Environmental Impact Assessment of Vineyard and Winery Using Life Cycle Analysis on Volcanic Island: Tenerife
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.3. Evaluation of Environmental Impact
2.4. Data Collection
2.5. Description and System Boundaries
2.6. Inventory Analysis
3. Results
Impact Assessment for Winery Phase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Winery | Input | Quantity | Unit |
---|---|---|---|
W1 | Machinery oil | 0.5 | g |
Water | 13.6 | kg | |
Cinnamon | 1 | g | |
Copper | 0.5 | g | |
Tractor fuel | 17 | g | |
Vehicle fuel | 13 | g | |
Liquid manure | 4 | g | |
Soy lecithin | 1 | g | |
Animal manure | 4 | g | |
Pesticides | 0.2 | g | |
Silica | 0.6 | g | |
W2 | Machinery oil | 1.2 | g |
Water | 2 | kg | |
Sulphur | 50 | g | |
Bentonite | 20 | g | |
Kaolin | 20 | g | |
Copper | 2 | g | |
Tractor fuel | 11 | g | |
Vehicle fuel | 28 | g | |
Pesticides | 0.5 | g | |
Silicate | 2 | g | |
Diatomaceous earth | 20 | g | |
W3 | Water | 950 | L |
Sulphur | 43 | g | |
Tractor fuel | 10 | g | |
Vehicle fuel | 100 | g | |
Natural fertilizer | 37 | g | |
Pesticides | 1.05 | g | |
W4 | Water | 480 | g |
Sulphur | 13.6 | g | |
Kaolin | 1.9 | g | |
Tractor fuel | 29 | g | |
Vehicle fuel | 70 | g | |
Electricity | 0.58 | kWh | |
Soy lecithin | 0.03 | g | |
Pesticides | 3.05 | g | |
W5 | Machinery oil | 0.3 | g |
Water | 1 | kg | |
Sulfur | 86 | g | |
Bentonite | 10 | g | |
Tractor fuel | 7 | g | |
Vehicle fuel | 270 | g | |
Liquid manure | 217 | g | |
Paraffin wax | 5 | g | |
Pesticides | 2.1 | g | |
Silica | 4 | g | |
Diatomaceous earth | 10 | g | |
W6 | Machinery oil | 0.2 | g |
Water | 1430 | g | |
Sulfur | 50 | g | |
Kaolin | 0.22 | g | |
Copper | 0.3 | g | |
Tractor fuel | 140 | g | |
Vehicle fuel | 160 | g | |
Glyphosate | 0.03 | g | |
Animal manure | 0.05 | g | |
Pesticides | 200 | g | |
Potassium | 0.2 | g | |
W7 | Machinery oil | 0.15 | g |
Water | 1625 | g | |
Sulphur | 50 | g | |
Copper | 9 | g | |
Tractor fuel | 30 | g | |
Electricity | 5.79 | kWh | |
Animal manure | 375 | g | |
Pesticides | 0.45 | g |
Winery | Input | Quantity | Unit |
---|---|---|---|
W1 | Water | 12.6 | L |
Glass bottles | 574.5 | g | |
Cardboard | 32 | g | |
Cork | 5.93 | g | |
Capsule | 0.79 | g | |
Electricity | 0.019 | kWh | |
Labels | 1.93 | g | |
Packaging film | 0.00092 | g | |
Caustic soda | 0.93 | L | |
Sulfurous | 500 | mL | |
Transport of goods | 102.058 | kg*km | |
W2 | Water | 380 | L |
Glass bottles | 594 | g | |
Cardboard | 53.75 | g | |
Cork | 4 | g | |
Capsule | 0.6 | g | |
Electricity | 0.43 | kWh | |
Labels | 3 | g | |
Caustic soda | 0.05 | L | |
Sulfurous | 504 | mL | |
Transport of goods | 23.8 | kg*km | |
W3 | Water | 20 | L |
Glass bottles | 670 | g | |
Cardboard | 32.7 | g | |
Cork | 4.97 | g | |
