Probabilistic Analysis of Extreme Water Demand Peak Factors for Sustainable Resource Management
Abstract
1. Introduction
2. Materials and Methods
Extreme Value Statistics Applied to Peak Factors
3. Application
3.1. The Analyzed DMA
3.2. Sample Preparation
- The hourly PF of a single meter is calculated as
- The counters are sorted according to decreasing .
- To calculate the maximum PFj measurable in hour j from N = 1, …, 990 m, the first N flow meters ordered in step 2 are considered. The hourly PFj for the spatial aggregation N is evaluated as
3.3. Extreme Value Statistics on the Soccavo DMA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mays, L.W. Water Distribution Systems Handbook, 1st ed.; McGraw Hill: New York, NY, USA, 2000; ISBN 9780071776776. [Google Scholar]
- McDonald, H.S.; Clinton, T.A. Water Demand Projections—City of Oxnard; Granicus: Denver, CO, USA, 2015; Volume 2.2. [Google Scholar]
- Adamowski, J.; Karapataki, C. Comparison of Multivariate Regression and Artificial Neural Networks for Peak Urban Water-Demand Forecasting: Evaluation of Different ANN Learning Algorithms. J. Hydrol. Eng. 2010, 15, 729–743. [Google Scholar] [CrossRef]
- Tricarico, C.; de Marinis, G.; Gargano, R.; Leopardi, A. Peak Residential Water Demand. Proc. Inst. Civ. Eng. Water Manag. 2007, 160, 115–121. [Google Scholar] [CrossRef]
- Balacco, G.; Gioia, A.; Iacobellis, V.; Piccinni, A.F. At-Site Assessment of a Regional Design Criterium for Water-Demand Peak Factor Evaluation. Water 2019, 11, 24. [Google Scholar] [CrossRef]
- Buchberger, S.; Omaghomi, T.; Wolfe, T.; Hewit, J.; Cole, D. Peak Water Demand Study. Probability Estimates for Efficient Fixtures in Single and Multi-Family Residential Buildings; IAPMO: Ontario, CA, USA, 2017. [Google Scholar]
- Gargano, R.; Tricarico, C.; Granata, F.; Santopietro, S.; de Marinis, G. Probabilistic Models for the Peak Residential Water Demand. Water 2017, 9, 417. [Google Scholar] [CrossRef]
- Mazzoni, F.; Alvisi, S.; Blokker, M.; Buchberger, S.G.; Castelletti, A.; Cominola, A.; Gross, M.-P.; Jacobs, H.E.; Mayer, P.; Steffelbauer, D.B.; et al. Investigating the Characteristics of Residential End Uses of Water: A Worldwide Review. Water Res. 2023, 230, 119500. [Google Scholar] [CrossRef]
- Di Mauro, A.; Cominola, A.; Castelletti, A.; Di Nardo, A. Urban Water Consumption at Multiple Spatial and Temporal Scales. A Review of Existing Datasets. Water 2021, 13, 36. [Google Scholar] [CrossRef]
- Vonk, E.; Cirkel, D.G.; Blokker, M. Estimating Peak Daily Water Demand under Different Climate Change and Vacation Scenarios. Water 2019, 11, 1874. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 1852334592. [Google Scholar]
- Pan, X.; Rahman, A.; Haddad, K.; Ouarda, T.B.M.J. Peaks-over-Threshold Model in Flood Frequency Analysis: A Scoping Review. Stoch. Environ. Res. Risk Assess. 2022, 36, 2419–2435. [Google Scholar] [CrossRef]
- Ferguson, T.S.; Genest, C.; Hallin, M. Kendall’s Tau for Serial Dependence. Can. J. Stat. 2000, 28, 587–604. [Google Scholar] [CrossRef]
- Claps, P.; Laio, F. Can Continuous Streamflow Data Support Flood Frequency Analysis? An Alternative to the Partial Duration Series Approach. Water Resour. Res. 2003, 39, 1–11. [Google Scholar] [CrossRef]
- Choulakian, V.; Stephens, M.A. Goodness-of-Fit Tests for the Generalized Pareto Distribution. Technometrics 2001, 43, 478–484. [Google Scholar] [CrossRef]
- Cunnane, C. A Note on the Poisson Assumption in Partial Duration Series Models. Water Resour. Res. 1979, 15, 489–494. [Google Scholar] [CrossRef]
- Lang, M.; Ouarda, T.B.M.J.; Bobée, B. Towards Operational Guidelines for Over-Threshold Modeling. J. Hydrol. 1999, 225, 103–117. [Google Scholar] [CrossRef]
- Eastoe, E.F.; Tawn, J.A. Statistical Models for Overdispersion in the Frequency of Peaks over Threshold Data for a Flow Series. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Bhunya, P.K.; Berndtsson, R.; Jain, S.K.; Kumar, R. Flood Analysis Using Negative Binomial and Generalized Pareto Models in Partial Duration Series (PDS). J. Hydrol. 2013, 497, 121–132. [Google Scholar] [CrossRef]
- Pickands, J.I. Statistical Inference Using Extreme Order Statistics. Ann. Stat. 1975, 3, 119–131. [Google Scholar]
- Naess, A. Applied Extreme Value Statistics Including the Acer Method; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Solari, S.; Eguen, M.; José Polo, M.; Losada, M.A. Peaks Over Threshold (POT): A Methodology for Automatic Threshold Estimation Using Goodness of Fit p-Value. Water Resour. Res. 2017, 53, 2833–2849. [Google Scholar] [CrossRef]
- Scarrott, C.; MacDonald, A. A Review of Extreme Value Threshold Estimation and Uncertainty Quantification. Revstat Stat. J. 2012, 10, 33–60. [Google Scholar]
- Creaco, E.; Signori, P.; Papiri, S.; Ciaponi, C. Peak Demand Assessment and Hydraulic Analysis in WDN Design. J. Water Resour. Plan. Manag. 2018, 144, 1–9. [Google Scholar] [CrossRef]
- Cominola, A.; Giuliani, M.; Castelletti, A.; Rosenberg, D.E.; Abdallah, A.M. Implications of Data Sampling Resolution on Water Use Simulation, End-Use Disaggregation, and Demand Management. Environ. Model. Softw. 2018, 102, 199–212. [Google Scholar] [CrossRef]
- Oracle. Smart Metering for Water Utilitie—White Paper; Oracle: Santa Clara, CA, USA, 2009. [Google Scholar]
- Padulano, R.; Del Giudice, G. A Nonparametric Framework for Water Consumption Data Cleansing: An Application to a Smart Water Network in Naples (Italy). J. Hydroinform. 2020, 22, 666–680. [Google Scholar] [CrossRef]
6.954 | 110.834 | |
−0.006 | −0.463 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, M.; Guercio, R. Probabilistic Analysis of Extreme Water Demand Peak Factors for Sustainable Resource Management. Sustainability 2024, 16, 10883. https://doi.org/10.3390/su162410883
Moretti M, Guercio R. Probabilistic Analysis of Extreme Water Demand Peak Factors for Sustainable Resource Management. Sustainability. 2024; 16(24):10883. https://doi.org/10.3390/su162410883
Chicago/Turabian StyleMoretti, Manuela, and Roberto Guercio. 2024. "Probabilistic Analysis of Extreme Water Demand Peak Factors for Sustainable Resource Management" Sustainability 16, no. 24: 10883. https://doi.org/10.3390/su162410883
APA StyleMoretti, M., & Guercio, R. (2024). Probabilistic Analysis of Extreme Water Demand Peak Factors for Sustainable Resource Management. Sustainability, 16(24), 10883. https://doi.org/10.3390/su162410883