Measuring Airline Performance: An Integrated Balanced Scorecard-Based MEREC-CoCoSo Model
Abstract
1. Introduction
2. Theoretical Discussion
3. Materials and Methods
3.1. Research Model
3.1.1. MEREC Criteria-Weighting Method
3.1.2. CoCoSo Ranking Method
3.2. Sample and Data Collection
4. Discussion
4.1. MEREC Results
- = individual data point;
- = mean of the population;
- = standard deviation of the population.
4.2. CoCoSo Results
4.3. Sensitivity Analyses
4.3.1. Sensitivity to Weight Variations
4.3.2. Sensitivity to Aggregation Parameter (λ) Variations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ATAG Aviation Benefits Beyond Borders. Available online: https://aviationbenefits.org/downloads/aviation-benefits-beyond-borders-2024/ (accessed on 24 February 2025).
- Cregan, C.; Kelly, J.A.; Clinch, J.P. Are Environmental, Social and Governance (ESG) Ratings Reliable Indicators of Emissions Outcomes? A Case Study of the Airline Industry. Corp. Soc. Responsib. Environ. Manag. 2024, 31, 909–928. [Google Scholar] [CrossRef]
- Capobianco, H.M.P.; Fernandes, E. Capital Structure in the World Airline Industry. Transp. Res. Part A Policy Pract. 2004, 38, 421–434. [Google Scholar] [CrossRef]
- Abdi, Y.; Li, X.; Càmara-Turull, X. How Financial Performance Influences Investment in Sustainable Development Initiatives in the Airline Industry: The Moderation Role of State-ownership. Sustain. Dev. 2022, 30, 1252–1267. [Google Scholar] [CrossRef]
- Perryman, M.; Besco, L.; Suleiman, C.; Lucato, L. Ready for Take off: Airline Engagement with the United Nations Sustainable Development Goals. J. Air Transp. Manag. 2022, 103, 102246. [Google Scholar] [CrossRef]
- Liu, Y.; Alnafrah, I.; Zhou, Y. A Systemic Efficiency Measurement of Resource Management and Sustainable Practices: A Network Bias-Corrected DEA Assessment of OECD Countries. Resour. Policy 2024, 90, 104771. [Google Scholar] [CrossRef]
- Erdogan, D.; Kaya, E. Understanding Performance Indicators of Organizational Achievement in Turkish Airline Companies. J. Manag. Res. 2014, 6, 109–112. [Google Scholar] [CrossRef]
- Demydyuk, G. Optimal Financial Key Performance Indicators: Evidence from the Airline Industry. Account. Tax. 2012, 3, 39–51. [Google Scholar]
- IATA Industry Statistics Fact Sheet. Available online: https://www.iata.org/en/iata-repository/pressroom/fact-sheets/industry-statistics/ (accessed on 24 February 2025).
- Wu, W.Y.; Liao, Y.K. A Balanced Scorecard Envelopment Approach to Assess Airlines’ Performance. Ind. Manag. Data Syst. 2014, 114, 123–143. [Google Scholar] [CrossRef]
- Schefczyk, M. Operational Performance of Airlines: An Extension of Traditional Measurement Paradigms. Strateg. Manag. J. 1993, 14, 301–317. [Google Scholar] [CrossRef]
- Vasigh, B.; Fleming, K.; Tacker, T. Introduction to Air Transport Economics: From Theory to Applications; Routledge: New York, NY, USA, 2018; ISBN 9780754670797. [Google Scholar]
- Köse, Y. Havacılık Sektöründe Spesifik Finansal Oranlar: Türkiye’deki Havayolu Şirketleri Üzerine Analiz ve Değerlendirme. Finans. Araştırmalar ve Çalışmalar Derg. 2021, 13, 623–636. [Google Scholar] [CrossRef]
- Kalemba, N.; Campa-Planas, F.; Hernández-Lara, A.B.; Sánchez-Rebull, M.V. Service Quality and Economic Performance in the US Airline Business. Aviation 2017, 21, 102–110. [Google Scholar] [CrossRef]
- Durmaz, E.; Akan, Ş.; Bakır, M. Service Quality and Financial Performance Analysis in Low-Cost Airlines: An Integrated Multi-Criteria Quadrant Application. Int. J. Econ. Bus. Res. 2020, 20, 168–191. [Google Scholar] [CrossRef]
- Abdi, Y.; Li, X.; Càmara-Turull, X. Exploring the Impact of Sustainability (ESG) Disclosure on Firm Value and Financial Performance (FP) in Airline Industry: The Moderating Role of Size and Age. Environ. Dev. Sustain. 2022, 24, 5052–5079. [Google Scholar] [CrossRef]
- Hartmann, S.P. The Impact of ESG Scores on the Firm Value: Evidence from the Airline Industry; Universidade NOVA de Lisboa: Lisboa, Portugal, 2021. [Google Scholar]
- Yildiz, F.; Dayi, F.; Yucel, M.; Cilesiz, A. The Impact of ESG Criteria on Firm Value: A Strategic Analysis of the Airline Industry. Sustainability 2024, 16, 8300. [Google Scholar] [CrossRef]
- Gudmundsson, S.V. Airline Distress Prediction Using Non-Financial Indicators. J. Air Transp. 2002, 7, 3–24. [Google Scholar]
- Zaremba, U. Does the Industry Matter? Airline Bankruptcy Prediction. In Proceedings of the Digitalization in Finance and Accounting; Procházka, D., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Mantin, B.; Wang, J.E. Determinants of Profitability and Recovery from System-Wide Shocks: The Case of the Airline Industry. J. Airl. Airpt. Manag. 2012, 2, 1–33. [Google Scholar] [CrossRef]
- Zuidberg, J. Identifying Airline Cost Economies: An Econometric Analysis of the Factors Affecting Aircraft Operating Costs. J. Air Transp. Manag. 2014, 40, 86–95. [Google Scholar] [CrossRef]
- Wirtz, B.W.; Pistoia, A.; Ullrich, S.; Göttel, V. Business Models: Origin, Development and Future Research Perspectives. Long Range Plan. 2016, 49, 36–54. [Google Scholar] [CrossRef]
- Soyk, C.; Ringbeck, J.; Spinler, S. Long-Haul Low Cost Airlines: Characteristics of the Business Model and Sustainability of Its Cost Advantages. Transp. Res. Part A Policy Pract. 2017, 106, 215–234. [Google Scholar] [CrossRef]
- Mason, K.J.; Morrison, W.G. Towards a Means of Consistently Comparing Airline Business Models with an Application to the ‘Low Cost’ Airline Sector. Res. Transp. Econ. 2008, 24, 75–84. [Google Scholar] [CrossRef]
- Lahouel, B.B.; Zaied, Y.B.; Song, Y.; Yang, G.L. Corporate Social Performance and Financial Performance Relationship: A Data Envelopment Analysis Approach without Explicit Input. Financ. Res. Lett. 2021, 30, 101656. [Google Scholar] [CrossRef]
- IATA. Understanding the Pandemic’s Impact on the Aviation Value Chain. Available online: https://www.iata.org/en/iata-repository/publications/economic-reports/understanding-the-pandemics-impact-on-the-aviation-value-chain (accessed on 20 May 2025).
