An Experimental and Modelling Study on the Effect of Vegetation-Influenced Water Velocity on Cadmium Accumulation in Corbicula fluminea
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment and Validation Data
2.2. Numerical Model
2.2.1. Cd Diffusion Process
2.2.2. Cd Desorption from Resuspended Sediment
2.2.3. Cd Enrichment Model of C. fluminea
2.2.4. The Lattice Boltzmann Method
2.3. Data Analysis
3. Results
3.1. The Concentration Changes of Cd in Overlying Water and C. fluminea
3.2. Model Simulation Results
4. Discussion
4.1. The Behavioral Mechanism of Cd in the Water Environment
4.2. Cadmium Enrichment Characteristics of C. fluminea
4.3. Meaning and Limitations of the Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, J.; Rao, M.; Zhang, H.; Wang, Q.; Shen, Y.; Ye, J.; Feng, K.; Zhang, S. Evolution of Interspecific Interactions Underlying the Nonlinear Relationship between Active Biomass and Pollutant Degradation Capacity in Bioelectrochemical Systems. Water Res. 2025, 274, 123071. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Cao, X.; Xiong, H.; Liu, F.; Xie, M.; Chen, R.; Tan, Q. Hidden Threat in Turbid Waters: Quantifying and Modeling the Bioaccumulation and Risks of Particulate Metals to Clams. Environ. Pollut. 2025, 368, 125746. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Hu, T.; Xiong, H.; Cao, X.; Liu, F.; Gosnell, K.J.; Xie, M.; Chen, R.; Tan, Q. Turbid Waters and Clearer Standards: Refining Water Quality Criteria for Coastal Environments by Encompassing Metal Bioavailability from Suspended Particles. Environ. Sci. Technol. 2024, 58, 5244–5254. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Chen, S.; Li, Z.; Liu, P.; Xu, C.; Yang, X. Assessment of Heavy Metals in Water, Sediment and Shellfish Organisms in Typical Areas of the Yangtze River Estuary, China. Mar. Pollut. Bull. 2020, 151, 110864. [Google Scholar] [CrossRef]
- Baby, J.; Raj, J.; Biby, E.; Sankarganesh, P.; Jeevitha, M.; Ajisha, S.; Rajan, S. Toxic Effect of Heavy Metals on Aquatic Environment. Int. J. Biol. Chem. Sci. 2011, 4, 939–952. [Google Scholar] [CrossRef]
- Schwartz, M.S.; Benci, J.L.; Selote, D.S.; Sharma, A.K.; Chen, A.G.Y.; Dang, H.; Fares, H.; Vatamaniuk, O.K. Detoxification of Multiple Heavy Metals by a Half-Molecule ABC Transporter, HMT-1, and Coelomocytes of Caenorhabditis Elegans. PLoS ONE 2010, 5, e9564. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, W. Dynamics of Copper Regulation in a Marine Clam Sinonovacula Constricta at the Organ Level: Insight from a Physiologically Based Pharmacokinetic Model. Environ. Pollut. 2023, 336, 122421. [Google Scholar] [CrossRef]
- Wong, K.W.; Yap, C.K.; Nulit, R.; Hamzah, M.S.; Chen, S.K.; Cheng, W.H.; Karami, A.; Al-Shami, S.A. Effects of Anthropogenic Activities on the Heavy Metal Levels in the Clams and Sediments in a Tropical River. Environ. Sci. Pollut. Res. 2017, 24, 116–134. [Google Scholar] [CrossRef]
- Sow, A.Y.; Dee, K.H.; Lee, S.W.; Eh Rak, A.A.L. An Assessment of Heavy Metals Toxicity in Asian Clam, Corbicula Fluminea, from Mekong River, Pa Sak River, and Lopburi River, Thailand. Sci. World J. 2019, 2019, 1615298. [Google Scholar] [CrossRef]
- Graney, R.L.; Cherry, D.S.; Cairns, J. Heavy Metal Indicator Potential of the Asiatic Clam (Corbicula fluminea) in Artificial Stream Systems. Hydrobiologia 1983, 102, 81–88. [Google Scholar] [CrossRef]
