A Review of Industrial By-Product Utilization and Future Pathways of Circular Economy: Geopolymers as Modern Materials for Sustainable Building
Abstract
:1. Introduction
2. Methodology
- Step 1: A research question was formulated to check the possibility of using industrial waste for geopolymer production according to CE goals, including closing material loops.
- Step 2: Relevant publications were identified using the Scopus database and appropriate keywords.
- Step 3: Using this database ensured the proper quality of the selected materials, i.e., that they had a scientific background. The keywords were selected in relation to the topic and in line with the critical character of the review to show different points of view on the analyzed problem.
- Step 4: The publications were first assessed according to abstracts and relevance for the planned topic.
- Step 5: The interpretation of the findings was made by a minimum of two co-authors working together.
3. Importance of Industrial By-Products Explained as a Part of the Circular Economy Approach
- The smaller loops (in terms of activity and geographic scope) are more profitable and efficient.
- Loops should be defined as a series of logistic processes, where waste and used products have undergone recovery processes and constitute value in the form of secondary raw materials and materials; loops have no beginning or end.
- The speed of flows in the loops is crucial: inventory management efficiency in a CE increases with decreasing flow velocity.
- Continuation of ownership is cost-effective: reuse, repair, and refurbishment without changes in ownership (marketing authorization holder) save transactional costs.
- The CE needs functioning markets.
- Protection and strengthening of the so-called natural capital by controlling finite resources and balancing renewable resource flows.
- Optimization of resource efficiency through the circulation of products, components, and materials with the greatest utility at any time in the technical and biological cycles.
- Supporting system efficiency through disclosure and design of negative externalities.
4. Current Practices in Geopolymer Production
4.1. Industrial By-Products—Precursors for the Geopolymerization Process
4.2. Geopolymer Synthesis Methods
- Na2SiO3 combined with NaOH;
- NaOH alone;
- Na2CO3 combined with Na2SiO3;
- Na2SiO3 alone.
4.3. Performance Characteristics
5. Areas of Application
6. Challenges and Limitations
7. Future Perspectives
7.1. Material Development and Advanced Products
7.2. Modern Production Technologies—3D Printing
- Solving the materials problem connected with scaling-up technology, especially the rheological behavior of applied pastes;
7.3. Data-Driven Modeling for Optimizing Process Conditions
7.4. Circular Economy
7.5. Current Trends
8. Conclusions
- Based on the literature analysis, it is obvious that the importance of the topic is growing and new research is provided in this area.
- The literature analysis also shows that the most widely used industrial by-products are fly ash and slag as raw materials dedicated to geopolymer manufacturing.
- From the perspective of CE and environmental policy, industrial by-product-based geopolymers seem to be very promising materials for applications and the interest in their usage should be increasing.
- Various raw materials were tested for geopolymerization. However, the technology is highly flexible and most of them can be created for some products, but not all of them are profitable for wider implementation and not all obtained products are of sufficient quality.
- The crucial aspect of precursor selection is a chemical and mineralogical composition of the raw materials rather than their origin.
- Currently, the most popular area of application for industrial by-product-based geopolymers is the construction industry; however, the importance of other areas is rising, especially in applications as an advanced material, including nanocomposites.
- There are still many challenges related to the practical application of industrial by-product-based geopolymers, but only a part of them are connected to technical limitations. A lot of challenges are connected with economic, environmental, and social barriers, including a lack of proper standards for geopolymer materials.
- The further implementation of technologies for geopolymers based on industrial by-products is controlled by many factors, and not all of them are technological. The CE approach can be supportive of this process.
- The most important further trends seem to be the development of materials with tailored properties, enhancement of technological solutions, usage of additive manufacturing in production, design of specialized products with higher revenue, wider application of computer-aided modeling, and support for circular economy solutions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | artificial neural network |
AI | artificial intelligence |
CE | circular economy |
DSC | differential scanning calorimetry |
GGBFS | ground granulated blast-furnace slag |
LCA | Life Cycle Assessment |
OPC | ordinary Portland cement |
XRD | X-ray diffraction |
References