Capsule | 0.76 | g | |
Electricity | 0.6 | kWh | |
Envelopes | 0.02 | g | |
Labels | 2.49 | g | |
Packaging film | 0.0012 | g | |
Yeast | 0.16 | g | |
Caustic soda | 20 | l | |
Sulphur | 550 | ml | |
Transport of goods | 26.67 | kg*km | |
W4 | Water | 850 | L |
Ammonium | 0.017 | g | |
Glass bottles | 570 | g | |
Cardboard | 18 | g | |
Citric acid | 0.000069 | g | |
Cork | 6 | g | |
Capsule | 1.2 | g | |
Electricity | 1.4 | kWh | |
Stabilizers | 0.8 | L | |
Labels | 2 | g | |
Packaging film | 0.0083 | g | |
Yeast | 0.2 | g | |
Nutrients | 0.053 | g | |
Peracetic acid | 0.00017 | g | |
Sulfurous | 0.01 | L | |
Transport of goods | 114.31 | kg*km | |
W5 | Water | 150 | L |
Glass bottles | 574.5 | g | |
Cardboard | 32.6 | g | |
Cork | 3.6 | g | |
Capsule | 0.8 | g | |
Electricity | 0.38 | kWh | |
Labels | 3 | g | |
Packaging film | 0.0015 | g | |
Caustic soda | 0.74 | L | |
Caustic soda | 16 | L | |
Sulfurous | 3 | mL | |
W6 | Water | 740 | L |
Glass bottles | 484.24 | g | |
Cardboard | 26.75 | g | |
Cork | 5.86 | g | |
Capsule | 1 | g | |
Electricity | 0.703 | kWh | |
Stabilizers | 0.7 | L | |
Labels | 2.11 | g | |
Packaging film | 0.008 | g | |
Yeast | 0.18 | g | |
Nutrients | 0.033 | kg | |
Caustic soda | 1.32 | L | |
Sulfur | 1340 | mL | |
Sulfur | 0.0098 | L | |
Transport of goods | 111.23 | kg*km | |
W7 | Water | 927,000 | L |
Bentonite | 0.05 | g | |
Glass bottles | 556.38 | g | |
Cardboard | 0.00036 | kg | |
Capsule | 1.29 | g | |
Electricity | 1.56 | kWh | |
Labels | 1.59 | g | |
Packaging film | 0.00081 | g | |
Gum Arabic | 0.6 | g | |
Yeast | 0.18 | g | |
Nutrients | 0.6 | g | |
Sulphur | 0.007 | L | |
Tannins | 0.15 | g | |
Transport of goods | 180.36 | kg*km |
References
- OIV. Actualidad de la Coyuntura del Sector Vitivinícola Mundial en 2022; Organización Internacional de la Vid y el Vino: Dijon, France, 2023; p. 20. [Google Scholar]
- EU. Agri Dashboard Wine. Wine, 2022. Available online: https://agriculture.ec.europa.eu/document/download/9b037197-f279-4b1b-9282-d94e78bfe27a_en?filename=wine-dashboard_en.pdf (accessed on 12 July 2024).
- EEA. Trends and Drivers of EU Greenhouse Gas Emissions; EEA Report No 3/2020; European Environment Agency: Copenhagen, Denmark, 2021; Available online: https://www.eea.europa.eu/publications/trends-and-drivers-of-eu-ghg (accessed on 26 April 2024).
- Alonso González, P.; Parga-Dans, E.; Pérez Luzardo, O. Big sales, no carrots: Assessment of pesticide policy in Spain. Crop Prot. 2021, 141, 105428. [Google Scholar] [CrossRef]
- OIV. Actualidad de la Coyuntura del Sector Vitivinícola Mundial en 2021; Organización Internacional de la Vid y el Vino: Dijon, France, 2021; p. 20. [Google Scholar]
- MAPA. Superficies y Producciones Anuales de Cultivo; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2009.