- Cui, Q.; Yu, L.T. A Review of Data Envelopment Analysis in Airline Efficiency: State of the Art and Prospects. J. Adv. Transp. 2021, 2021, 2931734. [Google Scholar] [CrossRef]
- March, J.G.; Simon, H.A. Organizations; Wiley: Hoboken, NJ, USA, 1958; pp. 1–304. ISBN 978-0-631-18631-1. [Google Scholar]
- Rejc, A. Toward Contingency Theory of Performance Measurement. J. East Eur. Manag. Stud. 2004, 9, 243–264. [Google Scholar] [CrossRef]
- Covaleski, M.A.; Dirsmith, M.W.; Samuel, S. Managerial Accounting Research: The Contributions of Organizational and Sociological Theories. J. Manag. Account. Res. 1996, 8, 1–35. [Google Scholar]
- de Camargo Fiorini, P.; Roman Pais Seles, B.M.; Chiappetta Jabbour, C.J.; Barberio Mariano, E.; de Sousa Jabbour, A.B.L. Management Theory and Big Data Literature: From a Review to a Research Agenda. Int. J. Inf. Manag. 2018, 43, 112–129. [Google Scholar] [CrossRef]
- Alnafrah, I.; Okunlola, O.; Sinha, A.; Abbas, S.; Dagestani, A.A. Unveiling the Environmental Efficiency Puzzle: Insights from Global Green Innovations. J. Environ. Manag. 2023, 345, 118865. [Google Scholar] [CrossRef]
- Donaldson, L. The Contingency Theory of Organizations; Sage: Boston, MA, USA, 2001; ISBN 9780761915744. [Google Scholar]
- Stentz, J.E.; Plano Clark, V.L.; Matkin, G.S. Applying Mixed Methods to Leadership Research: A Review of Current Practices. Leadersh. Q. 2012, 23, 1173–1183. [Google Scholar] [CrossRef]
- Abdel-Kader, M.; Luther, R. The Impact of Firm Characteristics on Management Accounting Practices: A UK-Based Empirical Analysis. Br. Account. Rev. 2008, 40, 2–27. [Google Scholar] [CrossRef]
- Kankaew, K.; Pongsapak, T. Contingency Theory: The Analysis in Air Transportation before, during, and after the Pandemic in Thailand. In Proceedings of the VIII International Scientific Conference Transport of Siberia, Novosibirsk, Russia, 22–27 May 2020, IOP Publishing: Bristol, UK, 2020; p. 12047. [Google Scholar]
- Hofer, C.; Dresner, M.E.; Windle, R.J. The Impact of Airline Financial Distress on US Air Fares: A Contingency Approach. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 238–249. [Google Scholar] [CrossRef]
- Tsikriktsis, N. The Effect of Operational Performance and Focus on Profitability: A Longitudinal Study of the US Airline Industry. Manuf. Serv. Oper. Manag. 2007, 9, 506–517. [Google Scholar] [CrossRef]
- Dinçer, H.; Hacıoğlu, Ü.; Yüksel, S. Balanced Scorecard Based Performance Measurement of European Airlines Using a Hybrid Multicriteria Decision Making Approach under the Fuzzy Environment. J. Air Transp. Manag. 2017, 63, 17–33. [Google Scholar] [CrossRef]
- Kaplan, R.; Norton, D. The Balanced Scorecard—Measures That Drive Performance. Harv. Bus. Rev. 1992, 70, 79. [Google Scholar]
- Kaplan, R.S.; Norton, D.P. The Balanced Scorecard: Translating Strategy into Action; Harvard Business Review Press: Boston, MA, USA, 1996. [Google Scholar]
- Lu, M.T.; Hsu, C.C.; Liou, J.J.H.; Lo, H.W. A Hybrid MCDM and Sustainability-Balanced Scorecard Model to Establish Sustainable Performance Evaluation for International Airports. J. Air Transp. Manag. 2018, 71, 9–19. [Google Scholar] [CrossRef]
- Okuneye, B.A.; Ogunyomi-Oluyomi, O.O. The Role of Digitalization in the Airline Industry Performance amid COVID-19: Evidence from Emirate Airline Balanced Scorecard Performance. Izv. J. Varna Univ. Econ. 2022, 66, 5–21. [Google Scholar] [CrossRef]
- Kumar, Y.K.; Rao, V.K. Development of Balanced Score Card Framework for Performance Evaluation of Airlines. Int. J. Manag. 2020, 10, 214–234. [Google Scholar] [CrossRef]
- Hoque, Z. 20 Years of Studies on the Balanced Scorecard: Trends, Accomplishments, Gaps and Opportunities for Future Research. Br. Account. Rev. 2014, 46, 33–59. [Google Scholar] [CrossRef]