- El Alouani, M.; Saufi, H.; Aouan, B.; Bassam, R.; Alehyen, S.; Rachdi, Y.; El Hadki, H.; El Hadki, A.; Mabrouki, J.; Belaaouad, S.; et al. A Comprehensive Review of Synthesis, Characterization, and Applications of Aluminosilicate Materials-Based Geopolymers. Environ. Adv. 2024, 16, 100524. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic Polymeric New Materials. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Rihan, M.A.M.; Onchiri, R.O.; Gathimba, N.; Sabuni, B. Mix Design Approaches of Eco-Friendly Geopolymer Concrete: A Critical Review. Hybrid Adv. 2024, 7, 100290. [Google Scholar] [CrossRef]
- Martín-Rodríguez, P.; García-Lodeiro, I.; Fernández-Carrasco, L.; Blanco-Varela, M.T.; Palomo, A.; Fernández-Jiménez, A. Artificial Precursor for Alkaline Cements. Compos. Part B Eng. 2025, 296, 112216. [Google Scholar] [CrossRef]
- Drabczyk, A.; Kudłacik-Kramarczyk, S.; Korniejenko, K.; Figiela, B.; Furtos, G. Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. Materials 2023, 16, 3478. [Google Scholar] [CrossRef]
- Kudłacik-Kramarczyk, S.; Drabczyk, A.; Figiela, B.; Korniejenko, K. Geopolymers: Advanced Materials in Medicine, Energy, Anticorrosion and Environmental Protection. Materials 2023, 16, 7416. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, B.; Li, Q.; Zhang, Q.; An, C.; Sun, Z.; Wei, S.; Fan, J. Review of Solid Waste-Based Geopolymers: Preparation, Deterioration and Durability. Mater. Today Commun. 2025, 43, 111820. [Google Scholar] [CrossRef]
- Cong, P.; Du, R.; Gao, H.; Chen, Z. Comparison and Assessment of Carbon Dioxide Emissions between Alkali-Activated Materials and OPC Cement Concrete. J. Traffic Transp. Eng. (Engl. Ed.) 2024, 11, 918–938. [Google Scholar] [CrossRef]
- Umer, M.; Ahmad, J.; Anis Khan, H.; Khushnood, R.A. Valorization of Recycled Steel Wires from End-of-Life Tires as an Alternative Fiber Reinforcement in Geopolymer Concrete to Foster Circularity: A Review. Eur. J. Environ. Civ. Eng. 2025, 29, 715–743. [Google Scholar] [CrossRef]
- Odeh, A.; Al-Fakih, A.; Alghannam, M.; Al-Ainya, M.; Khalid, H.; Al-Shugaa, M.A.; Thomas, B.S.; Aswin, M. Recent Progress in Geopolymer Concrete Technology: A Review. Iran. J. Sci. Technol. Trans. Civ. Eng. 2024, 48, 3285–3308. [Google Scholar] [CrossRef]
- Katarzyna, B.; Le, C.H.; Louda, P.; Michał, S.; Bakalova, T.; Tadeusz, P.; Prałat, K. The Fabrication of Geopolymer Foam Composites Incorporating Coke Dust Waste. Processes 2020, 8, 1052. [Google Scholar] [CrossRef]
- Şahin, O.; İlcan, H.; Ateşli, A.T.; Kul, A.; Yıldırım, G.; Şahmaran, M. Construction and Demolition Waste-Based Geopolymers Suited for Use in 3-Dimensional Additive Manufacturing. Cem. Concr. Compos. 2021, 121, 104088. [Google Scholar] [CrossRef]
- Aldemir, A.; Akduman, S.; Kocaer, O.; Aktepe, R.; Sahmaran, M.; Yildirim, G.; Almahmood, H.; Ashour, A. Shear Behaviour of Reinforced Construction and Demolition Waste-Based Geopolymer Concrete Beams. J. Build. Eng. 2022, 47, 103861. [Google Scholar] [CrossRef]
- Sitarz, M.; Figiela, B.; Łach, M.; Korniejenko, K.; Mróz, K.; Castro-Gomes, J.; Hager, I. Mechanical Response of Geopolymer Foams to Heating—Managing Coal Gangue in Fire-Resistant Materials Technology. Energies 2022, 15, 3363. [Google Scholar] [CrossRef]
- Jain, S.; Onuaguluchi, O.; Banthia, N.; Troczynski, T. Advancements in Immobilization of Cesium and Strontium Radionuclides in Cementitious Wasteforms—A Review. J. Am. Ceram. Soc. 2025, 108, e20131. [Google Scholar] [CrossRef]
- Houhou, M.; Leklou, N.; Ranaivomanana, H.; Penot, J.D.; De Barros, S. Geopolymers in Nuclear Waste Storage and Immobilization: Mechanisms, Applications, and Challenges. Discov. Appl. Sci. 2025, 7, 126. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Wang, J. Solidification of Radioactive Wastes by Cement-Based Materials. Prog. Nucl. Energy 2021, 141, 103957. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the Circular Economy. J. Ind. Ecol. 2013, 2, 23–44. [Google Scholar]
- Korniejenko, K.; Kozub, B.; Bąk, A.; Balamurugan, P.; Uthayakumar, M.; Furtos, G. Tackling the Circular Economy Challenges—Composites Recycling: Used Tyres, Wind Turbine Blades, and Solar Panels. J. Compos. Sci. 2021, 5, 243. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef]
- Su, B.; Heshmati, A.; Geng, Y.; Yu, X. A Review of the Circular Economy in China: Moving from Rhetoric to Implementation. J. Clean. Prod. 2013, 42, 215–227. [Google Scholar] [CrossRef]
- Morseletto, P. Sometimes Linear, Sometimes Circular: States of the Economy and Transitions to the Future. J. Clean. Prod. 2023, 390, 136138. [Google Scholar] [CrossRef]
- Velis, C.A.; Wilson, D.C.; Cheeseman, C.R. 19th Century London Dust-Yards: A Case Study in Closed-Loop Resource Efficiency. Waste Manag. 2009, 29, 1282–1290. [Google Scholar] [CrossRef] [PubMed]
- Azad, N.M.; Samarakoon, S.M.S.M.K. Utilization of Industrial By-Products/Waste to Manufacture Geopolymer Cement/Concrete. Sustainability 2021, 13, 873. [Google Scholar] [CrossRef]
- Jindal, B.B.; Sharma, R. The Effect of Nanomaterials on Properties of Geopolymers Derived from Industrial By-Products: A State-of-the-Art Review. Constr. Build. Mater. 2020, 252, 119028. [Google Scholar] [CrossRef]
- Federal Ministry for the Environment. The Closed Substance Cycle and Waste Management Act. Available online: https://enb.iisd.org/consume/closed.html (accessed on 30 March 2025).
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52015DC0614 (accessed on 2 February 2025).
- European Commission. Circular Economy Action Plan. Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 2 February 2025).