- Alonso González, P.; Parga-Dans, E. Natural wine: Do consumers know what it is, and how natural it really is? J. Clean. Prod. 2020, 251, 119635. [Google Scholar] [CrossRef]
- Vecchio, R.; Annunziata, A.; Parga Dans, E.; Alonso González, P. Drivers of consumer willingness to pay for sustainable wines: Natural, biodynamic, and organic. Org. Agric. 2023, 13, 247–260. [Google Scholar] [CrossRef]
- Berghoef, N.; Dodds, R. Determinants of interest in eco-labelling in the Ontario wine industry. J. Clean. Prod. 2013, 52, 263–271. [Google Scholar] [CrossRef]
- Forbes, S.L.; Cohen, D.A.; Cullen, R.; Wratten, S.D.; Fountain, J. Consumer attitudes regarding environmentally sustainable wine: An exploratory study of the New Zealand marketplace. J. Clean. Prod. 2009, 17, 1195–1199. [Google Scholar] [CrossRef]
- Godenau, D. El cambio climático en Canarias: Implicaciones para los vinos. In Vinaletras 7o Cuaderno de Cultura y Vino Tacoronte-Acentejo; Cabildo de Tenerife: Santa Cruz de Tenerife, Spain, 2019; p. 11. [Google Scholar]
- INE. Censo Agrario 2020; Universidad Autónoma de Madrid: Madrid, Spain, 2020; p. 36. [Google Scholar]
- ISTAC. Superficie Cultivada Superficie de Producción y Árboles Diseminados Según Productos Agrícolas Permanentes y Sistemas de Cultivo. Municipios e islas de Canarias por años; Instituto Canario de Estadística: Santa Cruz de Tenerife, Spain, 2021. [Google Scholar]
- Prendes Ayala, C.; Lorenzo Bethencourt, C.D.; Alvarez de la Paz, F.J.; Cabrera Pérez, R.M.; Prendes Lorenzo, C.D. Estudio comparativo entre el sistema tradicionaly en espaldera, de las principales enfermedades fúngicas de la vid, en el municipio de Tacoronte. In XXVI Jornadas de Viticultura y Enología de la Tierra de Barros; Universidad de Extremadura: Badajoz, Spain, 2004; pp. 115–128. [Google Scholar]
- Chazarra, A.; Mestre, A.; Pires, V.; Cunha, S.; Silva, Á.; Marques, J.; Carvalho, F.; Mendes, M.; Neto, J.; Mendes, L.; et al. Atlas Climático dos Arquipélagos das Canárias, da Madeira e dos Açores; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2011; p. 80. [CrossRef]
- Abecia, J.A.; Máñez, J.; Macias, A.; Laviña, A.; Palacios, C. Climate zone influences the effect of temperature on the day of artificial insemination on fertility in two Iberian sheep breeds. J. Anim. Behav. Biometeorol. 2017, 5, 124–131. [Google Scholar] [CrossRef]
- ISO14040; Environmental Management—Life Cycle Assessment: Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006; p. 20.
- ISO14044; Environmental Management—Life Cycle Assessment: Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006; p. 46.
- Laca, A.; Gancedo, S.; Laca, A.; Díaz, M. Assessment of the environmental impacts associated with vineyards and winemaking. A case study in mountain areas. Environ. Sci. Pollut. Res. Int. 2021, 28, 1204–1223. [Google Scholar] [CrossRef] [PubMed]
- Moreira Gregori, P.; Guedes Pérez, E. Enoturismo en un destino del sol y playa: El caso de la bodega las tirajanas de Gran Canaria—España. Int. J. Sci. Manag. Tour. 2016, 2, 205–224. [Google Scholar]
- Rodríguez-Torres, I. Variedades de vid cultivadas en canarias. In Descriptores Morfológicos. Caracterización Morfológica, Molecular, Agronómica y Enológica; Instituto Canario de Investigaciones Agrarias: Santa Cruz de Tenerife, Spain, 2017; p. 197. [Google Scholar]
- Iakovou, E.; Moussiopoulos, N.; Xanthopoulos, A.; Achillas, C.; Michailidis, N.; Chatzipanagioti, M.; Koroneos, C.; Bouzakis, K.-D.; Kikis, V. A methodological framework for end-of-life management of electronic products. Resour. Conserv. Recycl. 2009, 53, 329–339. [Google Scholar] [CrossRef]
- Iannone, B. Sustainable process in wine sector: Biodynamic agriculture. The case of Emidio Pepe winery. In Proceedings of the 10th Interdisciplinary Workshop on Intangibles, Intellectual Capital And Extra Financial Information, Ferrara, Italy, 18–19 September 2024; p. 23. [Google Scholar]
