | 3.07 |
CD-4.2S15-C15-2 | 2 | 541.79 | 2.77 | 4.42 | 1517.00 | 6.34 | 1289.45 | 2.29 |
CD-4.2S15-C15-3 | 3 | 1065.74 | 2.94 | 5.00 | 1532.00 | 7.75 | 1302.20 | 2.64 |
CD-4.2S15-C15-4 | 4 | 410.75 | 2.93 | 4.56 | 1376.00 | 6.18 | 1169.60 | 2.11 |
CD-4.2S15-C15-5 | 5 | 592.45 | 2.87 | 4.09 | 1570.00 | 7.71 | 1334.50 | 2.69 |
CD-4.2S15-C15-AVG | AVG | 1013.02 | 2.79 | 4.61 | 1505.80 | 7.08 | 1279.93 | 2.56 |
CD-4.2S30-C2.5-1 | 1 | 892.50 | 3.40 | 4.96 | 1785.00 | 6.78 | 1517.25 | 1.99 |
CD-4.2S30-C2.5-2 | 2 | 481.90 | 3.21 | 5.17 | 1771.00 | 5.17 | 1505.35 | 1.61 |
CD-4.2S30-C2.5-3 | 3 | 894.65 | 2.46 | 5.00 | 1881.00 | 6.57 | 1598.85 | 2.67 |
CD-4.2S30-C2.5-4 | 4 | 1325.52 | 2.06 | 4.56 | 1922.00 | 8.23 | 1633.70 | 4.00 |
CD-4.2S30-C2.5-5 | 5 | 759.61 | 1.72 | 4.09 | 1937.00 | 4.64 | 1646.45 | 2.70 |
CD-4.2S30-C2.5-AVG | AVG | 870.84 | 2.57 | 4.76 | 1859.20 | 6.28 | 1580.32 | 2.59 |
CD-4.2S30-C15-1 | 1 | 731.11 | 3.40 | 4.96 | 1645.00 | 7.41 | 1398.25 | 2.18 |
CD-4.2S30-C15-2 | 2 | 915.36 | 3.12 | 7.46 | 1579.00 | 9.97 | 1342.15 | 3.20 |
CD-4.2S30-C15-3 | 3 | 788.16 | 3.41 | 5.33 | 1598.00 | 8.73 | 1358.30 | 2.56 |
CD-4.2S30-C15-4 | 4 | 614.05 | 3.14 | 4.95 | 1704.00 | 9.05 | 1448.40 | 2.88 |
CD-4.2S30-C15-5 | 5 | 766.75 | 3.36 | 6.41 | 1591.00 | 9.08 | 1352.35 | 2.70 |
CD-4.2S30-C15-AVG | AVG | 763.09 | 3.29 | 5.82 | 1623.40 | 8.85 | 1379.89 | 2.70 |
CD-4.2S30-C30-1 | 1 | 441.29 | 5.23 | 7.49 | 1710.00 | 11.62 | 1453.50 | 2.22 |
CD-4.2S30-C30-2 | 2 | 683.56 | 4.43 | 7.46 | 1726.00 | 9.23 | 1467.10 | 2.08 |
CD-4.2S30-C30-3 | 3 | 505.62 | 4.23 | 7.48 | 1709.00 | 9.96 | 1452.65 | 2.35 |
CD-4.2S30-C30-4 | 4 | 272.91 | 5.44 | 7.47 | 1385.00 | 9.89 | 1177.25 | 1.82 |
CD-4.2S30-C30-5 | 5 | 517.70 | 6.21 | 7.46 | 1579.00 | 13.97 | 1342.15 | 2.25 |
CD-4.2S30-C30-AVG | AVG | 484.22 | 5.11 | 7.47 | 1621.80 | 10.93 | 1378.53 | 2.15 |
CU-3.5P15-M15-1 | 1 | 703.47 | 2.69 | 3.57 | 1421.00 | 4.80 | 1207.85 | 1.79 |
CU-3.5P15-M15-2 | 2 | 578.67 | 2.70 | 2.91 | 1519.00 | 3.98 | 1291.15 | 1.48 |
CU-3.5P15-M15-3 | 3 | 870.21 | 1.36 | 3.80 | 1351.00 | 4.96 | 1148.35 | 3.63 |
CU-3.5P15-M15-AVG | AVG | 717.45 | 2.25 | 3.43 | 1430.33 | 4.58 | 1215.78 | 2.30 |
CU-3.5S15-M15-1 | 1 | 881.26 | 4.62 | 6.26 | 1258.00 | 7.68 | 1069.30 | 1.66 |
CU-3.5S15-M15-2 | 2 | 328.64 | 4.66 | 7.12 | 1483.00 | 8.50 | 1260.55 | 1.82 |
CU-3.5S15-M15-3 | 3 | 364.15 | 4.38 | 6.95 | 1341.00 | 9.39 | 1139.85 | 2.14 |
CU-3.5S15-M15-AVG | AVG | 524.69 | 4.55 | 6.78 | 1360.67 | 8.52 | 1156.57 | 1.88 |
CU-4.2S10-M15-1 | 1 | 846.11 | 1.54 | 2.71 | 1413.00 | 2.71 | 1201.05 | 1.76 |
CU-4.2S10-M15-2 | 2 | 1111.11 | 2.40 | 3.25 | 1575.00 | 3.25 | 1338.75 | 1.35 |
CU-4.2S10-M15-3 | 3 | 1243.82 | 2.00 | 3.02 | 1561.00 | 3.02 | 1326.85 | 1.51 |
CU-4.2S10-M15-AVG | AVG | 1067.01 | 1.98 | 2.99 | 1516.33 | 2.99 | 1288.88 | 1.54 |
CU-4.2S15-M2.5-1 | 1 | 1046.74 | 2.11 | 4.31 | 1646.00 | 4.55 | 1399.10 | 2.16 |
CU-4.2S15-M2.5-2 | 2 | 1875.86 | 3.13 | 4.65 | 1768.00 | 4.68 | 1502.80 | 1.50 |
CU-4.2S15-M2.5-3 | 3 | 1417.71 | 2.64 | 3.94 | 1641.00 | 4.80 | 1394.85 | 1.82 |
CU-4.2S15-M2.5-AVG | AVG | 1446.77 | 2.62 | 4.30 | 1685.00 | 4.68 | 1432.25 | 1.83 |
CU-4.2S15-M15-1 | 1 | 1027.60 | 2.29 | 4.57 | 1657.00 | 6.47 | 1408.45 | 2.82 |
CU-4.2S15-M15-2 | 2 | 1129.02 | 2.81 | 4.62 | 1702.00 | 5.53 | 1446.70 | 1.96 |
CU-4.2S15-M15-3 | 3 | 1382.47 | 2.38 | 4.14 | 1735.00 | 3.76 | 1474.75 | 1.58 |
CU-4.2S15-M15-AVG | AVG | 1179.70 | 2.49 | 4.44 | 1698.00 | 5.25 | 1443.30 | 2.12 |
CU-4.2S30-M15-1 | 1 | 884.33 | 4.49 | 8.12 | 1919.00 | 9.06 | 1631.15 | 2.02 |
CU-4.2S30-M15-2 | 2 | 1242.83 | 3.42 | 6.59 | 1712.00 | 8.31 | 1455.20 | 2.43 |
CU-4.2S30-M15-3 | 3 | 929.76 | 4.41 | 9.06 | 1734.00 | 10.90 | 1473.90 | 2.47 |
CU-4.2S30-M15-AVG | AVG | 1018.97 | 4.10 | 7.92 | 1788.33 | 9.42 | 1520.08 | 2.31 |
CU-4.2S40-M15-1 | 1 | 1337.97 | 2.23 | 4.40 | 1682.00 | 5.21 | 1430.00 | 2.34 |
CU-4.2S40-M15-2 | 2 | 1072.90 | 2.53 | 3.73 | 1692.00 | 4.13 | 1438.00 | 1.63 |
CU-4.2S40-M15-3 | 3 | 1409.56 | 1.32 | 3.00 | 1694.00 | 4.32 | 1440.00 | 3.28 |
CU-4.2S40-M15-AVG | AVG | 1273.48 | 2.03 | 3.71 | 1689.33 | 4.55 | 1436.00 | 2.42 |
CU-3.5P15-C15-1 | 1 | 761.71 | 3.35 | 7.46 | 1333.00 | 12.45 | 1133.05 | 3.72 |
CU-3.5P15-C15-2 | 2 | 300.43 | 3.97 | 6.53 | 1397.00 | 8.52 | 1187.45 | 2.15 |
CU-3.5P15-C15-3 | 3 | 488.00 | 2.89 | 4.80 | 1373.00 | 7.48 | 1167.05 | 2.59 |
CU-3.5P15-C15-4 | 4 | 977.45 | 3.36 | 5.27 | 1335.00 | 6.34 | 1134.75 | 1.89 |