- Speckbacher, G.; Bischof, J.; Pfeiffer, T. A Descriptive Analysis on the Implementation of Balanced Scorecards in German-Speaking Countries. Manag. Account. Res. 2003, 14, 361–388. [Google Scholar] [CrossRef]
- Szulanski, G. Exploring Internal Stickiness: Impediments to the Transfer of Best Practice Within the Firm. Strateg. Manag. J. 1996, 17, 27–43. [Google Scholar] [CrossRef]
- Wang, Y.-J. Applying FMCDM to Evaluate Financial Performance of Domestic Airlines in Taiwan. Expert Syst. Appl. 2008, 34, 1837–1845. [Google Scholar] [CrossRef]
- Armen, S. Performance Assessment of Major US Airlines via Cash Flow Ratios. Ann. Univ. Oradea Econ. Sci. Ser. 2013, 22, 398–408. [Google Scholar]
- Teker, S.; Teker, D.; Güner, A. Financial Performance of Top 20 Airlines. Procedia—Soc. Behav. Sci. 2016, 235, 603–610. [Google Scholar] [CrossRef]
- Bouwens, J.; de Kok, T.; Verriest, A. The Prevalence and Validity of EBITDA as a Performance Measure. Comptab. Contrôle Audit. 2019, 25, 55–105. [Google Scholar] [CrossRef]
- Eremichev, A.; Aslanov, M. Comparison of Turkish Airlines with Aeroflot. Int. J. Econ. Manag. 2019, 1, 33–40. [Google Scholar]
- Alici, A.; Sevil, G. Analysis of Sector-Specific Operational Performance Metrics Affecting Stock Prices of Traditional Airlines. Indep. J. Manag. Prod. 2022, 13, 488–506. [Google Scholar] [CrossRef]
- Ozment, J.; Morash, E.A. Assessment of the Relationship between Productivity and Performance Quality in the US Domestic Airline Industry. Transp. Res. Rec. 1998, 1622, 22–31. [Google Scholar] [CrossRef]
- Phang, S.-Y. A General Framework for Price Regulation of Airports. J. Air Transp. Manag. 2016, 51, 39–45. [Google Scholar] [CrossRef]
- Le, D.H.; Le Phuong, N. Managing Aircraft Ground Handling Delays in Vietnam Airlines by Using Supply Chain Strategy. Int. J. Sup. Chain. Mgt 2019, 8, 765. [Google Scholar]
- Tseng, W.-C.; Wang, X.; Ting, Y.-C. Evaluating Air Route Performance with Context-Dependent Data Envelopment Analysis: A Case Study in Taiwan. Asian Transp. Stud. 2024, 10, 100148. [Google Scholar] [CrossRef]
- Kucukaltan, B.; Topcu, Y.I. Assessment of Key Airline Selection Indicators in a Strategic Decision Model: Passengers’ Perspective. J. Enterp. Inf. Manag. 2019, 32, 646–667. [Google Scholar] [CrossRef]
- Lin, E.T. Route-Based Performance Evaluation of Taiwanese Domestic Airlines Using Data Envelopment Analysis: A Comment. Transp. Res. Part E Logist. Transp. Rev. 2008, 44, 894–899. [Google Scholar] [CrossRef]
- Newcamp, J.; Verhagen, W.J.C.; Curran, R. Time to Retire: Indicators for Aircraft Fleets. Int. J. Aviat. Manag. 2016, 3, 221–233. [Google Scholar] [CrossRef]
- Germain, M.-L.; Herzog, M.J.R.; Hamilton, P.R. Women Employed in Male-Dominated Industries: Lessons Learned from Female Aircraft Pilots, Pilots-in-Training and Mixed-Gender Flight Instructors. Hum. Resour. Dev. Int. 2012, 15, 435–453. [Google Scholar] [CrossRef]
- Dave, S.R. Applying Balanced Scorecard in Indian Banking Sector: An Empirical Study of the State Bank of India. Pacific Bus. Rev. Int. 2012, 5, 108–120. [Google Scholar]
- Chen, J.-K.; Chen, I.-S. Aviatic Innovation System Construction Using a Hybrid Fuzzy MCDM Model. Expert Syst. Appl. 2010, 37, 8387–8394. [Google Scholar] [CrossRef]
- Dey, M.; Bhattacharjee, S.; Mahmood, M.; Uddin, M.A.; Biswas, S.R. Ethical Leadership for Better Sustainable Performance: Role of Employee Values, Behavior and Ethical Climate. J. Clean. Prod. 2022, 337, 1–17. [Google Scholar] [CrossRef]
- Corazza, M.V. Sky’s No Limit for Women: Achieving Gender Equity in Aviation. In Proceedings of the International Symposium: New Metropolitan Perspectives, Reggio Calabria, Italy, 22–24 May 2022; Springer Nature: Berlin, Germany, 2024; pp. 376–385. [Google Scholar]
- Pessanha, D.S.; Prochnik, V. Practitioners’ Opinions on Academics’ Critics on the Balanced Scorecard. 2006. Available online: https://ssrn.com/abstract=1094308 (accessed on 24 February 2025).