- Eisenriegler, S.; Sparer, G. Social Innovation Repair—The R.U.S.Z Case: A Systemic Approach Contributing to the Unplanned Obsolescence of Capitalism. In Factor X; Lehmann, H., Ed.; Eco-Efficiency in Industry and Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 32, pp. 287–295. ISBN 978-3-319-50078-2. [Google Scholar]
- Ayres, R.U. Eco-Thermodynamics: Economics and the Second Law. Ecol. Econ. 1998, 26, 189–209. [Google Scholar] [CrossRef]
- Andersen, M.S. An Introductory Note on the Environmental Economics of the Circular Economy. Sustain. Sci. 2007, 2, 133–140. [Google Scholar] [CrossRef]
- Ehrenfeld, J.R. Industrial Ecology: A Framework for Product and Process Design. J. Clean. Prod. 1997, 5, 87–95. [Google Scholar] [CrossRef]
- Furtos, G.; Prodan, D.; Sarosi, C.; Popa, D.; Moldovan, M.; Korniejenko, K. The Precursors Used for Developing Geopolymer Composites for Circular Economy—A Review. Materials 2024, 17, 1696. [Google Scholar] [CrossRef]
- Stahel, W.R. Policy for Material Efficiency—Sustainable Taxation as a Departure from the Throwaway Society. Phil. Trans. R. Soc. A 2013, 371, 20110567. [Google Scholar] [CrossRef]
- Chrispim, M.C.; Mattsson, M.; Ulvenblad, P. The Underrepresented Key Elements of Circular Economy: A Critical Review of Assessment Tools and a Guide for Action. Sustain. Prod. Consum. 2023, 35, 539–558. [Google Scholar] [CrossRef]
- Avilés-Palacios, C.; Rodríguez-Olalla, A. The Sustainability of Waste Management Models in Circular Economies. Sustainability 2021, 13, 7105. [Google Scholar] [CrossRef]
- De Koster, S.A.L.; Mors, R.M.; Nugteren, H.W.; Jonkers, H.M.; Meesters, G.M.H.; Van Ommen, J.R. Geopolymer Coating of Bacteria-Containing Granules for Use in Self-Healing Concrete. Procedia Eng. 2015, 102, 475–484. [Google Scholar] [CrossRef]
- Habert, G.; d’Espinose De Lacaillerie, J.B.; Roussel, N. An Environmental Evaluation of Geopolymer Based Concrete Production: Reviewing Current Research Trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Amran, M.; Al-Fakih, A.; Chu, S.H.; Fediuk, R.; Haruna, S.; Azevedo, A.; Vatin, N. Long-Term Durability Properties of Geopolymer Concrete: An in-Depth Review. Case Stud. Constr. Mater. 2021, 15, e00661. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean Production and Properties of Geopolymer Concrete; A Review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Rovnaník, P.; Kusák, I.; Bayer, P.; Schmid, P.; Fiala, L. Comparison of Electrical and Self-Sensing Properties of Portland Cement and Alkali-Activated Slag Mortars. Cem. Concr. Res. 2019, 118, 84–91. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.; Zhu, Y.; Yu, K.; Ning, C.; Jia, X.; Hui, Y.; Li, Y.; Chen, Q.; Banthia, N.; et al. Next-Generation Green Intelligent Self-Sensing Geopolymer Composites for Enhancing Construction Security and Sustainability: A Review. Compos. Part B Eng. 2025, 295, 112191. [Google Scholar] [CrossRef]
- Singaram, K.K.; Khan, M.A.; Talakokula, V. Review on Compressive Strength and Durability of Fly-Ash-Based Geopolymers Using Characterization Techniques. Arch. Civ. Mech. Eng. 2025, 25, 73. [Google Scholar] [CrossRef]
- Korniejenko, K.; Halyag, N.; Mucsi, G. Fly Ash as a Raw Material for Geopolymerisation—Chemical Composition and Physical Properties. IOP Conf. Ser. Mater. Sci. Eng. 2019, 706, 012002. [Google Scholar] [CrossRef]
- Cui, X.-M.; Zheng, G.-J.; Han, Y.-C.; Su, F.; Zhou, J. A Study on Electrical Conductivity of Chemosynthetic Al2O3–2SiO2 Geoploymer Materials. J. Power Sources 2008, 184, 652–656. [Google Scholar] [CrossRef]
- Bullerjahn, F.; Bolte, G. Composition of the Reactivity of Engineered Slags from Bauxite Residue and Steel Slag Smelting and Use as SCM for Portland Cement. Constr. Build. Mater. 2022, 321, 126331. [Google Scholar] [CrossRef]
- Maamoun, N.; Kennedy, R.; Jin, X.; Urpelainen, J. Identifying Coal-Fired Power Plants for Early Retirement. Renew. Sustain. Energy Rev. 2020, 126, 109833. [Google Scholar] [CrossRef]
- Xiao, R.; Prentice, D.; Collin, M.; Balonis, M.; La Plante, E.; Torabzadegan, M.; Gadt, T.; Sant, G. Calcium Nitrate Effectively Mitigates Alkali–Silica Reaction by Surface Passivation of Reactive Aggregates. J. Am. Ceram. Soc. 2024, 107, 7513–7527. [Google Scholar] [CrossRef]
- Wang, A.; Pan, Y.; Zhao, J.; Liu, P.; Wang, Y.; Chu, Y.; Liu, K.; Sun, D. Research Progress of Resourceful and Efficient Utilization of Coal Gangue in the Field of Building Materials. J. Build. Eng. 2025, 99, 111526. [Google Scholar] [CrossRef]
- Abbadi, A.; Mucsi, G. A Review on Complex Utilization of Mine Tailings: Recovery of Rare Earth Elements and Residue Valorization. J. Environ. Chem. Eng. 2024, 12, 113118. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Y.; El-Naggar, M.R.; Wang, F.; Zhao, Y. The Influence of Particle Size and Calcium Content on Performance Characteristics of Metakaolin- and Fly-Ash-Based Geopolymer Gels. Gels 2024, 10, 639. [Google Scholar] [CrossRef]
- Luo, Z.; Zhi, T.; Liu, L.; Mi, J.; Zhang, M.; Tian, C.; Si, Z.; Liu, X.; Mu, Y. Solidification/Stabilization of Chromium Slag in Red Mud-Based Geopolymer. Constr. Build. Mater. 2022, 316, 125813. [Google Scholar] [CrossRef]
- Feng, X.; Yan, S.; Jiang, S.; Huang, K.; Ren, X.; Du, X.; Xing, P. Green Synthesis of the Metakaolin/Slag Based Geopolymer for the Effective Removal of Methylene Blue and Pb (II). Silicon 2022, 14, 6965–6979. [Google Scholar] [CrossRef]