- Foteinis, S.; Chatzisymeon, E. Life cycle assessment of organic versus conventional agriculture. A case study of lettuce cultivation in Greece. J. Clean. Prod. 2016, 112, 2462–2471. [Google Scholar] [CrossRef]
- Humbert, S.; Loerincik, Y.; Rossi, V.; Margni, M.; Jolliet, O. Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and capsule espresso). J. Clean. Prod. 2009, 17, 1351–1358. [Google Scholar] [CrossRef]
- Tsarouhas, P.; Achillas, C.; Aidonis, D.; Folinas, D.; Maslis, V. Life Cycle Assessment of olive oil production in Greece. J. Clean. Prod. 2015, 93, 75–83. [Google Scholar] [CrossRef]
- Arzoumanidis, I.; Salomone, R.; Petti, L.; Mondello, G.; Raggi, A. Is there a simplified LCA tool suitable for the agri-food industry? An assessment of selected tools. J. Clean. Prod. 2017, 149, 406–425. [Google Scholar] [CrossRef]
- Manzardo, A.; Marson, A.; Zuliani, F.; Bacenetti, J.; Scipioni, A. Combination of product environmental footprint method and eco-design process according to ISO 14006: The case of an Italian vinery. Sci. Total Environ. 2021, 799, 149507. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Huijbregts, M.A. Introducing Life Cycle Impact Assessment; Springer: Dordrecht, The Netherlands, 2015; pp. 1–16. [Google Scholar] [CrossRef]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; van Zelm, R. Corrección de: ReCiPe2016: Un método armonizado de evaluación del impacto del ciclo de vida a nivel de punto medio y punto final. Int. J. Life Cycle Assess. 2020, 25, 1635. [Google Scholar] [CrossRef]
- Meneses, M.; Torres, C.M.; Castells, F. Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain. Sci. Total Environ. 2016, 562, 571–579. [Google Scholar] [CrossRef]
- Jourdaine, M.; Loubet, P.; Trebucq, S.; Sonnemann, G. Una comparación cuantitativa detallada de la evaluación del ciclo de vida de los vinos embotellados utilizando un procedimiento de armonización original. Prod. Más Limpia 2020, 250, 119472. [Google Scholar] [CrossRef]
- Villanueva-Rey, P.; Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Comparative life cycle assessment in the wine sector: Biodynamic vs. conventional viticulture activities in NW Spain. J. Clean. Prod. 2014, 65, 330–341. [Google Scholar] [CrossRef]
- Navarro, A.; Puig, R.; Fullana-i-Palmer, P. Product vs corporate carbon footprint: Some methodological issues. A case study and review on the wine sector. Sci. Total Environ. 2017, 581–582, 722–733. [Google Scholar] [CrossRef]
- Torres, M.A.; Paz, K.; Salazar, F.G. Métodos de Recolección de Datos Para una Investigación; Boletín Electrónico No. 03 2015, 21; Universidad Rafael Landívar: Ciudad de Guatemala, Guatemala, 2015; Available online: https://api.semanticscholar.org/CorpusID:185679539 (accessed on 12 July 2024).
- Gazulla, C.; Raugei, M.; Fullana-I-Palmer, P. Taking a life cycle look at crianza wine production in Spain: Where are the bottlenecks? Int. J. Life Cycle Assess. 2010, 15, 330–337. [Google Scholar] [CrossRef]
- Amienyo, D.; Camilleri, C.; Azapagic, A. Environmental impacts of consumption of Australian red wine in the UK. J. Clean. Prod. 2014, 72, 110–119. [Google Scholar] [CrossRef]
- Bonamente, E.; Scrucca, F.; Rinaldi, S.; Merico, M.C.; Asdrubali, F.; Lamastra, L. Environmental impact of an Italian wine bottle: Carbon and water footprint assessment. Sci. Total Environ. 2016, 560, 274–283. [Google Scholar] [CrossRef]
- Rinaldi, S.; Bonamente, E.; Scrucca, F.; Merico, M.C.; Asdrubali, F.; Cotana, F. Water and carbon footprint of wine: Methodology review and application to a case study. Sustainability 2016, 8, 621. [Google Scholar] [CrossRef]
- Vázquez-Rowe, I.; Villanueva-Rey, P.; Mallo, J.; De la Cerda, J.J.; Moreira, M.T.; Feijoo, G. Carbon footprint of a multi-ingredient seafood product from a business-to-business perspective. J. Clean. Prod. 2013, 44, 200–210. [Google Scholar] [CrossRef]