- Eilat, H.; Golany, B.; Shtub, A. R&D Project Evaluation: An Integrated DEA and Balanced Scorecard Approach. Omega 2008, 36, 895–912. [Google Scholar] [CrossRef]
- Maher, A. The Critical Barriers to the Balanced Scorecard Successful Implementation: Airlines Perspective. J. Assoc. Arab Univ. Tour. Hosp. 2015, 12, 159–179. [Google Scholar] [CrossRef]
- Laitinen, E.K. Future-Based Management Accounting: A New Approach with Survey Evidence. Crit. Perspect. Account. 2003, 14, 293–323. [Google Scholar] [CrossRef]
- Kulakli, A.; Şahin, Y. A Combined Multi-Criteria Decision Making Approach for Improvement of Airlines’ Ground Operations Performance: A Case Study from Türkiye. Systems 2023, 11, 421. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Tzeng, G.-H.; Chen, Y.-H. A Fuzzy MCDM Approach for Evaluating Banking Performance Based on Balanced Scorecard. Expert Syst. Appl. 2009, 36, 10135–10147. [Google Scholar] [CrossRef]
- Shaverdi, M.; Akbari, M.; Fallah Tafti, S. Combining Fuzzy MCDM with BSC Approach in Performance Evaluation of Iranian Private Banking Sector. Adv. Fuzzy Syst. 2011, 2011, 148712. [Google Scholar] [CrossRef]
- Beheshtinia, M.A.; Omidi, S. A Hybrid MCDM Approach for Performance Evaluation in the Banking Industry. Kybernetes 2017, 46, 1386–1407. [Google Scholar] [CrossRef]
- Chen, F.-H.; Hsu, T.-S.; Tzeng, G.-H. A Balanced Scorecard Approach to Establish a Performance Evaluation and Relationship Model for Hot Spring Hotels Based on a Hybrid MCDM Model Combining DEMATEL and ANP. Int. J. Hosp. Manag. 2011, 30, 908–932. [Google Scholar] [CrossRef]
- Rabbani, A.; Zamani, M.; Yazdani-Chamzini, A.; Zavadskas, E.K. Proposing a New Integrated Model Based on Sustainability Balanced Scorecard (SBSC) and MCDM Approaches by Using Linguistic Variables for the Performance Evaluation of Oil Producing Companies. Expert Syst. Appl. 2014, 41, 7316–7327. [Google Scholar] [CrossRef]
- Dağıdır, B.D.; Özkan, B. A Comprehensive Evaluation of a Company Performance Using Sustainability Balanced Scorecard Based on Picture Fuzzy AHP. J. Clean. Prod. 2024, 435, 140519. [Google Scholar] [CrossRef]
- Aydın, U.; Karadayı, M.A.; Ülengin, F.; Ülengin, K.B. Enhanced Performance Assessment of Airlines with Integrated Balanced Scorecard, Network-Based Superefficiency DEA and PCA Methods BT. In Multiple Criteria Decision Making: Beyond the Information Age; Topcu, Y.I., Özaydın, Ö., Kabak, Ö., Önsel Ekici, Ş., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 225–247. ISBN 978-3-030-52406-7. [Google Scholar]
- Tanrıverdi, G.; Merkert, R.; Karamaşa, Ç.; Asker, V. Using Multi-Criteria Performance Measurement Models to Evaluate the Financial, Operational and Environmental Sustainability of Airlines. J. Air Transp. Manag. 2023, 112, 102456. [Google Scholar] [CrossRef]
- Youngblood, A.D.; Collins, T.R. Addressing Balanced Scorecard Trade-off Issues between Performance Metrics Using Multi-Attribute Utility Theory. Eng. Manag. J. 2003, 15, 11–17. [Google Scholar] [CrossRef]
- Sundin, H.; Granlund, M.; Brown, D.A. Balancing Multiple Competing Objectives with a Balanced Scorecard. Eur. Account. Rev. 2010, 19, 203–246. [Google Scholar] [CrossRef]
- Ferreira, F.A. Measuring Trade-Offs among Criteria in a Balanced Scorecard Framework: Possible Contributions from the Multiple Criteria Decision Analysis Research Field. J. Bus. Econ. Manag. 2013, 14, 433–447. [Google Scholar] [CrossRef]
- Vafaei, N.; Ribeiro, R.A.; Camarinha-Matos, L.M. Normalization Techniques for Multi-Criteria Decision Making: Analytical Hierarchy Process Case Study. In Technological Innovation for Cyber-Physical Systems, Proceedings of the 7th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2016, Costa de Caparica, Portugal, 11–13 April 2016; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Jafaryeganeh, H.; Ventura, M.; Guedes Soares, C. Effect of Normalization Techniques in Multi-Criteria Decision Making Methods for the Design of Ship Internal Layout from a Pareto Optimal Set. Struct. Multidiscip. Optim. 2020, 62, 1849–1863. [Google Scholar] [CrossRef]
- Saidin, M.S.; Lee, L.S.; Marjugi, S.M.; Ahmad, M.Z.; Seow, H.V. Fuzzy Method Based on the Removal Effects of Criteria (MEREC) for Determining Objective Weights in Multi-Criteria Decision-Making Problems. Mathematics 2023, 11, 1544. [Google Scholar] [CrossRef]
- Bączkiewicz, A.; Wątróbski, J. Crispyn—A Python Library for Determining Criteria Significance with Objective Weighting Methods. SoftwareX 2022, 19, 101166. [Google Scholar] [CrossRef]
- Keleş, N. Measuring Performances through Multiplicative Functions by Modifying the MEREC Method: MEREC-G and MEREC-H. Int. J. Ind. Eng. Oper. Manag. 2023, 5, 181–199. [Google Scholar] [CrossRef]
