The High-Resolution Calibration of the Topographic Wetness Index Using PAZ Satellite Radar Data to Determine the Optimal Positions for the Placement of Smart Sustainable Drainage Systems (SuDS) in Urban Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Topographic Wetness Index (TWI)
2.3. Soil Moisture (SM) from Satellite Data
2.4. Meteorological Data
2.5. Study Plots
3. Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sañudo-Fontaneda, L.A.; Roces-García, J.; Coupe, S.J.; Barrios-Crespo, E.; Rey-Mahía, C.; Álvarez-Rabanal, F.P.; Lashford, C. Descriptive Analysis of the Performance of a Vegetated Swale through Long-Term Hydrological Monitoring: A Case Study from Coventry, UK. Water 2020, 12, 2781. [Google Scholar] [CrossRef]
- Sañudo Fontaneda, L.Á.; Anderson, A.R.; Hunt, W.F. Green Streets: The Opportunity to Design Resilient Stormwater Management in the Cities of the Future. In Stormwater: Sources, Monitoring and Management; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2019; pp. 77–116. [Google Scholar]
- Ariza, S.L.J.; Martínez, J.A.; Muñoz, A.F.; Quijano, J.P.; Rodríguez, J.P.; Camacho, L.A.; Díaz-Granados, M. A Multicriteria Planning Framework to Locate and Select Sustainable Urban Drainage Systems (SUDS) in Consolidated Urban Areas. Sustainability 2019, 11, 2312. [Google Scholar] [CrossRef]
- Suárez-Inclán, A.M.; Allende-Prieto, C.; Roces-García, J.; Rodríguez-Sánchez, J.P.; Sañudo-Fontaneda, L.A.; Rey-Mahía, C.; Álvarez-Rabanal, F.P. Development of a Multicriteria Scheme for the Identification of Strategic Areas for SUDS Implementation: A Case Study from Gijón, Spain. Sustainability 2022, 14, 2877. [Google Scholar] [CrossRef]
- Ferrans, P.; Reyes-Silva, J.D.; Krebs, P.; Temprano, J. Flood Management with SUDS: A Simulation–Optimization Framework. Water 2023, 15, 426. [Google Scholar] [CrossRef]
- Miller, K.; Krivtsov, V.; Cohen, L. Inventory of Green Roofs within Edinburgh, Scotland. In Proceedings of the CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure; Ha-Minh, C., Tang, A.M., Bui, T.Q., Vu, X.H., Huynh, D.V.K., Eds.; Springer Nature: Singapore, 2022; pp. 1345–1353. [Google Scholar]
- Randall, M.; Sun, F.; Zhang, Y.; Jensen, M.B. Evaluating Sponge City Volume Capture Ratio at the Catchment Scale Using SWMM. J. Environ. Manag. 2019, 246, 745–757. [Google Scholar] [CrossRef]
- Khin, M.M.L.; Shaker, A.; Joksimovic, D.; Yan, W.Y. The Use of WorldView-2 Satellite Imagery to Model Urban Drainage System with Low Impact Development (LID) Techniques. Geocarto Int. 2016, 31, 92–108. [Google Scholar] [CrossRef]
- Allende-Prieto, C.; Roces-García, J.; Recondo, C.; Sañudo-Fontaneda, L.A.; González-Moradas, M.R. An Exploratory Methodology Based on High Resolution Remote Sensing Techniques for Soil Moisture Determination with Prospective Applications in Vegetative SuDS. Urban Water J. 2023, 20, 1006–1020. [Google Scholar] [CrossRef]
- Cantelmi, R.; Di Gravio, G.; Patriarca, R. Reviewing Qualitative Research Approaches in the Context of Critical Infrastructure Resilience. Environ. Syst. Decis. 2021, 41, 341–376. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J.; Kärrholm, M. Compact City Planning and Development: Emerging Practices and Strategies for Achieving the Goals of Sustainability. Dev. Built Environ. 2020, 4, 100021. [Google Scholar] [CrossRef]
- Scholes, L.; Ellis, B.; Revitt, M. The Development of Multi-Criteria Analysis for the Evaluation of Urban Surface Drainage Options. 2004. Available online: https://www.researchgate.net/publication/265819596 (accessed on 9 November 2023).