- Fusi, A.; Guidetti, R.; Benedetto, G. Delving into the environmental aspect of a Sardinian white wine: From partial to total life cycle assessment. Sci. Total Environ. 2014, 472, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Bosco, S.; Di Bene, C.; Galli, M.; Remorini, D.; Massai, R.; Bonari, E. Greenhouse gas emissions in the agricultural phase of wine production in the Maremma rural district (Tuscany, Italy). Ital. J. Agron. 2011, 6, 93–100. Available online: https://hdl.handle.net/11382/314652 (accessed on 12 July 2024). [CrossRef]
- Neto, R.C.; Silva, C.A. Energy supply infrastructure LCA model for electric and hydrogen transportation systems. Energy 2013, 56, 70–80. [Google Scholar] [CrossRef]
- Ferrara, C.; De Feo, G. Life cycle assessment application to the wine sector: A critical review. Sustainability 2018, 10, 395. [Google Scholar] [CrossRef]
- Pattara, C.; Russo, C.; Antrodicchia, V.; Cichelli, A. Carbon footprint as an instrument for enhancing food quality: Overview of the wine, olive oil and cereals sectors. J. Sci. Food Agric. 2017, 97, 396–410. [Google Scholar] [CrossRef]
- Bartocci, P.; Fantozzi, P.; Fantozzi, F. Environmental impact of Sagrantino and Grechetto grapes cultivation for wine and vinegar production in central Italy. J. Clean. Prod. 2017, 140, 569–580. [Google Scholar] [CrossRef]
- Litskas, V.D.; Irakleous, T.; Tzortzakis, N.; Stavrinides, M.C. Determining the carbon footprint of indigenous and introduced grape varieties through Life Cycle Assessment using the island of Cyprus as a case study. J. Clean. Prod. 2017, 156, 418–425. [Google Scholar] [CrossRef]
- Maesano, G.; Milani, M.; Nicolosi, E.; D’amico, M.; Chinnici, G. A Network Analysis for Environmental Assessment in Wine Supply Chain. Agronomy 2022, 12, 211. [Google Scholar] [CrossRef]
- Cruz Pérez, N.; Santamarta Cerezal, J.C.; Álvarez Acosta, C. La Huella Hídrica y la Huella de Carbono en la Actividad Agraria de las Islas Canarias; Universidad de La Laguna: Santa Cruz de Tenerife, Spain, 2022. [Google Scholar]
Wineries | Municipality | Area (m2) | Altitude (m) | Production (kg) | Associated Crop |
---|---|---|---|---|---|
W1 | Tacoronte | 11,000 | 437 | 5000 | Fruits and seasonal products |
W2 | Tacoronte | 6000 | 201 | 1500 | Fruits and seasonal products |
W3 | La Victoria | 10,000 | 560 | 4300 | - |
W4 | La Laguna | 5771 | 612 | 7665 | - |
W5 | El Sauzal | 32,000 | 428 | 4000 | - |
W6 | La Laguna | 85,000 | 535 | 28,000 | - |
W7 | Tacoronte | 120,000 | 401 | 45,000 | Seasonal products |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, S.M.B.; Castellanos, I.d.M.-P.; Cruz-Pérez, N.; Santamarta, J.C.; Alonso González, P. Environmental Impact Assessment of Vineyard and Winery Using Life Cycle Analysis on Volcanic Island: Tenerife. Sustainability 2025, 17, 4649. https://doi.org/10.3390/su17104649
Castillo SMB, Castellanos IdM-P, Cruz-Pérez N, Santamarta JC, Alonso González P. Environmental Impact Assessment of Vineyard and Winery Using Life Cycle Analysis on Volcanic Island: Tenerife. Sustainability. 2025; 17(10):4649. https://doi.org/10.3390/su17104649
Chicago/Turabian StyleCastillo, Santiago M. Barroso, Ignacio de Martín-Pinillos Castellanos, Noelia Cruz-Pérez, Juan C. Santamarta, and Pablo Alonso González. 2025. "Environmental Impact Assessment of Vineyard and Winery Using Life Cycle Analysis on Volcanic Island: Tenerife" Sustainability 17, no. 10: 4649. https://doi.org/10.3390/su17104649
APA StyleCastillo, S. M. B., Castellanos, I. d. M.-P., Cruz-Pérez, N., Santamarta, J. C., & Alonso González, P. (2025). Environmental Impact Assessment of Vineyard and Winery Using Life Cycle Analysis on Volcanic Island: Tenerife. Sustainability, 17(10), 4649. https://doi.org/10.3390/su17104649