Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = self-drilling screw connection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 5625 KB  
Article
Behavior Prediction of Connections in Eco-Designed Thin-Walled Steel–Ply–Bamboo Structures Based on Machine Learning for Mechanical Properties
by Wanwan Xia, Yujie Gao, Zhenkai Zhang, Yuhan Jie, Jingwen Zhang, Yueying Cao, Qiuyue Wu, Tao Li, Wentao Ji and Yaoyuan Gao
Sustainability 2025, 17(15), 6753; https://doi.org/10.3390/su17156753 - 24 Jul 2025
Viewed by 462
Abstract
This study employed multiple machine learning and hyperparameter optimization techniques to analyze and predict the mechanical properties of self-drilling screw connections in thin-walled steel–ply–bamboo shear walls, leveraging the renewable and eco-friendly nature of bamboo to enhance structural sustainability and reduce environmental impact. The [...] Read more.
This study employed multiple machine learning and hyperparameter optimization techniques to analyze and predict the mechanical properties of self-drilling screw connections in thin-walled steel–ply–bamboo shear walls, leveraging the renewable and eco-friendly nature of bamboo to enhance structural sustainability and reduce environmental impact. The dataset, which included 249 sets of measurement data, was derived from 51 disparate connection specimens fabricated with engineered bamboo—a renewable and low-carbon construction material. Utilizing factor analysis, a ranking table recording the comprehensive score of each connection specimen was established to select the optimal connection type. Eight machine learning models were employed to analyze and predict the mechanical performance of these connection specimens. Through comparison, the most efficient model was selected, and five hyperparameter optimization algorithms were implemented to further enhance its prediction accuracy. The analysis results revealed that the Random Forest (RF) model demonstrated superior classification performance, prediction accuracy, and generalization ability, achieving approximately 61% accuracy on the test set (the highest among all models). In hyperparameter optimization, the RF model processed through Bayesian Optimization (BO) further improved its predictive accuracy to about 67%, outperforming both its non-optimized version and models optimized using the other algorithms. Considering the mechanical performance of connections within TWS composite structures, applying the BO algorithm to the RF model significantly improved the predictive accuracy. This approach enables the identification of the most suitable specimen type based on newly provided mechanical performance parameter sets, providing a data-driven pathway for sustainable bamboo–steel composite structure design. Full article
Show Figures

Figure 1

28 pages, 30243 KB  
Article
Experimental Investigation and Numerical Simulation of C-Shape Thin-Walled Steel Profile Joints
by George Taranu and Ionut-Ovidiu Toma
Buildings 2021, 11(12), 636; https://doi.org/10.3390/buildings11120636 - 10 Dec 2021
Cited by 6 | Viewed by 3860
Abstract
The versatility of steel, its high resistance in relation to its low mass, as well as the easily accessible technology in the context of using recyclable materials and the low negative impact on the environment represent important arguments in using thin-walled steel profiles [...] Read more.
The versatility of steel, its high resistance in relation to its low mass, as well as the easily accessible technology in the context of using recyclable materials and the low negative impact on the environment represent important arguments in using thin-walled steel profiles to make structures for buildings with a low height regime. This paper presents the results of an experimental program that investigated the behavior of three types of joints in a T-shape form made of thin-walled steel profiles to make shear wall panels or truss beam floors. Due to the small dimensions of the C-profiles of 89 × 41 × 12 × 1 mm, and of the technology of their joining, manufacturers prefer the hinged connections of elements with self-drilling screws. The purpose of the research presented in this paper is to assess the maximum capacity of the joints, the elastic and post-elastic behavior until failure, and also the mechanisms failure. The types of joints analyzed are commonly used in the production of structural systems for houses. The experimental program, which consisted of testing 5 specimens for each type of joint in tension (shear on screws), showed different behavior in terms of load-displacement. The experimental, tested models were analyzed by finite element simulations in an ANSYS nonlinear static structure with 3D solid models. The materials were defined by a bilinear true stress–strain curve obtained after some experimental tensile tests of the steel. The results of the experimental tests showed that the main failure mechanism is a yielding of the holes where the screws were mounted and a shearing of the profile walls. Adding an additional screw on each side increases the capacity of the joints, but not until a yield loss is obtained. In conclusion, it is shown that the solution is suitable for a low level of loading in a static manner; however, additional studies are necessary in order to develop and verify other solutions, thus improving the strength of the connection. Full article
(This article belongs to the Topic Sustainable Building Structures)
Show Figures

Figure 1

11 pages, 16386 KB  
Article
Seismic Response of a Platform-Frame System with Steel Columns
by Davide Trutalli, Luca Marchi, Roberto Scotta, Luca Pozza and Lorenzo De Stefani
Buildings 2017, 7(2), 33; https://doi.org/10.3390/buildings7020033 - 7 Apr 2017
Cited by 3 | Viewed by 7859
Abstract
Timber platform-frame shear walls are characterized by high ductility and diffuse energy dissipation but limited in-plane shear resistance. A novel lightweight constructive system composed of steel columns braced with oriented strand board (OSB) panels was conceived and tested. Preliminary laboratory tests were performed [...] Read more.
Timber platform-frame shear walls are characterized by high ductility and diffuse energy dissipation but limited in-plane shear resistance. A novel lightweight constructive system composed of steel columns braced with oriented strand board (OSB) panels was conceived and tested. Preliminary laboratory tests were performed to study the OSB-to-column connections with self-drilling screws. Then, the seismic response of a shear wall was determined performing a quasi-static cyclic-loading test of a full-scale specimen. Results presented in this work in terms of force-displacement capacity show that this system confers to shear walls high in-plane strength and stiffness with good ductility and dissipative capacity. Therefore, the incorporation of steel columns within OSB bracing panels results in a strong and stiff platform-frame system with high potential for low- and medium-rise buildings in seismic-prone areas. Full article
(This article belongs to the Special Issue Seismic Performance of Timber Platform Frame Buildings)
Show Figures

Figure 1

Back to TopTop