- Radulescu, C.Z.; Radulescu, M.; Boncea, R. A Multi-Criteria Decision Support and Application to the Evaluation of the Fourth Wave of COVID-19 Pandemic. Entropy 2022, 24, 642. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC)E. Symmetry 2021, 13, 525. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhattacharya, M. Analyzing the Impact of COVID-19 on the Financial Performance of the Hospitality and Tourism Industries: An Ensemble MCDM Approach in the Indian Context. Int. J. Contemp. Hosp. Manag. 2022, 34, 3113–3142. [Google Scholar] [CrossRef]
- Zardari, N.H.; Ahmed, K.; Shirazi, S.M.; Yusop, Z.B. Weighting Methods and Their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Olteanu Burcă, A.L.; Ionașcu, A.E.; Cosma, S.; Barbu, C.A.; Popa, A.; Cioroiu, C.G.; Goswami, S.S. Prioritizing the European Investment Sectors Based on Different Economic, Social, and Governance Factors Using a Fuzzy-MEREC-AROMAN Decision-Making Model. Sustainability 2024, 16, 7790. [Google Scholar] [CrossRef]
- Goswami, S.S.; Mohanty, S.K.; Behera, D.K. Selection of a Green Renewable Energy Source in India with the Help of MEREC Integrated PIV MCDM Tool. Mater. Today Proc. 2022, 52, 1153–1160. [Google Scholar] [CrossRef]
- Alici, A. Macroeconomic Determinants of Financial Failure Risk in Airlines. J. Aviat. 2023, 7, 425–437. [Google Scholar] [CrossRef]
- Farah, H.A.; Munga, J.; Mbebe, J. Influence of Competitive Strategies on Performance of Commercial Airlines in Kenya: A Survey of the Airline Industry in Kenya. Int. Acad. J. Hum. Resour. Bus. Adm. 2018, 3, 170–189. [Google Scholar]
- Yazdani, M.; Zarate, P.; Kazimieras Zavadskas, E.; Turskis, Z. A Combined Compromise Solution (CoCoSo) Method for Multi-Criteria Decision-Making Problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar] [CrossRef]
- Rasoanaivo, R.; Yazdani, M.; Zaraté, P.; Fateh, A. Combined Compromise for Ideal Solution (CoCoFISo): A Multi-Criteria Decision-Making Based on the CoCoSo Method Algorithm. Expert Syst. Appl. 2024, 251, 124079. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Ecer, F.; Pamucar, D.; Karamaşa, Ç. Comparative Assessment of Social Sustainability Performance: Integrated Data-Driven Weighting System and CoCoSo Model. Sustain. Cities Soc. 2021, 71, 102975. [Google Scholar] [CrossRef]
- Ersoy, N. Applying an Integrated Data-Driven Weighting System—CoCoSo Approach for Financial Performance Evaluation of Fortune 500 Companies. E&M Econ. Manag. 2023, 26, 92–108. [Google Scholar]
- Sarıgül, S.S.; Ünlü, M.; Yaşar, E. A New MCDM Approach in Evaluating Airport Service Quality: MEREC-Based MARCOS and CoCoSo Methods. Uluslararası Yönetim Akad. Derg. 2023, 6, 90–108. [Google Scholar] [CrossRef]
- Akpınar, M.E. Evaluating Resilience and Sustainability in Global Supply Chains: A Multi-Criteria Decision-Making Approach for Post-Pandemic Challenges. LogForum 2025, 21, 63–72. [Google Scholar] [CrossRef]
- Bektaş, S. Türk Sigorta Sektörünün 2002–2021 Dönemi için MEREC, LOPCOW, COCOSO, EDAS ÇKKV Yöntemleri ile Performansının Değerlendrilmesi TT—Evaluating the Performance of the Turkish Insurance Sector for the Period 2002–2021 with MEREC, LOPCOW, COCOSO, EDAS CKKV. BDDK Bankacılık ve Finans. Piyas. Derg. 2022, 16, 247–283. [Google Scholar] [CrossRef]
- Jääskeläinen, A.; Laihonen, H.; Lönnqvist, A.; Palvalin, M.; Sillanpää, V.; Pekkola, S.; Ukko, J. A Contingency Approach to Performance Measurement in Service Operations. Meas. Bus. Excell. 2012, 16, 43–52. [Google Scholar] [CrossRef]
- Skytrax Best Airlines 2024 by Region. Available online: https://www.worldairlineawards.com/best-airlines-2025-by-region/ (accessed on 20 April 2025).
- Turkish Airlines Star Alliance. Available online: https://www.turkishairlines.com/en-tr/press-room/about-us/star-alliance/index.html (accessed on 20 February 2025).
- Star Alliance Star Alliance Member Airlines. Available online: https://www.staralliance.com/en/members (accessed on 24 February 2025).
- Yıldız Ünal, A. THY, Dünyanın En Çok Ülkesine Uçan Havayolu Olarak Guinness Dünya Rekoru Kırdı. Available online: https://www.aa.com.tr/tr/gundem/thy-dunyanin-en-cok-ulkesine-ucan-havayolu-olarak-guinness-dunya-rekoru-kirdi/3429437 (accessed on 15 March 2025).
- Turkish Airlines. Annual Report; Turkish Airlines: Istanbul, Türkiye, 2024. [Google Scholar]
- Central Bank of the Republic of Türkiye, the Strategy and Budget Department of the Presidency of the Republic of Türkiye. Inflation Targets. Available online: https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Core+Functions/Monetary+Policy/PRICE+STABILITY+AND+INFLATION/Inflation+Targets (accessed on 24 February 2025).
- Central Bank of the Republic of Türkiye, the Strategy and Budget Department of the Presidency of the Republic of Türkiye. Key Economic Indicators: Section 5: Foreign Trade and Balance of Payments—Monthly Average Exchange Rates [Data Set]. Available online: https://www.sbb.gov.tr/temel-ekonomik-gostergeler/ (accessed on 24 February 2025).