- Kozub, B.; Sitarz, M.; Gądek, S.; Ziejewska, C.; Mróz, K.; Hager, I. Upscaling of Copper Slag-Based Geopolymer to 3D Printing Technology. Materials 2024, 17, 5581. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Pang, E. Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin. Materials 2022, 15, 3732. [Google Scholar] [CrossRef] [PubMed]
- Kozub, B.; Dudek, J.; Melnychuk, M. The Effect of Oil Additives on the Properties of Fly Ash-Based Foamed Geopolymers. Materials 2024, 17, 5819. [Google Scholar] [CrossRef] [PubMed]
- Wattanasiriwech, D.; Yomthong, K.; Wattanasiriwech, S. Adsorption Efficiency and Photocatalytic Activity of Fly Ash-Based Geopolymer Foam Mortar. Ceram. Int. 2021, 47, 27361–27371. [Google Scholar] [CrossRef]
- Toobpeng, N.; Thavorniti, P.; Jiemsirilers, S. Effect of Additives on the Setting Time and Compressive Strength of Activated High-Calcium Fly Ash-Based Geopolymers. Constr. Build. Mater. 2024, 417, 135035. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Chai, H.; Zhao, L.; Sun, H.; Zhang, H. Study on the Properties and Interfacial Transition Zone of Coal Gasification Slag Aggregate and Mineral Powder Geopolymer Mortar. Constr. Build. Mater. 2024, 414, 134864. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, F.; Zhou, F.; Lu, M.; Hou, H.; Li, J.; Liu, D.; Wang, T. Early Solidification/Stabilization Mechanism of Heavy Metals (Pb, Cr and Zn) in Shell Coal Gasification Fly Ash Based Geopolymer. Sci. Total Environ. 2022, 802, 149905. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, F.; Han, Z.; Song, L.; Zhang, C.; Zhang, J. Adsorption of Cd2+ and Pb2+ by Biofuel Ash-Based Geopolymer Synthesized by One-Step Hydrothermal Method. Arab. J. Chem. 2021, 14, 103234. [Google Scholar] [CrossRef]
- Zhu, W.; Rao, X.H.; Liu, Y.; Yang, E.-H. Lightweight Aerated Metakaolin-Based Geopolymer Incorporating Municipal Solid Waste Incineration Bottom Ash as Gas-Forming Agent. J. Clean. Prod. 2018, 177, 775–781. [Google Scholar] [CrossRef]
- He, J.; Zhang, J.; Yu, Y.; Zhang, G. The Strength and Microstructure of Two Geopolymers Derived from Metakaolin and Red Mud-Fly Ash Admixture: A Comparative Study. Constr. Build. Mater. 2012, 30, 80–91. [Google Scholar] [CrossRef]
- Shoaei, P.; Musaeei, H.R.; Mirlohi, F.; Narimani Zamanabadi, S.; Ameri, F.; Bahrami, N. Waste Ceramic Powder-Based Geopolymer Mortars: Effect of Curing Temperature and Alkaline Solution-to-Binder Ratio. Constr. Build. Mater. 2019, 227, 116686. [Google Scholar] [CrossRef]
- Mróz, K.; Figiela, B.; Korniejenko, K. Fire Performance and Characterization of Geopolymer Foams Using Fly Ash and Coal Gangue. Cem. Wapno Beton. 2024, 29, 212–232. [Google Scholar] [CrossRef]
- Li, J.; Sun, Q.; Zu, Y. Influence of Steel Slag Doping on the Mechanical Properties and Microstructural Characterization of Coal Gangue Based Geopolymer. Mater. Chem. Phys. 2025, 333, 130251. [Google Scholar] [CrossRef]
- Kaze, C.R.; Lecomte-Nana, G.L.; Kamseu, E.; Camacho, P.S.; Yorkshire, A.S.; Provis, J.L.; Duttine, M.; Wattiaux, A.; Melo, U.C. Mechanical and Physical Properties of Inorganic Polymer Cement Made of Iron-Rich Laterite and Lateritic Clay: A Comparative Study. Cem. Concr. Res. 2021, 140, 106320. [Google Scholar] [CrossRef]
- Madirisha, M.M.; Dada, O.R.; Ikotun, B.D. Chemical Fundamentals of Geopolymers in Sustainable Construction. Mater. Today Sustain. 2024, 27, 100842. [Google Scholar] [CrossRef]
- Munir, Q.; Kärki, T. Cost Analysis of Various Factors for Geopolymer 3D Printing of Construction Products in Factories and on Construction Sites. Recycling 2021, 6, 60. [Google Scholar] [CrossRef]
- Oh, J.E.; Jun, Y.; Jeong, Y. Characterization of Geopolymers from Compositionally and Physically Different Class F Fly Ashes. Cem. Concr. Compos. 2014, 50, 16–26. [Google Scholar] [CrossRef]
- Kaze, C.R.; Jiofack, S.B.K.; Cengiz, Ö.; Alomayri, T.S.; Adesina, A.; Rahier, H. Reactivity and Mechanical Performance of Geopolymer Binders from Metakaolin/Meta-Halloysite Blends. Constr. Build. Mater. 2022, 336, 127546. [Google Scholar] [CrossRef]
- Vogt, O.; Ukrainczyk, N.; Ballschmiede, C.; Koenders, E. Reactivity and Microstructure of Metakaolin Based Geopolymers: Effect of Fly Ash and Liquid/Solid Contents. Materials 2019, 12, 3485. [Google Scholar] [CrossRef]
- Nikolov, A.; Nugteren, H.; Rostovsky, I. Optimization of Geopolymers Based on Natural Zeolite Clinoptilolite by Calcination and Use of Aluminate Activators. Constr. Build. Mater. 2020, 243, 118257. [Google Scholar] [CrossRef]
- Lv, Q.; Wang, Z.; Gu, L.; Chen, Y.; Shan, X. Effect of Sodium Sulfate on Strength and Microstructure of Alkali-Activated Fly Ash Based Geopolymer. J. Cent. South Univ. 2020, 27, 1691–1702. [Google Scholar] [CrossRef]
- Djobo, J.N.Y.; Tome, S. Insights into Alkali and Acid-Activated Volcanic Ash-Based Materials: A Review. Cem. Concr. Compos. 2024, 152, 105660. [Google Scholar] [CrossRef]
- Park, J.A.; Pimenta, M.M.; Bezerra, A.C.D.S. Acid Activation in Low-Carbon Binders: A Systematic Literature Review. Buildings 2023, 14, 83. [Google Scholar] [CrossRef]