- Dou, M.; Zuo, Q.; Zhang, J.; Li, C.; Li, G. Influence of Changes in Hydrodynamic Conditions on Cadmium Transport in Tidal River Network of the Pearl River Delta, China. Environ. Monit. Assess. 2013, 185, 7501–7516. [Google Scholar] [CrossRef]
- Chen, X.; Xie, D.; Dou, M.; Liu, D.; Li, X. Cadmium Transportation Modeling under Accident Release in Pearl River Delta Network. J. Coast. Res. 2008, 10052, 3–12. [Google Scholar] [CrossRef]
- Geng, N.; Bai, Y.; Pan, S. Research on Heavy Metal Release with Suspended Sediment in Taihu Lake under Hydrodynamic Condition. Environ. Sci. Pollut. Res. 2022, 29, 28588–28597. [Google Scholar] [CrossRef]
- Artini, G.; Calvani, G.; Francalanci, S.; Solari, L. Effects of Vegetation at a Bar Confluence on River Hydrodynamics: The Case Study of the Arno River at Greve Junction. River Res. Apps 2021, 37, 615–626. [Google Scholar] [CrossRef]
- Verschoren, V.; Meire, D.; Schoelynck, J.; Buis, K.; Bal, K.D.; Troch, P.; Meire, P.; Temmerman, S. Resistance and Reconfiguration of Natural Flexible Submerged Vegetation in Hydrodynamic River Modelling. Environ. Fluid Mech. 2016, 16, 245–265. [Google Scholar] [CrossRef]
- Wang, S.; Zhuo, J.; Jia, F.; Deng, L.; Wang, H.; Han, Y. Simulation of Pollutant Diffusion in Vegetation Open Channel Based on LBM-CA Method. Environ. Sci. Pollut. Res. 2023, 30, 71252–71269. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Li, Z.; Wang, H.; Wang, Q.; Mi, Z. Evaluation of a Random Displacement Model for Scalar Mixing in Ecological Channels Partially Covered with Vegetation. Environ. Sci. Pollut. Res. 2022, 30, 31281–31293. [Google Scholar] [CrossRef]
- Zong, L.; Nepf, H. Flow and Deposition in and around a Finite Patch of Vegetation. Geomorphology 2010, 116, 363–372. [Google Scholar] [CrossRef]
- Khalilzadeh Poshtegal, M.; Mirbagheri, S.A. Simulation and Modelling of Heavy Metals and Water Quality Parameters in the River. Sci. Rep. 2023, 13, 3020. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, X.; Xie, M.; Chen, R.; Tan, Q.-G. Measuring Metal Uptake and Loss in Individual Organisms: A Novel Double Stable Isotope Method and Its Application in Explaining Body Size Effects on Cadmium Concentration in Mussels. Environ. Sci. Technol. 2021, 55, 9979–9988. [Google Scholar] [CrossRef]
- Wang, W.-X.; Tan, Q.-G. Applications of Dynamic Models in Predicting the Bioaccumulation, Transport and Toxicity of Trace Metals in Aquatic Organisms. Environ. Pollut. 2019, 252, 1561–1573. [Google Scholar] [CrossRef]
- Ullman, W.J.; Aller, R.C. Diffusion Coefficients in Nearshore Marine Sediments1. Limnol. Oceanogr. 1982, 27, 552–556. [Google Scholar] [CrossRef]
- Inoue, T.; Nakamura, Y. Effects of Hydrodynamic Conditions on DO Transfer at a Rough Sediment Surface. J. Environ. Eng. 2011, 137, 28–37. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Sediment Transport, Part III: Bed Forms and Alluvial Roughness. J. Hydraul. Eng. 1984, 110, 1733–1754. [Google Scholar] [CrossRef]
- Nepf, H.M.; Sullivan, J.A.; Zavistoski, R.A. A Model for Diffusion within Emergent Vegetation. Limnol. Oceanogr. 1997, 42, 1735–1745. [Google Scholar] [CrossRef]
- Nepf, H.M. Drag, Turbulence, and Diffusion in Flow through Emergent Vegetation. Water Resour. Res. 1999, 35, 479–489. [Google Scholar] [CrossRef]
- Zhu, H.; Cheng, P.; Zhong, B.; Wang, D. Hydrodynamic Effects on Contaminants Release Due to Rususpension and Diffusion from Sediments. J. Hydrodyn. 2013, 25, 731–736. [Google Scholar] [CrossRef]