- Kara, K.; Yalçın, G.C.; Çetinkaya, A.; Simic, V.; Pamucar, D. A Single-Valued Neutrosophic CIMAS-CRITIC-RBNAR Decision Support Model for the Financial Performance Analysis: A Study of Technology Companies. Socioecon. Plann. Sci. 2024, 92, 101851. [Google Scholar] [CrossRef]
- Yavuz, İ. Finansal ve Finansal Olmayan Performansin Merec ve Cocoso Yöntemleriyle Değerlendirilmesi: 2019–2023 Dönemi Için Albaraka Türk Katilim Bankasi Üzerine Bir Araştirma. Muhasebe Bilim Dünyası Derg. 2024, 26, 232–253. [Google Scholar] [CrossRef]
- Morrow, P.; McElroy, J. Efficiency as a Mediator in Turnover—Organizational Performance Relations. Hum. Relat. 2007, 60, 827–849. [Google Scholar] [CrossRef]
- Fletcher, H.D.; Smith, D.B. Managing for Value: Developing a Performance Measurement System Integrating Economic Value Added and the Balanced Scorecard in Strategic Planning. J. Bus. Strateg. 2004, 21, 1–18. [Google Scholar] [CrossRef]
- IATA. Ground Handling Priorities: Recruitment and Retention, Global Standards and Digitalization. Available online: https://www.iata.org/en/pressroom/2023-releases/2023-05-16-01/ (accessed on 15 February 2025).
- Hampson, I.; Anne, J.; Gregson, S. Missing in Action: Aircraft Maintenance and the Recent ‘HRM in the Airlines’ Literature. Int. J. Hum. Resour. Manag. 2012, 23, 2561–2575. [Google Scholar] [CrossRef]
- Lagarde, C.; Ostry, J.D. When More Women Join the Workforce, Everyone Benefits. Here’s Why; 2018. Available online: https://rwandainspirer.com/when-more-women-join-the-workforce-everyone-benefits-heres-why/ (accessed on 12 February 2025).
- Park, J.W.; Robertson, R.; Wu, C.L. Investigating the Effects of Airline Service Quality on Airline Image and Passengers’ Future Behavioural Intentions: Findings from Australian International Air Passengers. J. Tour. Stud. 2005, 16, 2–11. [Google Scholar]
- Csereklyei, Z.; Stern, D.I. Flying More Efficiently: Joint Impacts of Fuel Prices, Capital Costs and Fleet Size on Airline Fleet Fuel Economy. Ecol. Econ. 2020, 175, 106714. [Google Scholar] [CrossRef]
- Wei, W.; Hansen, M. Impact of Aircraft Size and Seat Availability on Airlines’ Demand and Market Share in Duopoly Markets. Transp. Res. Part E Logist. Transp. Rev. 2005, 41, 315–327. [Google Scholar] [CrossRef]
- Tretheway, M.W.; Markhvida, K. The Aviation Value Chain: Economic Returns and Policy Issues. J. Air Transp. Manag. 2014, 41, 3–16. [Google Scholar] [CrossRef]
- AVITRADER. Airline Industry Fuel Costs Set to Reach US$291 Billion in 2024. Available online: https://avitrader.com/2024/08/12/airline-industry-fuel-costs-set-to-reach-us291-billion-in-2024/#:~:text=In%202024%2C%20airlines%20are%20expected,from%2025%25%20five%20years%20ago (accessed on 27 February 2025).
- IATA. Airline Profitability Outlook Improves for 2024. Available online: https://www.iata.org/en/pressroom/2024-releases/2024-06-03-01/ (accessed on 21 February 2025).
- Liu, H.; Abdullah, N.H.B.; Lee, S.Y. A Review of Ancillary Services in the Airline Industry. Cogent Bus. Manag. 2024, 11, 2322018. [Google Scholar] [CrossRef]
- IATA. Strengthened Profitability Expected in 2025 Even as Supply Chain Issues Persist. Available online: https://www.iata.org/en/pressroom/2024-releases/2024-12-10-01/ (accessed on 15 February 2025).
- IATA. More Aircraft Are Leased than Owned by Airlines Globally. Available online: https://www.iata.org/en/publications/economics/chart-week/chart-of-the-week-12-april-2024/ (accessed on 22 February 2025).
- Kiracı, K.; Vasigh, B. A Novel Approach to Determinants of Corporate Cash Holdings: Evidence from the Airline Industry Journal of Air Transport Management. J. Air Transp. Manag. 2024, 120, 102666. [Google Scholar] [CrossRef]
- IATA. IATA Economics’ Chart of the Week 09 October 2020: Airline Industry Will Continue to Burn Through Cash Until 2022. Available online: https://www.iata.org/en/iata-repository/publications/economic-reports/airline-industry-will-continue-to-burn-through-cash-until-2022/ (accessed on 18 February 2025).
- IATA. Air Passenger Market Analysis. Available online: https://www.iata.org/en/iata-repository/publications/economic-reports/air-passenger-monthly-analysis---december-2021/#:~:text=Global%20passenger%20seat%20capacity%20 (accessed on 20 February 2025).