- Dihaji, H.; Azerkane, D.; Bih, L.; Essaddek, A.; Haily, E.M. Comparative Study of Geopolymers Synthesized with Alkaline and Acid Reactants at Various Liquid-to-Solid Ratios Using Moroccan Kaolin Clay. Constr. Build. Mater. 2025, 468, 140453. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and Other Alkali Activated Materials: Why, How, and What? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Taki, K.; Mukherjee, S.; Patel, A.K.; Kumar, M. Reappraisal Review on Geopolymer: A New Era of Aluminosilicate Binder for Metal Immobilization. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100345. [Google Scholar] [CrossRef]
- Mendes, B.C.; Pedroti, L.G.; Vieira, C.M.F.; Marvila, M.; Azevedo, A.R.G.; Franco De Carvalho, J.M.; Ribeiro, J.C.L. Application of Eco-Friendly Alternative Activators in Alkali-Activated Materials: A Review. J. Build. Eng. 2021, 35, 102010. [Google Scholar] [CrossRef]
- Munir, Q.; Abdulkareem, M.; Horttanainen, M.; Kärki, T. A Comparative Cradle-to-Gate Life Cycle Assessment of Geopolymer Concrete Produced from Industrial Side Streams in Comparison with Traditional Concrete. Sci. Total Environ. 2023, 865, 161230. [Google Scholar] [CrossRef]
- Nykiel, M.; Korniejenko, K.; Setlak, K.; Melnychuk, M.; Polivoda, N.; Kozub, B.; Hebdowska-Krupa, M.; Łach, M. The Influence of Diatomite Addition on the Properties of Geopolymers Based on Fly Ash and Metakaolin. Materials 2024, 17, 2399. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Z.; Liu, X. Comprehensive Understanding of Aluminosilicate Phosphate Geopolymers: A Critical Review. Materials 2022, 15, 5961. [Google Scholar] [CrossRef]
- Tome, S.; Nana, A.; Tchakouté, H.K.; Temuujin, J.; Rüscher, C.H. Mineralogical Evolution of Raw Materials Transformed to Geopolymer Materials: A Review. Ceram. Int. 2024, 50, 35855–35868. [Google Scholar] [CrossRef]
- Giasuddin, H.M.; Sanjayan, J.G.; Ranjith, P.G. Strength of Geopolymer Cured in Saline Water in Ambient Conditions. Fuel 2013, 107, 34–39. [Google Scholar] [CrossRef]
- Lamaa, G.; Duarte, A.P.C.; Silva, R.V.; De Brito, J. Carbonation of Alkali-Activated Materials: A Review. Materials 2023, 16, 3086. [Google Scholar] [CrossRef]
- Zulkiflee, N.; Ali, A.Z.M. The Development of Geopolymer Concrete Mix and Portable Steam Curing Technique. E3S Web Conf. 2018, 65, 02009. [Google Scholar] [CrossRef]
- Jaya Ekaputri, J.; Syabrina Mutiara, I.; Nurminarsih, S.; Van Chanh, N.; Maekawa, K.; Setiamarga, D.H.E. The Effect of Steam Curing on Chloride Penetration in Geopolymer Concrete. MATEC Web Conf. 2017, 138, 01019. [Google Scholar] [CrossRef]
- Graytee, A.; Sanjayan, J.G.; Nazari, A. Development of a High Strength Fly Ash-Based Geopolymer in Short Time by Using Microwave Curing. Ceram. Int. 2018, 44, 8216–8222. [Google Scholar] [CrossRef]
- Cai, J.; Li, X.; Tan, J.; Vandevyvere, B. Fly Ash-Based Geopolymer with Self-Heating Capacity for Accelerated Curing. J. Clean. Prod. 2020, 261, 121119. [Google Scholar] [CrossRef]
- Dong, M.; Feng, W.; Elchalakani, M.; Li, G.K.; Karrech, A.; May, E.F. Development of a High Strength Geopolymer by Novel Solar Curing. Ceram. Int. 2017, 43, 11233–11243. [Google Scholar] [CrossRef]
- Gómez-Casero, M.A.; De Dios-Arana, C.; Bueno-Rodríguez, J.S.; Pérez-Villarejo, L.; Eliche-Quesada, D. Physical, Mechanical and Thermal Properties of Metakaolin-Fly Ash Geopolymers. Sustain. Chem. Pharm. 2022, 26, 100620. [Google Scholar] [CrossRef]
- Churata, R.; Almirón, J.; Vargas, M.; Tupayachy-Quispe, D.; Torres-Almirón, J.; Ortiz-Valdivia, Y.; Velasco, F. Study of Geopolymer Composites Based on Volcanic Ash, Fly Ash, Pozzolan, Metakaolin and Mining Tailing. Buildings 2022, 12, 1118. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K. Comparative Performance of Geopolymers Made with Metakaolin and Fly Ash after Exposure to Elevated Temperatures. Cem. Concr. Res. 2007, 37, 1583–1589. [Google Scholar] [CrossRef]
- Cai, J.; Pan, J.; Li, X.; Tan, J.; Li, J. Electrical Resistivity of Fly Ash and Metakaolin Based Geopolymers. Constr. Build. Mater. 2020, 234, 117868. [Google Scholar] [CrossRef]
- Cai, J.; Li, X.; Tan, J.; Vandevyvere, B. Thermal and Compressive Behaviors of Fly Ash and Metakaolin-Based Geopolymer. J. Build. Eng. 2020, 30, 101307. [Google Scholar] [CrossRef]
- Korniejenko, K.; Figiela, B.; Miernik, K.; Ziejewska, C.; Marczyk, J.; Hebda, M.; Cheng, A.; Lin, W.-T. Mechanical and Fracture Properties of Long Fiber Reinforced Geopolymer Composites. Materials 2021, 14, 5183. [Google Scholar] [CrossRef] [PubMed]
- Mohd Tahir, M.F.; Abdullah, M.M.A.B.; Abd Rahim, S.Z.; Mohd Hasan, M.R.; Saafi, M.; Putra Jaya, R.; Mohamed, R. Potential of Industrial By-Products Based Geopolymer for Rigid Concrete Pavement Application. Constr. Build. Mater. 2022, 344, 128190. [Google Scholar] [CrossRef]
- Ziejewska, C.; Grela, A.; Mierzwiński, D.; Hebda, M. Influence of Waste Glass Addition on the Fire Resistance, Microstructure and Mechanical Properties of Geopolymer Composites. Materials 2023, 16, 6011. [Google Scholar] [CrossRef]
- Pioneering a New Approach to Sustainable Concrete in Western Australia: Geopolymer Concrete from Fly-Ash with Recycled Aggregates 2020. Available online: https://researchportal.murdoch.edu.au/esploro/outputs/graduate/Pioneering-a-new-approach-to-sustainable/991005542478007891 (accessed on 30 March 2025).
- Glasby, T.; Day, J.; Genrich, R.; Kemp, M. Commercial Scale Geopolymer Concrete Construction. Available online: https://earthfriendlyconcrete.com/wp-content/uploads/2022/01/geopolymer-concrete_saudi-conference_2015.pdf (accessed on 21 April 2025).