CU-3.5P15-C15-5 | 5 | 199.86 | 5.41 | 3.99 | 1424.00 | 7.45 | 1210.40 | 1.38 |
CU-3.5P15-C15-AVG | AVG | 545.49 | 3.80 | 5.61 | 1372.40 | 8.45 | 1166.54 | 2.34 |
CU-3.5S15-C15-1 | 1 | 277.81 | 4.26 | 6.29 | 1271.00 | 7.97 | 1080.35 | 1.87 |
CU-3.5S15-C15-2 | 2 | 273.20 | 4.12 | 6.75 | 1325.00 | 7.90 | 1126.25 | 1.92 |
CU-3.5S15-C15-3 | 3 | 277.40 | 4.16 | 5.00 | 1311.00 | 7.39 | 1114.00 | 1.77 |
CU-3.5S15-C15-4 | 4 | 348.82 | 3.48 | 6.46 | 1279.00 | 6.52 | 1260.75 | 1.87 |
CU-3.5S15-C15-5 | 5 | 248.61 | 5.22 | 7.92 | 1386.00 | 7.80 | 1178.10 | 1.49 |
CU-3.5S15-C15-AVG | AVG | 285.17 | 4.25 | 6.48 | 1314.40 | 7.52 | 1151.89 | 1.79 |
CU-4.2S10-C15-1 | 1 | 928.39 | 3.88 | 4.97 | 1439.00 | 5.97 | 1223.15 | 1.54 |
CU-4.2S10-C15-2 | 2 | 727.41 | 3.09 | 3.99 | 1473.00 | 5.01 | 1252.05 | 1.62 |
CU-4.2S10-C15-3 | 3 | 869.41 | 3.89 | 5.00 | 1428.00 | 6.00 | 1213.80 | 1.54 |
CU-4.2S10-C15-4 | 4 | 805.16 | 4.79 | 7.46 | 1248.00 | 8.57 | 1060.80 | 1.79 |
CU-4.2S10-C15-5 | 5 | 912.24 | 5.91 | 7.46 | 1528.00 | 9.10 | 1298.80 | 1.54 |
CU-4.2S10-C15-AVG | AVG | 848.52 | 4.31 | 5.78 | 1423.20 | 6.93 | 1209.72 | 1.61 |
CU-4.2S15-C15-1 | 1 | 1086.06 | 3.31 | 4.96 | 1792.00 | 6.45 | 1523.20 | 1.95 |
CU-4.2S15-C15-2 | 2 | 1204.83 | 2.14 | 6.61 | 1747.00 | 8.47 | 1484.95 | 3.96 |
CU-4.2S15-C15-3 | 3 | 1165.61 | 2.52 | 6.38 | 1661.00 | 7.32 | 1411.85 | 2.90 |
CU-4.2S15-C15-4 | 4 | 968.00 | 3.49 | 8.02 | 1573.00 | 8.10 | 1337.05 | 2.32 |
CU-4.2S15-C15-5 | 5 | 951.64 | 5.95 | 8.45 | 1594.00 | 9.94 | 1354.90 | 1.67 |
CU-4.2S15-C15-AVG | AVG | 1075.23 | 3.48 | 6.88 | 1673.40 | 8.06 | 1422.39 | 2.56 |
CU-4.2S30-C15-1 | 1 | 838.89 | 5.16 | 7.46 | 1510.00 | 10.01 | 1283.50 | 1.94 |
CU-4.2S30-C15-2 | 2 | 812.35 | 6.45 | 9.94 | 1381.00 | 10.09 | 1173.85 | 1.56 |
CU-4.2S30-C15-3 | 3 | 980.00 | 5.37 | 7.50 | 1519.00 | 9.92 | 1291.15 | 1.85 |
CU-4.2S30-C15-4 | 4 | 1295.17 | 6.04 | 8.58 | 1878.00 | 11.01 | 1596.30 | 1.82 |
CU-4.2S30-C15-5 | 5 | 707.69 | 8.86 | 10.56 | 1610.00 | 12.56 | 1368.50 | 1.42 |
CU-4.2S30-C15-AVG | AVG | 926.82 | 6.38 | 8.81 | 1579.60 | 10.72 | 1342.66 | 1.72 |
SS-DL-3.5PTS15-MT15-1 | 1 | 836.26 | 1.60 | 3.53 | 1992.69 | 3.98 | 1693.79 | 2.49 |
SS-DL-3.5PTS15-MT15-2 | 2 | 733.95 | 1.99 | 3.90 | 1983.00 | 4.58 | 1685.55 | 2.31 |
SS-DL-3.5PTS15-MT15-3 | 3 | 623.71 | 2.16 | 4.27 | 2006.00 | 4.30 | 1705.10 | 1.99 |
SS-DL-3.5PTS15-MT15-AVG | AVG | 731.31 | 1.92 | 3.90 | 1993.90 | 4.29 | 1694.81 | 2.26 |
SS-DL-3.5PTS15-CL15-1 | 1 | 454.17 | 3.96 | 5.00 | 1971.00 | 7.57 | 1675.35 | 1.91 |
SS-DL-3.5PTS15-CL15-2 | 2 | 647.34 | 3.81 | 4.32 | 1992.00 | 7.33 | 1693.20 | 1.92 |
SS-DL-3.5PTS15-CL15-3 | 3 | 497.45 | 4.06 | 4.56 | 2012.00 | 8.23 | 1710.20 | 2.03 |
SS-DL-3.5PTS15-CL15-4 | 4 | 559.61 | 3.72 | 5.09 | 2025.00 | 7.64 | 1721.25 | 2.05 |
SS-DL-3.5PTS15-CL15-5 | 5 | 477.45 | 4.04 | 6.28 | 1968.00 | 8.01 | 1672.80 | 1.98 |
SS-DL-3.5PTS15-CL15-AVG | AVG | 527.20 | 3.92 | 5.05 | 1993.60 | 7.76 | 1694.56 | 1.98 |
SS-UF-3.5PTS15-MT15-1 | 1 | 740.97 | 4.02 | 5.34 | 2211.00 | 6.07 | 1879.35 | 1.51 |
SS-UF-3.5PTS15-MT15-2 | 2 | 590.31 | 4.15 | 5.51 | 2213.00 | 6.75 | 1881.05 | 1.63 |
SS-UF-3.5PTS15-MT15-3 | 3 | 692.45 | 3.57 | 4.59 | 2200.00 | 6.31 | 1870.00 | 1.77 |
SS-UF-3.5PTS15-MT15-AVG | AVG | 674.58 | 3.91 | 5.15 | 2208.00 | 6.38 | 1876.80 | 1.64 |
SS-UF-3.5PTS15-CL15-1 | 1 | 511.35 | 4.49 | 4.63 | 2101.90 | 8.27 | 1786.62 | 1.84 |
SS-UF-3.5PTS15-CL15-2 | 2 | 547.72 | 3.58 | 5.10 | 2102.70 | 7.27 | 1787.30 | 2.03 |
SS-UF-3.5PTS15-CL15-3 | 3 | 535.27 | 4.03 | 5.08 | 2103.60 | 7.43 | 1788.06 | 1.84 |
SS-UF-3.5PTS15-CL15-4 | 4 | 497.01 | 4.18 | 5.16 | 2110.50 | 7.89 | 1793.93 | 1.89 |
SS-UF-3.5PTS15-CL15-5 | 5 | 577.00 | 4.32 | 5.01 | 2121.30 | 7.89 | 1803.11 | 1.83 |
SS-UF-3.5PTS15-CL15-AVG | AVG | 533.67 | 4.12 | 5.00 | 2108.00 | 7.75 | 1791.80 | 1.89 |
SS-DL-3.5STS15-MT15-1 | 1 | 337.40 | 4.46 | 6.30 | 2093.00 | 7.09 | 1779.05 | 1.59 |
SS-DL-3.5STS15-MT15-2 | 2 | 375.88 | 4.83 | 6.37 | 2103.00 | 5.65 | 1787.55 | 1.17 |
SS-DL-3.5STS15-MT15-3 | 3 | 354.91 | 4.72 | 6.75 | 2107.00 | 6.90 | 1790.95 | 1.46 |
SS-DL-3.5STS15-MT15-AVG | AVG | 356.06 | 4.67 | 6.47 | 2101.00 | 6.55 | 1785.85 | 1.41 |
SS-DL-3.5STS15-CL15-1 | 1 | 377.45 | 5.79 | 7.46 | 2078.80 | 9.57 | 1766.98 | 1.65 |
SS-DL-3.5STS15-CL15-2 | 2 | 317.45 | 6.03 | 7.90 | 2083.80 | 10.20 | 1771.23 | 1.69 |
SS-DL-3.5STS15-CL15-3 | 3 | 287.59 | 6.36 | 7.31 | 2084.80 | 9.88 | 1772.08 | 1.55 |
SS-DL-3.5STS15-CL15-4 | 4 | 380.91 | 5.62 | 6.96 | 2088.80 | 10.28 | 1775.48 | 1.83 |