BSC Dimension | Criteria (Ci) | KPIs | Type | Description and Formula | Reference |
---|---|---|---|---|---|
Financial | C1 | Share of Passenger Revenue | max | [10] | |
C2 | Share of Cargo Revenue | max | [10] | ||
C3 | Operational Costs Ratio | min | [38] | ||
C4 | Cash Flow Ratio | max | [49,50] | ||
C5 | Net Profit Margin | max | [51] | ||
C6 | EBITDAR Margin | max | [52] | ||
C7 | ROA | max | [40,49,51] | ||
C8 | CASK | min | [53] | ||
C9 | Non-Fuel CASK | min | [53] | ||
C10 | Passenger Revenue per ASK | max | [53,54] | ||
C11 | Revenue Yield | max | [55,56] | ||
C12 | Aircraft Ownership Cost per Block Hour | min | [56] | ||
C13 | Maintenance Cost per Block Hour | min | [57,58] | ||
C14 | Handling Cost per Landing | min | [57,58] | ||
C15 | PCSE Ratio | min | [59] | ||
Customer | C16 | Number of Landings | max | Annual # of Aircraft Landings | [60] |
C17 | Passengers Carried | max | Annual # of Passengers Carried | [38] | |
C18 | Average Response Days to Customer Complaints | min | [59] | ||
C19 | Passenger Load Factor | max | [38] | ||
C20 | Passenger Satisfaction Rate | max | [59] | ||
Internal | C21 | Average Fleet Age | min | [61] | |
C22 | Available Seat Kilometers (ASK) | max | Total Seats Available × km Flown | [54] | |
C23 | Number of Aircraft | max | Annual # of Active Fleets | [57] | |
Learning and Growth | C24 | Total Workforce | max | # of Total Employees | [10] |
C25 | Women in Workforce Ratio | max | [62] | ||
C26 | Employee Retention Rate | max | (1 − Employee Turnover Ratio) | [63] | |
C27 | Ratio of Female-to-Male in MLM | max | [64] | ||
C28 | Discrimination Cases | min | of Discrimination Complaints | [62] | |
C29 | Ethical Scandals | min | of Ethical Line Complaints | [65] | |
C30 | Share of Female Employees in IGP | max | [66] |
Panel A. Initial Decision Matrix | Panel B. Final Decision Matrix | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ci | Type | 2020 | 2021 | 2022 | 2023 | 2020 | 2021 | 2022 | 2023 |
C1 | max | 0.5631 | 0.5980 | 0.7695 | 0.8465 | 0.5631 | 0.5980 | 0.7695 | 0.8465 |
C2 | max | 0.4042 | 0.3757 | 0.2027 | 0.1240 | 0.4042 | 0.3757 | 0.2027 | 0.1240 |
C3 | min | 0.1397 | 0.1052 | 0.0999 | 0.1209 | 0.1397 | 0.1052 | 0.0999 | 0.1209 |
C4 | max | 0.2689 | 0.2505 | 0.2573 | −0.1611 | 3.3629 | 3.2617 | 3.2990 | 1.0000 |
C5 | max | −0.1241 | 0.0897 | 0.1479 | 0.2875 | 1.0000 | 2.4437 | 2.8362 | 3.7785 |
C6 | max | 0.2199 | 0.3500 | 0.2920 | 0.2900 | 0.2199 | 0.3500 | 0.2920 | 0.2900 |
C7 | max | −0.0327 | 0.0361 | 0.0881 | 0.1688 | 1.0000 | 1.0689 | 1.1208 | 1.2015 |
C8 | min | 0.0969 | 0.0731 | 0.079 | 0.0778 | 0.0969 | 0.0731 | 0.0790 | 0.0778 |
C9 | min | 0.075 | 0.0521 | 0.0458 | 0.0513 | 0.0750 | 0.0521 | 0.0458 | 0.0513 |
C10 | max | 0.0506 | 0.05 | 0.0708 | 0.0755 | 0.0506 | 0.0500 | 0.0708 | 0.0755 |
C11 | max | 0.0712 | 0.0737 | 0.0887 | 0.0914 | 0.0712 | 0.0737 | 0.0887 | 0.0914 |
C12 | min | 2.711 | 1.817 | 1.342 | 1.328 | 2.711 | 1.817 | 1.342 | 1.328 |
C13 | min | 778 | 537 | 574 | 576 | 778 | 537 | 574 | 576 |
C14 | min | 2.314 | 2.087 | 2.061 | 2.388 | 2.314 | 2.087 | 2.061 | 2.388 |
C15 | min | 7.75 | 6.05 | 8.6 | 10.4 | 7.75 | 6.05 | 8.6 | 10.4 |
C16 | max | 240,354 | 357,207 | 472,724 | 539,743 | 240,354 | 357,207 | 472,724 | 539,743 |
C17 | max | 28 | 44.8 | 71.82 | 83.38 | 28 | 44,8 | 71.818 | 83.378 |
C18 | min | 4.9 | 4.3 | 6.7 | 5.1 | 4.9 | 4.3 | 6.7 | 5.1 |
C19 | max | 0.71 | 0.679 | 0.806 | 0.826 | 0.71 | 0.679 | 0.806 | 0.826 |
C20 | max | 0.77 | 0.83 | 0.83 | 0.81 | 0.77 | 0.83 | 0.83 | 0.81 |
C21 | min | 8.4 | 8.5 | 8.7 | 9.3 | 8.4 | 8.5 | 8.7 | 9.3 |
C22 | max | 75 | 127.793 | 201.735 | 234.839 | 75 | 127.793 | 201.735 | 234.839 |
C23 | max | 363 | 370 | 394 | 440 | 363 | 370 | 394 | 440 |
C24 | max | 33,583 | 33,191 | 37,379 | 35,013 | 33,583 | 33,191 | 37,379 | 35,013 |
C25 | max | 0.4600 | 0.4173 | 0.4018 | 0.4373 | 0.46 | 0.4173 | 0.4018 | 0.4373 |
C26 | max | 0.954 | 0.947 | 0.97 | 0.95 | 0.954 | 0.947 | 0.968 | 0.95 |
C27 | max | 0.4653 | 0.4548 | 0.4664 | 0.4860 | 0.4653 | 0.4548 | 0.4664 | 0.4860 |