- Tran, C.N.N.; Illankoon, I.M.C.S.; Tam, V.W.Y. Decoding Concrete’s Environmental Impact: A Path Toward Sustainable Construction. Buildings 2025, 15, 442. [Google Scholar] [CrossRef]
- Przybek, A.; Łach, M.; Bogucki, R.; Ciemnicka, J.; Prałat, K.; Koper, A.; Korniejenko, K.; Masłoń, A. Energy-Efficient Geopolymer Composites Containing Phase-Change Materials—Comparison of Different Contents and Types. Materials 2024, 17, 4712. [Google Scholar] [CrossRef]
- Song, Y.; Xue, C.; Guo, W.; Bai, Y.; Shi, Y.; Zhao, Q. Foamed Geopolymer Insulation Materials: Research Progress on Insulation Performance and Durability. J. Clean. Prod. 2024, 444, 140991. [Google Scholar] [CrossRef]
- Mostofizadeh, S.; Tee, K.F. Review of Next-Generation Earthquake-Resistant Geopolymer Concrete. Discov. Mater. 2024, 4, 62. [Google Scholar] [CrossRef]
- Luévano-Hipólito, E.; Torres-Martínez, L.M.; Rodríguez-González, E. Recycling Waste Materials to Fabricate Solar-Driven Self-Cleaning Geopolymers. Waste Biomass Valor. 2024, 15, 2833–2843. [Google Scholar] [CrossRef]
- Todaro, F.; Colangelo, F.; De Gisi, S.; Farina, I.; Ferone, C.; Labianca, C.; Petrella, A.; Cioffi, R.; Notarnicola, M. Recycling of Contaminated Marine Sediment and Industrial By-Products through Combined Stabilization/Solidification and Granulation Treatment. Materials 2023, 16, 2399. [Google Scholar] [CrossRef] [PubMed]
- Korniejenko, K.; Figiela, B.; Łach, M.; Kozub, B. Eco-Friendly Composites—Environmental Assessment of Mine Tailings-Based Geopolymers. Mater. Proc. 2023, 15, 94. [Google Scholar]
- Sv, S.S.; M, S. A State-of-the-Art Review on Effectiveness of Geopolymer Technology Toward Dye Degradation, Heavy Metal Encapsulation and Its Future Prospects on Environmental Remediation. Environ. Qual. Mgmt 2025, 34, e70054. [Google Scholar] [CrossRef]
- Siyal, A.A.; Radin Mohamed, R.M.S.; Musa, S.; Rassem, H.H.; Khamidun, M.H. A Review of the Performance of Geopolymer Catalysts for Biodiesel Production. Biomass Bioenergy 2024, 190, 107373. [Google Scholar] [CrossRef]
- Fini, E.H.; Kazemi, M.; Poulikakos, L.; Lazorenko, G.; Akbarzade, V.; Lamanna, A.; Lammers, P. Perspectives on Innovative Non-Fertilizer Applications of Sewage Sludge for Mitigating Environmental and Health Hazards. Commun. Eng. 2024, 3, 178. [Google Scholar] [CrossRef]
- Ge, X.; Hu, X.; Li, H.; Shi, C. Synergistic Effect of Characteristics of Raw Materials on Controlling the Mechanical Properties of Fly Ash-Based Geopolymers. Cem. Concr. Compos. 2024, 145, 105368. [Google Scholar] [CrossRef]
- Kriven, W.M.; Leonelli, C.; Provis, J.L.; Boccaccini, A.R.; Attwell, C.; Ducman, V.S.; Ferone, C.; Rossignol, S.; Luukkonen, T.; Van Deventer, J.S.J.; et al. Why Geopolymers and Alkali-activated Materials Are Key Components of a Sustainable World: A Perspective Contribution. J. Am. Ceram. Soc. 2024, 107, 5159–5177. [Google Scholar] [CrossRef]
- Zhang, P.; Mao, Y.; Yuan, W.; Zheng, J.; Hu, S.; Wang, K. A Critical Review on Modeling and Prediction on Properties of Fresh and Hardened Geopolymer Composites. J. Build. Eng. 2024, 88, 109184. [Google Scholar] [CrossRef]
- Osman, A.I.; Abdelkader, A.; Farrell, C.; Rooney, D.; Morgan, K. Reusing, Recycling and up-Cycling of Biomass: A Review of Practical and Kinetic Modelling Approaches. Fuel Process. Technol. 2019, 192, 179–202. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P. A Scientometric Review of Waste Material Utilization in Concrete for Sustainable Construction. Case Stud. Constr. Mater. 2021, 15, e00683. [Google Scholar] [CrossRef]
- Yammine, A.; Hamdadou, M.; Leklou, N.; Bignonnet, F.; Choinska-Colombel, M. Effect of Recycled Concrete Aggregates and Recycled Filler on Delayed Ettringite Formation: An Experimental Study Compared to Chemical Modelling. Cem. Concr. Compos. 2022, 132, 104636. [Google Scholar] [CrossRef]
- Nedeljković, M.; Visser, J.; Šavija, B.; Valcke, S.; Schlangen, E. Use of Fine Recycled Concrete Aggregates in Concrete: A Critical Review. J. Build. Eng. 2021, 38, 102196. [Google Scholar] [CrossRef]
- Ibrahim, K.I.M. Recycled Waste Glass Powder as a Partial Replacement of Cement in Concrete Containing Silica Fume and Fly Ash. Case Stud. Constr. Mater. 2021, 15, e00630. [Google Scholar] [CrossRef]
- Epure, C.; Munteanu, C.; Istrate, B.; Harja, M.; Buium, F. Applications of Recycled and Crushed Glass (RCG) as a Substitute for Natural Materials in Various Fields—A Review. Materials 2023, 16, 5957. [Google Scholar] [CrossRef]
- Guo, Y.-C.; Li, X.-M.; Zhang, J.; Lin, J.-X. A Review on the Influence of Recycled Plastic Aggregate on the Engineering Properties of Concrete. J. Build. Eng. 2023, 79, 107787. [Google Scholar] [CrossRef]
- Helmy, S.H.; Tahwia, A.M.; Mahdy, M.G.; Abd Elrahman, M.; Abed, M.A.; Youssf, O. The Use of Recycled Tire Rubber, Crushed Glass, and Crushed Clay Brick in Lightweight Concrete Production: A Review. Sustainability 2023, 15, 10060. [Google Scholar] [CrossRef]
- Jahami, A.; Issa, C.A. Exploring the Use of Mixed Waste Materials (MWM) in Concrete for Sustainable Construction: A Review. Constr. Build. Mater. 2023, 398, 132476. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.; Hu, Z.; Li, J.; Yao, X.; Zhang, C.; Wu, C.; Zhang, J.; Wang, W. Recent Advances in Sustainable Lightweight Foamed Concrete Incorporating Recycled Waste and Byproducts: A Review. Constr. Build. Mater. 2023, 403, 133083. [Google Scholar] [CrossRef]
- Gao, Q.; Li, X.; Jiang, S.; Lyu, X.; Gao, X.; Zhu, X.; Zhang, Y. Review on Zero Waste Strategy for Urban Construction and Demolition Waste: Full Component Resource Utilization Approach for Sustainable and Low-Carbon. Constr. Build. Mater. 2023, 395, 132354. [Google Scholar] [CrossRef]