SS-DL-3.5STS15-CL15-5 | 5 | 376.07 | 5.80 | 7.89 | 2093.80 | 10.53 | 1779.73 | 1.82 |
SS-DL-3.5STS15-CL15-AVG | AVG | 347.89 | 5.92 | 7.50 | 2086.00 | 10.09 | 1773.10 | 1.71 |
SS-DL-4.2STS10-MT15-1 | 1 | 820.40 | 2.23 | 4.00 | 1774.00 | 4.59 | 1507.90 | 2.06 |
SS-DL-4.2STS10-MT15-2 | 2 | 858.88 | 2.42 | 4.07 | 1784.00 | 4.55 | 1516.40 | 1.88 |
SS-DL-4.2STS10-MT15-3 | 3 | 837.91 | 2.36 | 4.45 | 1788.00 | 4.80 | 1519.80 | 2.03 |
SS-DL-4.2STS10-MT15-AVG | AVG | 839.06 | 2.34 | 4.17 | 1782.00 | 4.65 | 1514.70 | 1.99 |
SS-DL-4.2STS10-CL15-1 | 1 | 592.45 | 2.35 | 3.59 | 1690.00 | 4.11 | 1436.50 | 1.75 |
SS-DL-4.2STS10-CL15-2 | 2 | 559.61 | 2.20 | 3.59 | 1557.00 | 5.04 | 1323.45 | 2.29 |
SS-DL-4.2STS10-CL15-3 | 3 | 544.26 | 2.32 | 3.63 | 1646.00 | 5.68 | 1399.10 | 2.45 |
SS-DL-4.2STS10-CL15-4 | 4 | 537.86 | 2.21 | 3.66 | 1626.00 | 5.33 | 1382.10 | 2.41 |
SS-DL-4.2STS10-CL15-5 | 5 | 605.88 | 2.31 | 3.67 | 1641.00 | 4.95 | 1394.85 | 2.14 |
SS-DL-4.2STS10-CL15-AVG | AVG | 568.01 | 2.28 | 3.63 | 1632.00 | 5.02 | 1387.20 | 2.21 |
SS-DL-4.2STS15-MT15-1 | 1 | 288.34 | 5.81 | 7.82 | 2497.00 | 9.33 | 2122.45 | 1.60 |
SS-DL-4.2STS15-MT15-2 | 2 | 295.72 | 5.26 | 7.83 | 2193.00 | 9.73 | 1864.05 | 1.85 |
SS-DL-4.2STS15-MT15-3 | 3 | 336.19 | 5.95 | 7.85 | 2087.00 | 8.52 | 1773.95 | 1.43 |
SS-DL-4.2STS15-MT15-AVG | AVG | 306.75 | 5.67 | 7.83 | 2259.00 | 9.19 | 1920.15 | 1.63 |
SS-DL-4.2STS15-CL15-1 | 1 | 335.76 | 5.98 | 7.10 | 1945.60 | 10.74 | 1653.76 | 1.80 |
SS-DL-4.2STS15-CL15-2 | 2 | 291.74 | 5.52 | 7.39 | 1908.60 | 9.65 | 1622.31 | 1.75 |
SS-DL-4.2STS15-CL15-3 | 3 | 311.10 | 6.06 | 7.55 | 2179.60 | 9.68 | 1852.66 | 1.60 |
SS-DL-4.2STS15-CL15-4 | 4 | 298.24 | 4.89 | 7.63 | 1838.60 | 9.81 | 1562.81 | 2.00 |
SS-DL-4.2STS15-CL15-5 | 5 | 342.37 | 5.91 | 7.67 | 2222.60 | 10.11 | 1889.21 | 1.71 |
SS-DL-4.2STS15-CL15-AVG | AVG | 315.84 | 5.67 | 7.47 | 2019.00 | 10.00 | 1716.15 | 1.77 |
SS-DL-4.2STS30-MT15-1 | 1 | 324.50 | 4.00 | 11.22 | 2518.00 | 11.92 | 2140.30 | 2.98 |
SS-DL-4.2STS30-MT15-2 | 2 | 317.38 | 3.91 | 11.22 | 2525.00 | 11.59 | 2146.25 | 2.96 |
SS-DL-4.2STS30-MT15-3 | 3 | 303.80 | 4.48 | 11.23 | 2172.00 | 12.11 | 1846.20 | 2.70 |
SS-DL-4.2STS30-MT15-AVG | AVG | 315.23 | 4.13 | 11.22 | 2405.00 | 11.87 | 2044.25 | 2.88 |
SS-DL-4.2STS30-CL15-1 | 1 | 405.17 | 6.32 | 9.90 | 2333.00 | 11.04 | 1983.05 | 1.75 |
SS-DL-4.2STS30-CL15-2 | 2 | 492.10 | 6.38 | 9.94 | 2397.00 | 10.60 | 2037.45 | 1.66 |
SS-DL-4.2STS30-CL15-3 | 3 | 458.00 | 6.36 | 9.99 | 2071.00 | 10.80 | 1760.35 | 1.70 |
SS-DL-4.2STS30-CL15-4 | 4 | 418.10 | 7.10 | 10.08 | 2025.00 | 10.61 | 1721.25 | 1.49 |
SS-DL-4.2STS30-CL15-5 | 5 | 446.07 | 7.27 | 10.08 | 2061.00 | 10.85 | 1751.85 | 1.49 |
SS-DL-4.2STS30-CL15-AVG | AVG | 443.89 | 6.68 | 10.00 | 2177.40 | 10.78 | 1850.79 | 1.62 |
SS-DL-4.2STS15-MT2.5-1 | 1 | 418.95 | 5.99 | 6.52 | 2300.00 | 9.79 | 1955.00 | 1.63 |
SS-DL-4.2STS15-MT2.5-2 | 2 | 436.95 | 6.05 | 6.59 | 1891.00 | 8.67 | 1607.35 | 1.43 |
SS-DL-4.2STS15-MT2.5-3 | 3 | 400.90 | 6.27 | 6.61 | 2130.00 | 8.28 | 1810.50 | 1.32 |
SS-DL-4.2STS15-MT2.5-AVG | AVG | 418.93 | 6.10 | 6.57 | 2107.00 | 8.91 | 1790.95 | 1.46 |
SS-DL-4.2STS15-MT30-1 | 1 | 331.84 | 6.19 | 6.55 | 2162.00 | 8.41 | 1837.70 | 1.36 |
SS-DL-4.2STS15-MT30-2 | 2 | 333.22 | 5.87 | 6.95 | 2211.00 | 8.97 | 1879.35 | 1.53 |
SS-DL-4.2STS15-MT30-3 | 3 | 326.70 | 6.73 | 6.88 | 2212.00 | 9.47 | 1880.20 | 1.41 |
SS-DL-4.2STS15-MT30-AVG | AVG | 330.59 | 6.26 | 6.79 | 2195.00 | 8.95 | 1865.75 | 1.43 |
SS-UF-3.5STS15-MT15-1 | 1 | 403.01 | 4.78 | 6.42 | 2021.00 | 7.05 | 1717.85 | 1.48 |
SS-UF-3.5STS15-MT15-2 | 2 | 470.17 | 4.63 | 6.42 | 2088.00 | 6.98 | 1774.80 | 1.51 |
SS-UF-3.5STS15-MT15-3 | 3 | 434.82 | 4.75 | 6.46 | 1777.00 | 7.62 | 1510.45 | 1.60 |
SS-UF-3.5STS15-MT15-AVG | AVG | 436.00 | 4.72 | 6.43 | 1962.00 | 7.22 | 1667.70 | 1.53 |
SS-UF-3.5STS15-CL15-1 | 1 | 540.26 | 5.88 | 6.13 | 1810.20 | 10.34 | 1538.67 | 1.76 |
SS-UF-3.5STS15-CL15-2 | 2 | 492.96 | 5.69 | 5.95 | 1799.20 | 9.66 | 1529.32 | 1.70 |
SS-UF-3.5STS15-CL15-3 | 3 | 523.05 | 5.69 | 5.96 | 1798.80 | 10.62 | 1528.98 | 1.86 |
SS-UF-3.5STS15-CL15-4 | 4 | 544.17 | 6.30 | 6.57 | 2055.20 | 9.40 | 1746.92 | 1.49 |
SS-UF-3.5STS15-CL15-5 | 5 | 552.86 | 5.74 | 6.18 | 1751.20 | 9.80 | 1488.52 | 1.71 |
SS-UF-3.5STS15-CL15-AVG | AVG | 530.66 | 5.86 | 6.16 | 1842.92 | 9.96 | 1566.48 | 1.70 |
SS-UF-4.2STS10-MT15-1 | 1 | 748.35 | 2.35 | 3.04 | 1548.70 | 3.24 | 1316.40 | 1.38 |