- Gao, G.; Falconer, R.A.; Lin, B. Numerical Modelling Sediment-Bacteria Interaction Processes in the Severn Estuary. JWARP 2011, 03, 22–31. [Google Scholar] [CrossRef]
- Liang, D.; Wang, X.; Bockelmann-Evans, B.N.; Falconer, R.A. Study on Nutrient Distribution and Interaction with Sediments in a Macro-Tidal Estuary. Adv. Water Resour. 2013, 52, 207–220. [Google Scholar] [CrossRef]
- Girimaji, S. Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. AIAA J. 2013, 51, 278–279. [Google Scholar] [CrossRef]
- Zhao, X.; Dai, J.; Teng, Z.; Yuan, J.; Wang, G.; Luo, W.; Ji, X.; Hu, W.; Li, M. Immobilization of Cadmium in River Sediment Using Phosphate Solubilizing Bacteria Coupled with Biochar-Supported Nano-Hydroxyapatite. J. Clean. Prod. 2022, 348, 131221. [Google Scholar] [CrossRef]
- Bai, Y.; Duan, Y. The Vertical Distribution of Suspended Sediment and Phosphorus in a Channel with Ice Cover. Environ. Sci. Pollut. Res. 2021, 28, 37953–37962. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Shen, D.; Huang, D. Vertical Heterogeneity and Flexible Root Dynamics in Pollutant Transport: A Hybrid Lattice Boltzmann Method—Random Displacement Model Approach for Optimizing Artificial Floating Bed Design. Water Res. 2025, 280, 123536. [Google Scholar] [CrossRef]
- Liu, B.; Lv, L.; An, M.; Wang, T.; Li, M.; Yu, Y. Heavy Metals in Marine Food Web from Laizhou Bay, China: Levels, Trophic Magnification, and Health Risk Assessment. Sci. Total Environ. 2022, 841, 156818. [Google Scholar] [CrossRef] [PubMed]
Treatment | Describe | H (cm) | Mean Value of Velocity (cm/s) | Initial Value of Cd in Water (μg/L) | Initial Value of Cd in Clam (μg/g) | Initial Value of pH | Mean Value of Temperature (°C) |
---|---|---|---|---|---|---|---|
C0 | No C. fluminea and no water velocity | 15 | None | 27.54 | - | 8.1 | 22.5 |
C+H | C. fluminea and water velocity | 15 | 0.038 | 27.54 | 43.74 | 8.1 | 22.5 |
V+H | Vegetation and water velocity | 20 | 0.025 | 27.54 | - | 8.1 | 22.5 |
C+V+H | C. fluminea, vegetation, and water velocity | 20 | 0.025 | 27.54 | 46.39 | 8.1 | 22.5 |
Treatment | Simulation Results of Cd in Overlaying Water | Simulation Results of Cd in C. fluminea | ||||
---|---|---|---|---|---|---|
C0 | C+H | V+H | C+V+H | C+H | C+V+H | |
RMSE | 0.0116 μg/L | 0.0084 μg/L | 0.0092 μg/L | 0.0009 μg/L | 0.56 μg/g | 0.91 μg/g |
R2 | 0.942 | 0.852 | 0.8201 | 0.8632 | 0.7604 | 0.8191 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, N.; Sun, G.; Zhang, L.; Wang, H. An Experimental and Modelling Study on the Effect of Vegetation-Influenced Water Velocity on Cadmium Accumulation in Corbicula fluminea. Sustainability 2025, 17, 6570. https://doi.org/10.3390/su17146570
Geng N, Sun G, Zhang L, Wang H. An Experimental and Modelling Study on the Effect of Vegetation-Influenced Water Velocity on Cadmium Accumulation in Corbicula fluminea. Sustainability. 2025; 17(14):6570. https://doi.org/10.3390/su17146570
Chicago/Turabian StyleGeng, Nan, Guojin Sun, Lin Zhang, and Hui Wang. 2025. "An Experimental and Modelling Study on the Effect of Vegetation-Influenced Water Velocity on Cadmium Accumulation in Corbicula fluminea" Sustainability 17, no. 14: 6570. https://doi.org/10.3390/su17146570
APA StyleGeng, N., Sun, G., Zhang, L., & Wang, H. (2025). An Experimental and Modelling Study on the Effect of Vegetation-Influenced Water Velocity on Cadmium Accumulation in Corbicula fluminea. Sustainability, 17(14), 6570. https://doi.org/10.3390/su17146570