- Cervantes Puma, G.C.; Salles, A.; Turk, J.; Rajčić, V.; Muñoz Puche, A.; Korniejenko, K.; Tsalkatidis, T.; Tavares, V.; Martos, R.P.; Ruchinskaya, T.; et al. Circular Economy Best Practices in the Built Environment. In Circular Economy Design and Management in the Built Environment; Bragança, L., Griffiths, P., Askar, R., Salles, A., Ungureanu, V., Tsikaloudaki, K., Bajare, D., Zsembinszki, G., Cvetkovska, M., Eds.; Springer Tracts in Civil Engineering; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 5–24. ISBN 978-3-031-73489-2. [Google Scholar]
- Hobson, K. Closing the Loop or Squaring the Circle? Locating Generative Spaces for the Circular Economy. Prog. Hum. Geogr. 2016, 40, 88–104. [Google Scholar] [CrossRef]
- Mora-Contreras, R.; Torres-Guevara, L.E.; Mejia-Villa, A.; Ormazabal, M.; Prieto-Sandoval, V. Unraveling the Effect of Circular Economy Practices on Companies’ Sustainability Performance: Evidence from a Literature Review. Sustain. Prod. Consum. 2023, 35, 95–115. [Google Scholar] [CrossRef]
- Dos Santos, M.N.G.; Dos Santos, C.M.; De Souza, M.T.G.; De Vasconcelos, E.A.; Da Nóbrega, A.C.V.; Marinho, É.P. Use of Sodium Metasilicate as Silica Source and Stabilizing Agent in Two-Part Metakaolin–H2O2 Geopolymer Foams. Constr. Build. Mater. 2023, 391, 131907. [Google Scholar] [CrossRef]
- Korniejenko, K.; Łach, M. Geopolymers Reinforced by Short and Long Fibres—Innovative Materials for Additive Manufacturing. Curr. Opin. Chem. Eng. 2020, 28, 167–172. [Google Scholar] [CrossRef]
- Ilcan, H.; Sahin, O.; Kul, A.; Yildirim, G.; Sahmaran, M. Rheological Properties and Compressive Strength of Construction and Demolition Waste-Based Geopolymer Mortars for 3D-Printing. Constr. Build. Mater. 2022, 328, 127114. [Google Scholar] [CrossRef]
- Hager, I.; Maroszek, M.; Mróz, K.; Kęsek, R.; Hebda, M.; Dvorkin, L.; Marchuk, V. Interlayer Bond Strength Testing in 3D-Printed Mineral Materials for Construction Applications. Materials 2022, 15, 4112. [Google Scholar] [CrossRef] [PubMed]
- Rintala, A.; Havukainen, J.; Abdulkareem, M. Estimating the Cost-Competitiveness of Recycling-Based Geopolymer Concretes. Recycling 2021, 6, 46. [Google Scholar] [CrossRef]
- Krishna, R.S.; Rehman, A.U.; Mishra, J.; Saha, S.; Korniejenko, K.; Rehman, R.U.; Salamci, M.U.; Sglavo, V.M.; Shaikh, F.U.A.; Qureshi, T.S. Additive Manufacturing of Geopolymer Composites for Sustainable Construction: Critical Factors, Advancements, Challenges, and Future Directions. Prog. Addit. Manuf. 2024, 10, 1003–1061. [Google Scholar] [CrossRef]
- Pajonk, A.; Prieto, A.; Blum, U.; Knaack, U. Multi-Material Additive Manufacturing in Architecture and Construction: A Review. J. Build. Eng. 2022, 45, 103603. [Google Scholar] [CrossRef]
- Kokare, S.; Oliveira, J.P.; Godina, R. A LCA and LCC Analysis of Pure Subtractive Manufacturing, Wire Arc Additive Manufacturing, and Selective Laser Melting Approaches. J. Manuf. Process. 2023, 101, 67–85. [Google Scholar] [CrossRef]
- Gardner, L. Metal Additive Manufacturing in Structural Engineering—Review, Advances, Opportunities and Outlook. Structures 2023, 47, 2178–2193. [Google Scholar] [CrossRef]
- Mierzwiński, D.; Łach, M.; Gądek, S.; Lin, W.-T.; Tran, D.H.; Korniejenko, K. A Brief Overview of the Use of Additive Manufacturing of Con-Create Materials in Construction. Acta Innov. 2023, 48, 22–37. [Google Scholar] [CrossRef]
- Zhang, J.; Shang, F.; Huo, Z.; Chen, J.; Xue, G. Multi-Objective Optimization of Ternary Geopolymers with Multiple Solid Wastes. Mater. Today Commun. 2024, 40, 109599. [Google Scholar] [CrossRef]
- Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Fundamental Machine Learning Algorithms and Statistical Models Applied in Strength Prediction of Geopolymers: A Systematic Review. Discov. Appl. Sci. 2024, 6, 538. [Google Scholar] [CrossRef]
- Alaneme, G.U.; Olonade, K.A.; Esenogho, E.; Lawan, M.M.; Dintwa, E. Artificial Intelligence Prediction of the Mechanical Properties of Banana Peel-Ash and Bagasse Blended Geopolymer Concrete. Sci. Rep. 2024, 14, 26151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, P.; Yuan, W.; Hu, S. Durability Prediction of Geopolymer Mortar Reinforced with Nanoparticles and PVA Fiber Using Particle Swarm Optimized BP Neural Network. Nanotechnol. Rev. 2024, 13, 20230214. [Google Scholar] [CrossRef]
- John, S.K.; Cascardi, A.; Nadir, Y.; Aiello, M.A.; Girija, K. A New Artificial Neural Network Model for the Prediction of the Effect of Molar Ratios on Compressive Strength of Fly Ash-Slag Geopolymer Mortar. Adv. Civ. Eng. 2021, 2021, 6662347. [Google Scholar] [CrossRef]
- Pino, P.; Salmeri, A.; Hugo, A.; Hume, S. Waste Management for Lunar Resources Activities: Toward a Circular Lunar Economy. New Space 2022, 10, 274–283. [Google Scholar] [CrossRef]
- Moore, K.R.; Segura-Salazar, J.; Bridges, L.; Diallo, P.; Doyle, K.; Johnson, C.; Foster, P.; Pollard, N.; Whyte, N.; Wright, O. The Out-of-This-World Hype Cycle: Progression towards Sustainable Terrestrial Resource Production. Resour. Conserv. Recycl. 2022, 186, 106519. [Google Scholar] [CrossRef]
- Korniejenko, K.; Pławecka, K.; Kozub, B. An Overview for Modern Energy-Efficient Solutions for Lunar and Martian Habitats Made Based on Geopolymers Composites and 3D Printing Technology. Energies 2022, 15, 9322. [Google Scholar] [CrossRef]
- Zhan, J.; Xue, X.; Hua, J.; Huang, L. Effects of Curing Temperature on Early-Age Mechanical Property and Microstructure of Lunar Regolith Simulant Geopolymer. Case Stud. Constr. Mater. 2025, 22, e04329. [Google Scholar] [CrossRef]
- Shao, R.; Wu, C.; Li, J. Engineering Cement-Free High-Performance Martian Concrete with Enhanced in-Situ Utilization of Soil Simulant: Curing across −20 °C–40 °C and CO2-Rich Environments. J. Environ. Manag. 2025, 375, 124426. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhao, C.; Sun, X.; Dong, W. Lunar Regolith Geopolymer Concrete for In-Situ Construction of Lunar Bases: A Review. Polymers 2024, 16, 1582. [Google Scholar] [CrossRef] [PubMed]
- EEA Report No 2/2016 Circular Economy in Europe. Developing the Knowledge Base. Available online: https://www.eea.europa.eu/publications/circular-economy-in-europe (accessed on 2 February 2025).