SS-UF-4.2STS10-MT15-2 | 2 | 839.81 | 2.23 | 3.12 | 1478.60 | 3.31 | 1256.81 | 1.49 |
SS-UF-4.2STS10-MT15-3 | 3 | 759.73 | 1.91 | 3.15 | 1433.70 | 3.29 | 1218.65 | 1.72 |
SS-UF-4.2STS10-MT15-AVG | AVG | 782.63 | 2.16 | 3.10 | 1487.00 | 3.28 | 1263.95 | 1.53 |
SS-UF-4.2STS10-CL15-1 | 1 | 377.44 | 2.16 | 3.99 | 1460.60 | 4.98 | 1241.51 | 2.31 |
SS-UF-4.2STS10-CL15-2 | 2 | 362.44 | 2.06 | 4.32 | 1386.60 | 5.00 | 1178.61 | 2.42 |
SS-UF-4.2STS10-CL15-3 | 3 | 401.77 | 2.46 | 4.43 | 1494.60 | 5.50 | 1270.41 | 2.24 |
SS-UF-4.2STS10-CL15-4 | 4 | 354.67 | 2.48 | 3.52 | 1669.60 | 4.54 | 1419.16 | 1.83 |
SS-UF-4.2STS10-CL15-5 | 5 | 364.29 | 2.04 | 3.72 | 1478.60 | 4.73 | 1256.81 | 2.32 |
SS-UF-4.2STS10-CL15-AVG | AVG | 372.12 | 2.24 | 4.00 | 1498.00 | 4.95 | 1273.30 | 2.22 |
SS-UF-4.2STS15-MT15-1 | 1 | 549.47 | 4.02 | 4.71 | 2098.66 | 4.88 | 1783.86 | 1.21 |
SS-UF-4.2STS15-MT15-2 | 2 | 593.57 | 3.56 | 4.74 | 1816.66 | 5.58 | 1544.16 | 1.57 |
SS-UF-4.2STS15-MT15-3 | 3 | 487.38 | 3.82 | 4.76 | 1709.66 | 5.62 | 1453.21 | 1.47 |
SS-UF-4.2STS15-MT15-AVG | AVG | 543.48 | 3.80 | 4.74 | 1874.99 | 5.36 | 1593.74 | 1.42 |
SS-UF-4.2STS15-CL15-1 | 1 | 456.28 | 3.01 | 4.88 | 2053.20 | 7.80 | 1745.22 | 2.59 |
SS-UF-4.2STS15-CL15-2 | 2 | 463.06 | 3.34 | 4.95 | 1712.20 | 7.92 | 1455.37 | 2.37 |
SS-UF-4.2STS15-CL15-3 | 3 | 507.19 | 3.36 | 4.99 | 2096.20 | 7.23 | 1781.77 | 2.15 |
SS-UF-4.2STS15-CL15-4 | 4 | 497.67 | 3.12 | 5.09 | 2002.20 | 7.47 | 1701.87 | 2.40 |
SS-UF-4.2STS15-CL15-5 | 5 | 454.89 | 3.29 | 5.10 | 1761.20 | 7.58 | 1497.02 | 2.30 |
SS-UF-4.2STS15-CL15-AVG | AVG | 475.82 | 3.22 | 5.00 | 1925.00 | 7.60 | 1636.25 | 2.36 |
SS-UF-4.2STS30-MT15-1 | 1 | 560.10 | 3.80 | 5.18 | 1877.00 | 5.59 | 1595.45 | 1.47 |
SS-UF-4.2STS30-MT15-2 | 2 | 558.12 | 3.48 | 5.23 | 1913.00 | 5.95 | 1626.05 | 1.71 |
SS-UF-4.2STS30-MT15-3 | 3 | 525.27 | 3.33 | 5.23 | 1880.00 | 5.88 | 1598.00 | 1.76 |
SS-UF-4.2STS30-MT15-AVG | AVG | 547.83 | 3.54 | 5.21 | 1890.00 | 5.81 | 1606.50 | 1.65 |
SS-UF-4.2STS30-CL15-1 | 1 | 411.25 | 4.03 | 4.88 | 1651.30 | 6.60 | 1403.61 | 1.63 |
SS-UF-4.2STS30-CL15-2 | 2 | 355.37 | 4.05 | 4.92 | 2035.20 | 6.91 | 1729.92 | 1.71 |
SS-UF-4.2STS30-CL15-3 | 3 | 345.85 | 3.31 | 5.02 | 1941.40 | 6.65 | 1650.19 | 2.01 |
SS-UF-4.2STS30-CL15-4 | 4 | 403.08 | 3.98 | 5.03 | 1700.70 | 6.75 | 1445.60 | 1.70 |
SS-UF-4.2STS30-CL15-5 | 5 | 336.50 | 4.08 | 5.04 | 1746.40 | 7.35 | 1484.44 | 1.80 |
SS-UF-4.2STS30-CL15-AVG | AVG | 370.41 | 3.89 | 4.98 | 1815.00 | 6.85 | 1542.75 | 1.77 |
SS-UF-4.2STS15-MT2.5-1 | 1 | 503.82 | 3.22 | 4.27 | 2065.00 | 4.29 | 1755.25 | 1.33 |
SS-UF-4.2STS15-MT2.5-2 | 2 | 547.92 | 3.26 | 4.30 | 1783.40 | 4.33 | 1515.89 | 1.33 |
SS-UF-4.2STS15-MT2.5-3 | 3 | 441.73 | 2.82 | 4.32 | 1676.67 | 4.35 | 1425.17 | 1.54 |
SS-UF-4.2STS15-MT2.5-AVG | AVG | 497.83 | 3.10 | 4.30 | 1841.69 | 4.32 | 1565.44 | 1.40 |
SS-UF-4.2STS15-MT30-1 | 1 | 397.69 | 4.12 | 5.00 | 1647.00 | 5.85 | 1399.95 | 1.42 |
SS-UF-4.2STS15-MT30-2 | 2 | 341.81 | 4.14 | 5.04 | 2031.40 | 5.15 | 1726.69 | 1.25 |
SS-UF-4.2STS15-MT30-3 | 3 | 332.29 | 4.40 | 5.14 | 1937.00 | 5.39 | 1646.45 | 1.23 |
SS-UF-4.2STS15-MT30-AVG | AVG | 357.26 | 4.22 | 5.06 | 1871.80 | 5.46 | 1591.03 | 1.30 |
Appendix A.3
XGBoost | KNN | RF | LR | ||||
---|---|---|---|---|---|---|---|
Parameter name | Parameter value | Parameter name | Parameter value | Parameter name | Parameter value | Parameter name | Parameter value |
Training time | 51.167s | Training time | 0.029s | Training time | 0.804s | Training time | 1.778s |
Data slice | 0.7 | Data slice | 0.7 | Data slice | 0.7 | Data slice | 0.7 |
Data Shuffle | Yes | Data Shuffle | Yes | Data Shuffle | be | Data Shuffle | Yes |
Cross-validation | 5 | Cross-validation | 5 | Cross-validation | 5 | Cross-validation | 5 |
Base learning device (BLD) | Gbtree | Search algorithm | Auto | Guidelines for the evaluation of node splitting | Gini | Regularization | None |
Number of base learners | 100 | Number of leaves | 30 | Number of decision trees | 100 | Setting constant items | TRUE |
Learning rate | 0.1 | Nearest neighbor | 5 | With playback sampling | TRUE | Error convergence condition | 0.001 |
L1 regular term | 0 | Nearest Neighbor Sample Weight Function | Uniform | Out-of-bag data testing | FALSE | Maximum number of iterations | 1000 |
L2 regular term | 1 | Vector distance algorithm | Euclidean | Maximum proportion of features considered in the division | Auto | ||