C28 | min | 2 | 4 | 1 | 14 | 2 | 4 | 1 | 14 |
C29 | min | 134 | 179 | 436 | 355 | 134 | 179 | 436 | 355 |
C30 | max | 0.07 | 0.06 | 0.07 | 0.047 | 0.07 | 0.06 | 0.07 | 0.047 |
Rank | Criteria | Ci | wi | BSC Dimension |
---|---|---|---|---|
1 | Employee Retention Rate | C26 | 4.1202 | Learning and Growth |
2 | Ratio of Female-to-Male in MLM | C27 | 4.0570 | Learning and Growth |
3 | Total Workforce | C24 | 4.0034 | Learning and Growth |
4 | Passenger Satisfaction Rate | C20 | 3.9905 | Customer |
5 | Women in Workforce Ratio | C25 | 3.9465 | Learning and Growth |
6 | Average Fleet Age | C21 | 3.9460 | Internal |
7 | Number of Aircraft | C23 | 3.9190 | Internal |
8 | Handling Cost per Landing | C14 | 3.9036 | Financial |
9 | ROA | C7 | 3.8644 | Financial |
10 | Passenger Load Factor | C19 | 3.8276 | Customer |
11 | Revenue Yield | C11 | 3.7567 | Financial |
12 | CASK | C8 | 3.6014 | Financial |
13 | Operational Costs Ratio | C3 | 3.5561 | Financial |
14 | Passenger Revenue per ASK | C10 | 3.5503 | Financial |
15 | Share of Passenger Revenue | C1 | 3.5441 | Financial |
16 | Maintenance Cost per BH | C13 | 3.3934 | Financial |
17 | EBITDAR Margin | C6 | 3.3555 | Financial |
18 | PCSE Ratio | C15 | 3.3545 | Customer |
19 | Average Response Days to Customer Complaints | C18 | 3.3519 | Customer |
20 | Share of Female Employees in IGP | C30 | 3.3429 | Learning and Growth |
21 | Non-Fuel CASK | C9 | 3.1915 | Financial |
22 | Ethical Scandals | C29 | 3.1490 | Learning and Growth |
23 | Share of Cargo Revenue | C2 | 2.7616 | Financial |
24 | Aircraft Ownership Cost per BH | C12 | 2.7448 | Financial |
25 | Number of Landings | C16 | 2.6950 | Customer |
26 | Discrimination Cases | C28 | 2.4509 | Learning and Growth |
27 | Passengers Carried | C17 | 2.2337 | Customer |
28 | Cash Flow Ratio | C4 | 2.1879 | Financial |
29 | ASK | C22 | 2.1872 | Internal |
30 | NPM | C5 | 2.0133 | Financial |
Year | CoCoSo Score | Ranking |
---|---|---|
2020 | 33.1452 | 4 |
2021 | 46.0975 | 1 |
2022 | 44.4806 | 2 |
2023 | 39.9762 | 3 |
2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|
Score (w) | 33.1452 | 46.0974 | 44.4806 | 39.9762 |
Score (w + 5%) | 33.1094 | 46.0514 | 44.4536 | 39.9590 |
Score (w − 5%) | 33.1811 | 46.1437 | 44.5078 | 39.9932 |
Score (w + 10%) | 33.0738 | 46.0055 | 44.4266 | 39.9415 |
Score (w − 10%) | 33.1452 | 46.0974 | 44.4806 | 39.9762 |
Score (w + 15%) | 33.0383 | 45.9597 | 44.3996 | 39.9238 |
Score (w − 15%) | 33.2535 | 46.2366 | 44.5624 | 40.0263 |
Score (w + 20%) | 33.0030 | 45.9141 | 44.3728 | 39.9060 |
Score (w − 20%) | 33.2900 | 46.2832 | 44.5898 | 40.0423 |
λ | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|
λ = 0 | 33.1614 | 46.1005 | 44.4746 | 39.3436 |
λ = 0.1 | 33.1596 | 46.1001 | 44.4753 | 39.6415 |
λ = 0.2 | 33.1573 | 46.0997 | 44.4762 | 39.7360 |
λ = 0.3 | 33.1544 | 46.0992 | 44.4772 | 39.8155 |
λ = 0.4 | 33.1381 | 46.0850 | 44.4661 | 39.8916 |
λ = 0.5 (baseline) | 33.1452 | 46.0974 | 44.4806 | 39.9762 |
λ = 0.6 | 33.1374 | 46.0960 | 44.4835 | 40.0726 |
λ = 0.7 | 33.1247 | 46.0936 | 44.4882 | 40.1954 |
λ = 0.8 | 33.1007 | 46.0891 | 44.4970 | 40.3742 |
λ = 0.9 | 33.0378 | 46.0774 | 44.5199 | 40.7115 |
λ = 1 | 32.4330 | 45.9710 | 44.7215 | 42.4127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ertuğrul, M.; Özdarak, E. Measuring Airline Performance: An Integrated Balanced Scorecard-Based MEREC-CoCoSo Model. Sustainability 2025, 17, 5826. https://doi.org/10.3390/su17135826
Ertuğrul M, Özdarak E. Measuring Airline Performance: An Integrated Balanced Scorecard-Based MEREC-CoCoSo Model. Sustainability. 2025; 17(13):5826. https://doi.org/10.3390/su17135826
Chicago/Turabian StyleErtuğrul, Melik, and Eylül Özdarak. 2025. "Measuring Airline Performance: An Integrated Balanced Scorecard-Based MEREC-CoCoSo Model" Sustainability 17, no. 13: 5826. https://doi.org/10.3390/su17135826
APA StyleErtuğrul, M., & Özdarak, E. (2025). Measuring Airline Performance: An Integrated Balanced Scorecard-Based MEREC-CoCoSo Model. Sustainability, 17(13), 5826. https://doi.org/10.3390/su17135826