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
No | Material | Al2O3 [% wt.] | SiO2 [% wt.] | CaO [% wt.] | Other Oxides [% wt.] | Source |
---|---|---|---|---|---|---|
1 | GGBFS | 15.22 | 33.58 | 33.41 | Other oxides—balance | [51] |
2 | GGBFS | 11.43 | 33.36 | 37.94 | Other oxides—balance (including: MgO—5.88%, SO3—4.34%) | [52] |
3 | Chromium slag | 5.63 1 | 5.96 1 | 27.27 | Other oxides—balance (including: MgO—27.32%, Fe2O3—10.62%, Cr2O3—4.92%) | [52] |
4 | Casting material slag | 14.90 | 30.68 | 44.18 | Other oxides—balance | [53] |
5 | Water-quenched slag | 16.95 | 33.24 | 37.41 | Other oxides—balance | [16] |
6 | Cooper slag | 7.37 1 | 27.29 | 3.12 | Other oxides—balance (including: Fe2O3—51.80%) | [54] |
7 | Fly ash class F | 26.40 | 51.80 | 1.61 | Other oxides—balance (including: Fe2O3—13.20%) | [55] |
8 | Fly ash class F | 31.87 | 55.89 | 2.82 | Other oxides —balance (including: Fe2O3—4.93%) | [56] |
9 | Fly ash class F | 38.2 | 46.6 | 4.2 | Other oxides—balance | [51] |
10 | Fly ash class C | 7.68 1 | 34.80 | 30.68 | Other oxides—balance | [57] |
11 | Fly ash class C | 16.40 | 27.60 | 27.20 | Other oxides—balance (including: Fe2O3—15.20%) | [58] |
12 | Coal gasification slag | 26.65 | 46.59 | 16.21 | Other oxides—balance (including: Fe2O3—5.38%) | [59] |
13 | Shell coal gasification fly ash | 22.31 | 58.76 | 5.32 | Other oxides—balance | [60] |
14 | Biofuel ash | 12.67 | 47.26 | 19.19 | Other oxides—balance (including: Fe2O3—7.49%) | [61] |
15 | Municipal solid waste ash | 4.18 1 | 10.22 | 38.58 | Other oxides—balance | [62] |
16 | Red mud | 14.0 | 1.2 1 | 2.5 | Other oxides—balance (including: Fe2O3—30.9%) | [63] |
17 | Red mud | 22.36 | 19.50 | 13.6 | Other oxides—balance (including: Fe2O3—11.89%) | [52] |
16 | Ceramic powder | 18.3 | 63.3 | 4.5 | Other oxides—balance (including: Fe2O3—4.4%) | [64] |
17 | Coal gangue | 23 | 63 | 0 | Other oxides—balance (including: Fe2O3—4.6%) | [65] |
18 | Coal gangue | 42.48 | 55.06 | 0.17 | Other oxides-balance | [66] |
No | Results | Source |
---|---|---|
1 | The metakaolin-based and fly-ash-based geopolymers have different porous structures. The metakaolin-based material has a significant amount of mesopores, whereas the fly-ash-based material has a higher amount of micropores. | [94] |
2 | The fresh paste that is based on fly ash has higher workability than one prepared based on metakaolin. | [92] |
3 | The electrical resistivity for metakaolin-based geopolymer is worse than for fly-ash-based geopolymer. | [95] |
4 | The impact of curing temperature is significant in the case of fly-ash-based geopolymer. The metakaolin-based geopolymer does not show such a strong correlation. | [96] |
5 | The used reinforcement can behave differently depending on the matrix material. The glass fibers do not react with the metakaolin matrix—they retain elastic and flexural strength; for fly ash–based geopolymers, glass fibers become brittle. This is caused by fiber degradation in the fly-ash-based matrix. | [97] |
No | Area | Main Limitations |
---|---|---|
1 | Technical Challenges—raw materials | Variability in quality and composition of industrial by-products, including seasonal changes in the composition of feedstock. A lack of guarantee of a stable stream for “waste” generation in the long term. Competitive technologies for industrial by-products valorization. |
2 | Technical Challenges—manufacturing process | The repetitiveness of the mechanical properties can depend on the use of raw materials. There is a lack of full knowledge regarding the prevention of some phenomena that occur during the usage of the products, such as efflorescence. |
3 | Technical Challenges—scaling up | A relatively small number of tests are connected with long-term behavior. Different behaviors of the materials on a small scale and a large scale in the case of some technologies, for example, additive manufacturing. |
4 | Economic | Changeable prices of raw materials for the geopolymerization process. Necessity to provide some expensive additives or admixtures for obtaining the advanced products. Cost of transportation for building products—economic viability only on a local scale. |
5 | Regulatory and Standardization—processing | Limitations to the processing of industrial by-products and the necessity to obtain special permissions. |
6 | Regulatory and Standardization—products | A lack of a standard dedicated to geopolymers in many countries. Long-term process of certification of the products for applications in many areas, including the construction industry. |
7 | Social awareness | While there is a general belief in the validity of the concept of using recycled products for construction products; however, it is not reflected in individual consumer decisions often leading to avoidance of “waste” products and choosing products made of primary materials. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korniejenko, K.; Mikuła, J.; Brudny, K.; Aruova, L.; Zhakanov, A.; Jexembayeva, A.; Zhaksylykova, L. A Review of Industrial By-Product Utilization and Future Pathways of Circular Economy: Geopolymers as Modern Materials for Sustainable Building. Sustainability 2025, 17, 4536. https://doi.org/10.3390/su17104536
Korniejenko K, Mikuła J, Brudny K, Aruova L, Zhakanov A, Jexembayeva A, Zhaksylykova L. A Review of Industrial By-Product Utilization and Future Pathways of Circular Economy: Geopolymers as Modern Materials for Sustainable Building. Sustainability. 2025; 17(10):4536. https://doi.org/10.3390/su17104536
Chicago/Turabian StyleKorniejenko, Kinga, Janusz Mikuła, Karolina Brudny, Lyazat Aruova, Alibek Zhakanov, Assel Jexembayeva, and Lailya Zhaksylykova. 2025. "A Review of Industrial By-Product Utilization and Future Pathways of Circular Economy: Geopolymers as Modern Materials for Sustainable Building" Sustainability 17, no. 10: 4536. https://doi.org/10.3390/su17104536
APA StyleKorniejenko, K., Mikuła, J., Brudny, K., Aruova, L., Zhakanov, A., Jexembayeva, A., & Zhaksylykova, L. (2025). A Review of Industrial By-Product Utilization and Future Pathways of Circular Economy: Geopolymers as Modern Materials for Sustainable Building. Sustainability, 17(10), 4536. https://doi.org/10.3390/su17104536