Sample rate | 1 | Minimum number of samples for internal node splits | 2 | ||||
Tree feature sampling rate | 1 | Minimum number of samples for leaf nodes | 1 | ||||
Node feature sampling rate | 1 | Minimum weight of samples in leaf nodes | 0 | ||||
Minimum weight of samples in leaf nodes | 0 | Maximum depth of the tree | 10 | ||||
Maximum depth of the tree | 10 | Maximum number of leaf nodes | 50 | ||||
Thresholds for impurity in node partitioning | 0 | ||||||
SVM | NB | BPNN | ExTrees | ||||
Parameter name | Parameter value | Parameter name | Parameter value | Parameter name | Parameter value | Parameter name | Parameter value |
Training time | 0.143s | Training time | 0.041s | Training time | 45.828s | Training time | 0.671s |
Data slice | 0.7 | Data slice | 0.7 | Data slice | 0.7 | Data slice | 0.7 |
Data Shuffle | Yes | Data Shuffle | Yes | Data Shuffle | Yes | Data Shuffle | Yes |
Cross-validation | 5 | Cross-validation | 5 | Cross-validation | 5 | Cross-validation | 5 |
Penalty coefficient | 1 | A priori distribution | Gaussian distribution (math.) | Activation function | Identity | Maximum proportion of features considered in the division | None |
Kernel function (math.) | Linear | Alpha | 1 | Solver | lbfgs | Minimum number of samples for internal node splits | 2 |
Kernel function coefficient | Scale | Binarization threshold | 0 | Learning rate | 0.1 | Minimum number of samples for leaf nodes | 1 |
Kernel function constant (math.) | 0 | L2 regular term | 1 | Minimum weight of samples in leaf nodes | 0 | ||
Number of highest terms in the kernel function | 3 | Number of iterations | 1000 | Maximum depth of the tree | 10 | ||
error convergence condition | 0.001 | Number of hidden layer 1 neurons | 100 | Maximum number of leaf nodes | 50 | ||
Maximum number of iterations | 1000 | Maximum number of leaf nodes | 50 | ||||
Multi-category fusion strategy | ovr | Thresholds for impurity in node partitioning | 0 |
Appendix A.4
Variable Name | Sample Size | Maximum | Minimum | Average | Standard Deviation | Median | Variance | Kurtosis | Skewness | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|---|---|
Ke | 248 | 2454.4 | 199.86 | 645.156 | 370.795 | 528.49 | 137,488.846 | 4.812 | 1.901 | 0.575 |
δy/mm | 248 | 8.86 | 1.32 | 3.881 | 1.349 | 3.82 | 1.819 | −0.071 | 0.531 | 0.348 |
δm/mm | 248 | 11.23 | 0.47 | 5.583 | 1.78 | 5.055 | 3.167 | 1.097 | 0.911 | 0.319 |
Fm/N | 248 | 2525 | 1026 | 1719.308 | 309.151 | 1696 | 95,574.245 | −0.609 | 0.222 | 0.18 |
δu/mm | 248 | 13.97 | 2.71 | 7.202 | 2.19 | 7.065 | 4.797 | −0.431 | 0.327 | 0.304 |
Fu/N | 248 | 2146.25 | 872.1 | 1462.252 | 261.834 | 1441.65 | 68,556.849 | −0.597 | 0.227 | 0.179 |
μ | 248 | 4 | 1.17 | 1.942 | 0.494 | 1.825 | 0.244 | 2.727 | 1.401 | 0.254 |
Appendix B. Supplementary Figures
References
- McGibbon, R.T.; Hernández, C.X.; Harrigan, M.P.; Kearnes, S.; Sultan, M.M.; Jastrzebski, S.; Husic, B.E.; Pande, V.S. Osprey: Hyperparameter Optimization for Machine Learning. J. Open Source Softw. 2016, 1, 34. [Google Scholar] [CrossRef]
- Gondy, L.A.; Thomas, C.R.B.; Bayes, N. Programs for machine learning. Adv. Neural Inf. Process. Syst. 1993, 79, 937–944. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble Methods in Machine Learning. In Proceedings of the International Workshop on Multiple Classifier Systems, Cagliari, Italy, 21–23 June 2000. [Google Scholar] [CrossRef]
- Zuo, W.; Wang, K.; Zhang, H.; Zhang, D. Kernel Difference-Weighted k-Nearest Neighbors Classification. In Advanced Intelligent Computing Theories and Applications, Proceedings of the International Conference on Intelligent Computing, Qingdao, China, 21–24 August 2007; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2012. [Google Scholar] [CrossRef]
- Strijov, V.; Weber, G.W. Nonlinear regression model generation using hyperparameter optimization. Comput. Math. Appl. 2010, 60, 981–988. [Google Scholar] [CrossRef]
- Syarif, I.; Prugel-Bennett, A.; Wills, G. SVM Parameter Optimization using Grid Search and Genetic Algorithm to Improve Classification Performance. Telkomnika 2016, 14, 1502–1509. [Google Scholar] [CrossRef]
- Feurer, M.; Springenberg, J.T.; Hutter, F. Using meta-learning to initialize Bayesian optimization of hyperparameters. In Proceedings of the 2014 International Conference on Meta-Learning and Algorithm Selection (MLAS’14), Prague, Czech Republic, 19 September 2014; Volume 1201. [Google Scholar]
- Jiang, M.; Luo, Y.P.; Yang, S.Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 2007, 102, 8–16. [Google Scholar] [CrossRef]
- Feng, M. Numerical and experimental studies of cold-formed thin-walled steel studs in fire. Neuro Endocrinol. Lett. 2004, 26, 25–28. [Google Scholar] [CrossRef]
- Dubina, D. Thin-walled structures. Steel Constr. 2011, 4, 213–214. [Google Scholar] [CrossRef]
- Li, Y.; Shen, H.; Shan, W.; Han, T. Flexural behavior of lightweight bamboo-steel composite slabs. Thin-Walled Struct. 2012, 53, 83–90. [Google Scholar] [CrossRef]
- Jiang, T.; Li, Y.; Shan, W.; Zhang, W. Seismic Behavior of Thin-Walled C Steel-Bamboo Plywood Composite Column. J. Northeast For. Univ. 2011, 39, 82–85. [Google Scholar] [CrossRef]
- Okubo, K.; Fujii, T.; Yamamoto, Y. Development of bamboo-based polymer composites and their mechanical properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 377–383. [Google Scholar] [CrossRef]
- Chaowana, P. Bamboo: An Alternative Raw Material for Wood and Wood-Based Composites. J. Mater. Sci. Res. 2013, 2, 90–102. [Google Scholar] [CrossRef]
- Li, Y.; Shuai, Y.; Shen, Z.; Qin, Y.; Chen, Y. Experimental study on tension behavior of self-drilling screw connections for cold-formed thin-walled steel structures. J. Build. Struct. 2015, 36, 143–152. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Y.; Fang, W.; Yang, D. Experimental investigation on shear-bearing capacity for self-drilling screw connections of cold-formed thin-walled steel. J. Cent. South Univ. (Sci. Technol.) 2013, 44, 2997–3005. [Google Scholar]
- Cai, K.; Yuan, H. Testing, numerical and analytical modelling of self-drilling screw connections between thin steel sheets in shear. Thin-Walled Struct. 2023, 182, 1–19. [Google Scholar] [CrossRef]
- Dolan, C.V. Factor analysis of variables with 2, 3, 5 and 7 response categories: A comparison of categorical variable estimators using simulated data. Br. J. Math. Stat. Psychol. 2011, 47, 309–326. [Google Scholar] [CrossRef]
- DiStefano, C. The Impact of Categorization With Confirmatory Factor Analysis. Struct. Equ. Model. 2002, 9, 327–346. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, W. The Relationship between Principal Component Analysis and Factor Analysis and SPSS Software—To Discuss with Comrade Liu Yumei, Lu Wendai etc. Stat. Res. 2005, 3, 65–68. [Google Scholar]
- Yuan, Y.; Zhang, H.T.; Wu, Y.; Zhu, T.; Ding, H. Bayesian Learning-Based Model-Predictive Vibration Control for Thin-Walled Workpiece Machining Processes. IEEE/ASME Trans. Mechatron. 2017, 22, 509–520. [Google Scholar] [CrossRef]
- Wang, R.; Song, Q.; Liu, Z.; Ma, H.; Gupta, M.K.; Liu, Z. A Novel Unsupervised Machine Learning-Based Method for Chatter Detection in the Milling of Thin-Walled Parts. Sensors 2021, 21, 5779. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhao, S.; Peng, F.; Yan, R.; Zhou, L.; Zhang, T.; Zhang, C. In-situ prediction of machining errors of thin-walled parts: An engineering knowledge based sparse Bayesian learning approach. J. Intell. Manuf. 2022, 35, 387–411. [Google Scholar] [CrossRef]
- Guo, C.; Jiang, L.; Yang, F.; Yang, Z.; Zhang, X. Impact load identification and localization method on thin-walled cylinders using machine learning. Smart Mater. Struct. 2023, 32, 065018. [Google Scholar] [CrossRef]
- Long, X.; Lu, C.; Shen, Z.; Su, Y. Identification of Mechanical Properties of Thin-Film Elastoplastic Materials by Machine Learning. Acta Mech. Solida Sin. 2023, 36, 13–21. [Google Scholar] [CrossRef]
- Saeki, K.; Makino, T. Evaluation of optical constants in oxide thin films using machine learning. Jpn. J. Appl. Phys. 2023, 62, 081002. [Google Scholar] [CrossRef]
- Mojtabaei, S.M.; Becque, J.; Hajirasouliha, I.; Khandan, R. Predicting the buckling behaviour of thin-walled structural elements using machine learning methods. Thin-Walled Struct. 2023, 184, 110518. [Google Scholar] [CrossRef]
- Wu, Q.; Li, T.; Yue, Z.; Cao, Y.; Jie, Y.; Xiao, Y.; Li, Z.; Wang, Z.; Wang, L. Connections in stainless steel frame shear walls sheathed with ply-bamboo panels. J. Constr. Steel Res. 2024, 223, 109055. [Google Scholar] [CrossRef]
- Li, Z.; Li, T.; Xiao, Y. Connections used for cold-formed steel frame shear walls sheathed with engineered bamboo panels. J. Constr. Steel Res. 2020, 164, 105787. [Google Scholar] [CrossRef]
- AISI S400-15; North American Standard for Seismic Design of Cold-Formed Steel Structural Systems. American Iron and Steel Institute: Washington, DC, USA, 2015.
- Dong, J.; Peng, Y.; Jin, X.; Chen, Z. Experimental Study and Design Recommendations on Stainless Steel Screw Connections. Ind. Archit. 2024, 45, 8. [Google Scholar] [CrossRef]
- Alsiwat, J.M.; Saatcioglu, M. Reinforcement Anchorage Slip under Monotonic Loading. J. Struct. Eng. 1992, 118, 2421–2438. [Google Scholar] [CrossRef]
- Lowes, L.N.; Altoontash, A. Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading. J. Struct. Eng. 2003, 12, 1686–1697. [Google Scholar] [CrossRef]
- Hainsworth, S.V.; Chandler, H.W.; Page, T.F. Analysis of nanoindentation load-displacement loading curves. J. Mater. Res. 1996, 11, 1987–1995. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1975, 67, 215–216. [Google Scholar] [CrossRef]
- Mudholkar, G.S.; Srivastava, D.K.; Lin, C.T. Some p-variate adaptations of the Shapiro–Wilk test of normality. Commun. Stat. Theory Methods 1995, 24, 953–985. [Google Scholar] [CrossRef]
- Lin, L.I.; Torbeck, L.D. Coefficient of accuracy and concordance correlation coefficient: New statistics for methods comparison. PDA J. Pharm. Sci. Technol. 1998, 52, 55. [Google Scholar] [CrossRef] [PubMed]
- Hauke, J.; Kossowski, T. Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Roweis, S.; Saul, L. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [PubMed]
- Mnassri, B.; Adel, E.M.E.; Ouladsine, M. Fault localization using principal component analysis based on a new contribution to the squared prediction error. In Proceedings of the Conference on Control & Automation, Seoul, Republic of Korea, 14–17 October 2008. [Google Scholar] [CrossRef]
- Pizarro, C.; Esteban-Díez, I.; Nistal, A.J.; González-Sáiz, J.M. Influence of data pre-processing on the quantitative determination of the ash content and lipids in roasted coffee by near infrared spectroscopy. Anal. Chim. Acta 2004, 509, 217–227. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T. xgboost: Extreme Gradient Boosting. R Package Version 0.4-2, 2015; 1, 1–4. [Google Scholar]
- Chen, H.; Gilad-Bachrach, R.; Han, K.; Huang, Z.; Jalali, A.; Laine, K.; Lauter, K. Logistic regression over encrypted data from fully homomorphic encryption. BMC Med. Genom. 2018, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Joachims, T. Making large-Scale SVM Learning Practical. In Advances in Kernel Methods—Support Vector Learning; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Rish, I. An empirical study of the naive Bayes classifier. J. Univers. Comput. Sci. 2001, 1, 127. [Google Scholar] [CrossRef]
- Hecht-Nielsen, R. Theory of the Backpropagation Neural Network. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Washington, DC, USA, 18–22 June 1989. [Google Scholar] [CrossRef]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Townsend, J.T. Theoretical analysis of an alphabetic confusion matrix. Atten. Percept. Psychophys. 1971, 9, 40–50. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithm in Search, Optimization, and Machine Learning; Addison-Wesley Pub. Co.: Boston, MA, USA, 1989. [Google Scholar]
- Bangert, P. Optimization: Simulated Annealing. In Optimization for Industrial Problems; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Wang, H.; Hu, Y.; Jiang, H.; Jiang, X.; Chen, D. An Improved Spider-Wasp Optimizer for Obstacle Avoidance Path Planning in Mobile Robots. Mathematics 2024, 12, 2604. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, T.; Xu, C.; Zhang, J.; Gao, Y.; Li, X.C.; Wang, H.; Li, X.; Mir, M. A risk-averse cooperative framework for neighboring energy hubs under joint carbon, heat and electricity trading market with P2G and renewables. Renew. Energy 2025, 250, 123241. [Google Scholar] [CrossRef]
Symbols | Description |
---|---|
TWS | Thin-walled Steel–Ply–Bamboo Shear Walls |
SS | Stainless Steel |
CD | Cold-formed Steel Double-Directional Ply–Bamboo |
CU | Cold-formed Steel Double-Unidirectional Flat-Pressing Ply–Bamboo |
DL | Double-directional Laminated Ply–Bamboo |
UF | Unidirectional Flat-Pressing Ply–Bamboo |
PTS (or P) | Phosphating Steel Screws |
STS (or S) | Stainless Steel Screws |
MT (or M) | Monotonic Test (Loading Protocol) |
CL (or C) | Cyclic Test (Loading Protocol) |
AVG | Average of 5 Measurements |
Test Series | Bamboo Panel Type | Steel Stud Type | Screw Type | End Distance (mm) | Loading Type | Sample Batch |
---|---|---|---|---|---|---|
SS-DL-4.2STS30-MT15-1 | Double-directional | Stainless Steel | STS 4.2 | 30 | Monotonic | 1 |
CU-4.2S30-C15-4 | Unidirectional | Cold-formed Steel | STS 4.2 | 30 | Cyclic | 4 |
CD-3.5P15-M15-3 | Double-directional | Stainless Steel | PTS 3.5 | 15 | Monotonic | 3 |
CD-3.5P15-M15-AVG | Double-directional | Stainless Steel | PTS 3.5 | 15 | Monotonic | AVG |
CD-3.5S15-M15-1 | Double-directional | Stainless Steel | STS 3.5 | 15 | Monotonic | 1 |
CU-4.2P20-M20-2 | Unidirectional | Cold-formed Steel | PTS 4.2 | 20 | Monotonic | 2 |
… (Additional combinations) | … | … | … | … | … | … |
Test Series | No. | Ke | δy | δm | Fm | δu | Fu | μ |
---|---|---|---|---|---|---|---|---|
CD-3.5P15-M15-1 | 1 | 590.94 | 3.14 | 5.13 | 1402.00 | 6.27 | 1191.70 | 2.00 |
CD-3.5P15-M15-2 | 2 | 706.42 | 2.83 | 4.17 | 1321.00 | 4.55 | 1122.85 | 1.61 |
CD-3.5P15-M15-3 | 3 | 447.93 | 3.63 | 4.89 | 1327.00 | 4.89 | 1127.95 | 1.35 |
CD-3.5P15-M15-AVG | AVG | 581.76 | 3.20 | 4.73 | 1350.00 | 5.24 | 1147.50 | 1.65 |
CD-3.5S15-M15-1 | 1 | 205.41 | 4.24 | 5.85 | 1195.00 | 6.34 | 1015.75 | 1.50 |
CD-3.5S15-M15-2 | 2 | 217.53 | 4.33 | 5.90 | 1253.00 | 6.42 | 1065.05 | 1.48 |
CD-3.5S15-M15-3 | 3 | 360.38 | 4.38 | 5.50 | 1228.00 | 6.40 | 1043.80 | 1.46 |
Var. | S | Med. | Avg. | SD | Skew. | Kurt. | SW Test | p-Value |
---|---|---|---|---|---|---|---|---|
δy | 248 | 3.820 | 3.881 | 1.349 | 0.531 | −0.071 | 0.967 | 0.000 *** |
Ke | 248 | 528.491 | 645.156 | 370.795 | 1.901 | 4.812 | 0.825 | 0.000 *** |
δm | 248 | 5.055 | 5.583 | 1.780 | 0.911 | 1.097 | 0.937 | 0.000 *** |
Fm | 248 | 1696 | 1719.308 | 309.151 | 0.222 | −0.609 | 0.984 | 0.006 *** |
δu | 248 | 7.065 | 7.202 | 2.191 | 0.327 | −0.431 | 0.984 | 0.007 *** |
Fu | 248 | 1441.651 | 1462.252 | 261.834 | 0.227 | −0.597 | 0.984 | 0.006 *** |
μ | 248 | 1.825 | 1.942 | 0.494 | 1.401 | 2.727 | 0.901 | 0.000 *** |
Name | Components | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
Ke | 0.063 | 0.056 | 1.062 | 0.220 |
Fm | −0.079 | 0.530 | 0.038 | −0.039 |
Fu | −0.080 | 0.529 | 0.039 | −0.038 |
δu | 0.893 | −0.043 | 0.018 | −0.633 |
δm | 0.463 | −0.076 | 0.039 | −0.422 |
δy | −0.351 | −0.073 | 0.131 | 1.661 |
Contribution Factor | Variance Contribution Rate | Cumulative Variance | Weight (%) |
---|---|---|---|
F1 | 0.344 | 34.402 | 34.402 |
F2 | 0.339 | 68.340 | 33.938 |
F3 | 0.174 | 85.728 | 17.388 |
F4 | 0.112 | 96.944 | 11.217 |
Rank | Connection Specimens | Comprehensive Score | Ke | Fm | Fu | δu | δm | δy |
---|---|---|---|---|---|---|---|---|
1 | SS-DL-4.2STS30-MT15-1 | 1.416897 | 324.50 | 2518 | 2140.30 | 11.92 | 11.22 | 4.03 |
2 | SS-DL-4.2STS30-MT15-2 | 1.388279 | 317.38 | 2525 | 2146.25 | 11.59 | 11.22 | 3.91 |
3 | SS-DL-4.2STS30-CL15-2 | 1.317037 | 492.10 | 2397 | 2037.45 | 10.62 | 9.94 | 6.38 |
4 | SS-DL-4.2STS30-MT15-AVG | 1.301942 | 315.23 | 2405 | 2044.25 | 11.87 | 11.22 | 4.13 |
5 | CU-4.2S30-C15-4 | 1.258773 | 1295.17 | 1878 | 1596.30 | 11.01 | 8.58 | 6.04 |
6 | SS-DL-4.2STS30-CL15-1 | 1.223402 | 405.17 | 2333 | 1983.05 | 11.04 | 9.90 | 6.32 |
7 | SS-DL-4.2STS30-CL15-AVG | 1.102345 | 443.89 | 2177 | 1850.79 | 10.78 | 10.00 | 6.68 |
8 | SS-DL-4.2STS30-MT15-3 | 1.102275 | 303.80 | 2172 | 1846.20 | 12.11 | 11.23 | 4.48 |
9 | SS-DL-4.2STS30-CL15-5 | 1.030593 | 446.07 | 2061 | 1751.85 | 10.85 | 10.08 | 7.27 |
10 | CU-4.2S30-CL15-5 | 1.020289 | 707.69 | 1610 | 1368.50 | 12.56 | 10.56 | 8.86 |
11 | SS-DL-4.2STS30-CL15-3 | 0.992601 | 458.01 | 2071 | 1760.35 | 10.82 | 9.99 | 6.36 |
12 | SS-DL-4.2STS15-MT15-1 | 0.969794 | 288.34 | 2497 | 2122.45 | 9.33 | 7.82 | 5.81 |
13 | CD-4.2S15-CL15-1 | 0.950410 | 2454.40 | 1534 | 1303.90 | 7.44 | 4.96 | 2.42 |
14 | SS-DL-4.2STS30-CL15-4 | 0.948717 | 418.14 | 2025 | 1721.25 | 10.61 | 10.08 | 7.11 |
15 | CU-4.2S30-M15-3 | 0.819136 | 929.76 | 1734 | 1473.90 | 10.90 | 9.06 | 4.41 |
16 | SS-DL-4.2STS15-MT2.5-1 | 0.802252 | 418.95 | 2300 | 1955.00 | 9.79 | 6.52 | 5.99 |
17 | SS-DL-4.2STS15-CL15-5 | 0.791552 | 342.37 | 2223 | 1889.21 | 10.11 | 7.67 | 5.91 |
18 | CU-4.2S30-M15-1 | 0.748842 | 884.33 | 1919 | 1631.15 | 9.06 | 8.12 | 4.49 |
19 | SS-DL-3.5STS15-CL15-5 | 0.734490 | 376.07 | 2094 | 1779.73 | 10.53 | 7.89 | 5.80 |
20 | SS-DL-4.2STS15-MT15-AVG | 0.731481 | 306.75 | 2259 | 1920.15 | 9.19 | 7.83 | 5.67 |
XGBoost | KNN | RF | LR | SVM | NB | BPNN | ExTrees | |
---|---|---|---|---|---|---|---|---|
Training time (s) | 51.167 | 0.029 | 0.804 | 1.778 | 0.143 | 0.041 | 45.828 | 0.671 |
Data partitioning | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Data shuffling | yes | yes | yes | yes | yes | yes | yes | yes |
Cross-validation | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Model | Training | Cross-Validation | Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | R E | P R | F1 | AC | R E | P R | F1 | AC | R E | P R | F1 | |
XGBoost | 1.000 | 1.000 | 1.000 | 1.000 | 0.399 | 0.399 | 0.406 | 0.385 | 0.400 | 0.400 | 0.456 | 0.390 |
KNN | 0.578 | 0.578 | 0.542 | 0.528 | 0.272 | 0.272 | 0.223 | 0.233 | 0.280 | 0.280 | 0.197 | 0.216 |
RF | 0.994 | 0.994 | 0.995 | 0.994 | 0.538 | 0.538 | 0.557 | 0.531 | 0.613 | 0.613 | 0.684 | 0.602 |
LR | 0.439 | 0.439 | 0.344 | 0.363 | 0.202 | 0.202 | 0.179 | 0.174 | 0.200 | 0.200 | 0.172 | 0.172 |
SVM | 0.821 | 0.821 | 0.839 | 0.814 | 0.376 | 0.376 | 0.353 | 0.351 | 0.427 | 0.427 | 0.498 | 0.411 |
NB | 0.861 | 0.861 | 0.934 | 0.867 | 0.353 | 0.353 | 0.397 | 0.353 | 0.373 | 0.373 | 0.318 | 0.311 |
BPNN | 0.295 | 0.295 | 0.245 | 0.255 | 0.058 | 0.058 | 0.016 | 0.021 | 0.107 | 0.107 | 0.061 | 0.072 |
ExTrees | 0.994 | 0.994 | 0.995 | 0.994 | 0.608 | 0.608 | 0.602 | 0.586 | 0.507 | 0.507 | 0.573 | 0.509 |
Model | Training | Cross-Validation | Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | R E | P R | F1 | AC | R E | P R | F1 | AC | R E | P R | F1 | |
GS | 0.836 | 0.792 | 0.715 | 0.856 | 0.538 | 0.533 | 0.562 | 0.624 | 0.613 | 0.724 | 0.684 | 0.602 |
GA | 0.825 | 0.731 | 0.894 | 0.741 | 0.544 | 0.544 | 0.569 | 0.536 | 0.547 | 0.641 | 0.606 | 0.548 |
PSO | 0.728 | 0.785 | 0.839 | 0.827 | 0.572 | 0.566 | 0.549 | 0.539 | 0.555 | 0.501 | 0.617 | 0.545 |
SA | 0.831 | 0.736 | 0.781 | 0.766 | 0.601 | 0.538 | 0.529 | 0.556 | 0.627 | 0.648 | 0.614 | 0.601 |
BO | 0.802 | 0.814 | 0.833 | 0.789 | 0.599 | 0.651 | 0.572 | 0.553 | 0.717 | 0.629 | 0.826 | 0.735 |
Nu | Predicted Results | Test Series |
---|---|---|
1 | CD-3.5S15-M15 | CD-3.5S15-M15 |
2 | SS-UF-4.2STS10-CL15 | SS-UF-4.2STS10-CL15 |
3 | SS-UF-4.2STS15-CL15 | CD-4.2S30-M15 |
4 | CU-4.2S30-M15 | CU-4.2S30-M15 |
5 | SS-UF-4.2STS30-CL15 | SS-UF-4.2STS30-CL15 |
…… | …… | |
71 | CD-3.5S15-C15 | CD-3.5S15-C15 |
72 | SS-UF-3.5STS15-CL15 | SS-UF-3.5STS15-CL15 |
73 | SS-UF-4.2STS15-CL15 | SS-UF-4.2STS15-CL15 |
74 | SS-DL-4.2STS10-MT15 | SS-DL-4.2STS10-MT15 |
75 | SS-UF-4.2STS10-CL15 | SS-UF-4.2STS10-CL15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, W.; Gao, Y.; Zhang, Z.; Jie, Y.; Zhang, J.; Cao, Y.; Wu, Q.; Li, T.; Ji, W.; Gao, Y. Behavior Prediction of Connections in Eco-Designed Thin-Walled Steel–Ply–Bamboo Structures Based on Machine Learning for Mechanical Properties. Sustainability 2025, 17, 6753. https://doi.org/10.3390/su17156753
Xia W, Gao Y, Zhang Z, Jie Y, Zhang J, Cao Y, Wu Q, Li T, Ji W, Gao Y. Behavior Prediction of Connections in Eco-Designed Thin-Walled Steel–Ply–Bamboo Structures Based on Machine Learning for Mechanical Properties. Sustainability. 2025; 17(15):6753. https://doi.org/10.3390/su17156753
Chicago/Turabian StyleXia, Wanwan, Yujie Gao, Zhenkai Zhang, Yuhan Jie, Jingwen Zhang, Yueying Cao, Qiuyue Wu, Tao Li, Wentao Ji, and Yaoyuan Gao. 2025. "Behavior Prediction of Connections in Eco-Designed Thin-Walled Steel–Ply–Bamboo Structures Based on Machine Learning for Mechanical Properties" Sustainability 17, no. 15: 6753. https://doi.org/10.3390/su17156753
APA StyleXia, W., Gao, Y., Zhang, Z., Jie, Y., Zhang, J., Cao, Y., Wu, Q., Li, T., Ji, W., & Gao, Y. (2025). Behavior Prediction of Connections in Eco-Designed Thin-Walled Steel–Ply–Bamboo Structures Based on Machine Learning for Mechanical Properties. Sustainability, 17(15), 6753. https://doi.org/10.3390/su17156753