- Chow, J.-f.; Savić, D.; Fortune, D.; Kapelan, Z.; Mebrate, N. Using a Systematic, Multi-Criteria Decision Support Framework to Evaluate Sustainable Drainage Designs. Procedia Eng. 2014, 70, 343–352. [Google Scholar] [CrossRef]
- Ruangpan, L.; Vojinovic, Z.; Plavšić, J.; Doong, D.-J.; Bahlmann, T.; Alves, A.; Tseng, L.-H.; Randelović, A.; Todorović, A.; Kocic, Z.; et al. Incorporating Stakeholders’ Preferences into a Multi-Criteria Framework for Planning Large-Scale Nature-Based Solutions. Ambio 2021, 50, 1514–1531. [Google Scholar] [CrossRef]
- Abdelkarim, A.; Al-Alola, S.S.; Alogayell, H.M.; Mohamed, S.A.; Alkadi, I.I.; Ismail, I.Y. Integration of GIS-Based Multicriteria Decision Analysis and Analytic Hierarchy Process to Assess Flood Hazard on the Al-Shamal Train Pathway in Al-Qurayyat Region, Kingdom of Saudi Arabia. Water 2020, 12, 1702. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.; Yang, G.; Sun, W. Spatio-Temporal Distribution of Harmful Algal Blooms and Their Correlations with Marine Hydrological Elements in Offshore Areas, China. Ocean. Coast. Manag. 2023, 238, 106554. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based Multicriteria Decision Analysis: A Survey of the Literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Munn, K.; Dragićević, S.; Feick, R. Spatial Decision-Making for Dense Built Environments: The Logic Scoring of Preference Method for 3D Suitability Analysis. Land 2022, 11, 443. [Google Scholar] [CrossRef]
- Chukwuocha, A.; Ngozi, A.C. Geographic Information Systems Based Urban Drainage Efficiency Factors. In Proceedings of the FIG Working Week 2015—From the Wisdom of the Ages to the Challenges of the Modern World, Sofia, Bulgaria, 17–21 May 2015. [Google Scholar]
- Hagos, Y.G.; Andualem, T.G.; Yibeltal, M.; Mengie, M.A. Flood Hazard Assessment and Mapping Using GIS Integrated with Multi-Criteria Decision Analysis in Upper Awash River Basin, Ethiopia. Appl. Water Sci. 2022, 12, 148. [Google Scholar] [CrossRef]
- Muthanna, T.M.; Sivertsen, E.; Kliewer, D.; Jotta, L. Coupling Field Observations and Geographical Information System (GIS)-Based Analysis for Improved Sustainable Urban Drainage Systems (SUDS) Performance. Sustainability 2018, 10, 4683. [Google Scholar] [CrossRef]
- Sokolovskaya, N.; Vaughn, C.; Jahangiri, H.; Smith, V.; Wadzuk, B.; Ebrahimian, A.; Nyquist, J. Variability of Urban Drainage Area Delineation and Runoff Calculation with Topographic Resolution and Rainfall Volume. Water Sci. Technol. 2023, 87, 1349–1366. [Google Scholar] [CrossRef]
- Rahmati, O.; Darabi, H.; Panahi, M.; Kalantari, Z.; Naghibi, S.A. Development of Novel Hybridized Models for Urban Flood Susceptibility Mapping. Sci. Rep. 2020, 10, 12937. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Liu, M.; Cui, Q.; Wang, H.; Lv, J.; Li, B.; Xiong, Z.; Hu, Y. Spatial Characteristics and Driving Factors of Urban Flooding in Chinese Megacities. J. Hydrol. 2022, 613, 128464. [Google Scholar] [CrossRef]
- Puppo, E. Multi-Resolution Terrain Modeling. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston, MA, USA, 2009; pp. 1853–1857. ISBN 978-0-387-39940-9. [Google Scholar]
- Hojati, M.; Mokarram, M. Determination of a Topographic Wetness Index Using High Resolution Digital Elevation Models. Eur. J. Geogr. 2016, 7, 41–52. [Google Scholar]
- Ma, J.; Lin, G.; Chen, J.; Yang, L. An Improved Topographic Wetness Index Considering Topographic Position. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Ballerine, C. Topographic Wetness Index Urban Flooding Awareness Act Action Support, Will & DuPage Counties, Illinois; ISWS Contract Report; No. CR-2017-02; Illinois State Water Survey: Champaign, IL, USA, 2017; p. 22. [Google Scholar]
- Pourali, S.H.; Arrowsmith, C.; Chrisman, N.; Matkan, A.A.; Mitchell, D. Topography Wetness Index Application in Flood-Risk-Based Land Use Planning. Appl. Spat. Anal. Policy 2016, 9, 39–54. [Google Scholar] [CrossRef]
- Kopecký, M.; Macek, M.; Wild, J. Topographic Wetness Index Calculation Guidelines Based on Measured Soil Moisture and Plant Species Composition. Sci. Total Environ. 2021, 757, 143785. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Conference, A.; Sensing, R.; Society, P. Accuracy Assessment of Lidar-Derived Digital. Photogramm. Rec. 2008, 23, 148–169. [Google Scholar] [CrossRef]
- Petroselli, A. LIDAR Data and Hydrological Applications at the Basin Scale. GIsci Remote Sens. 2012, 49, 139–162. [Google Scholar] [CrossRef]
- Muhadi, N.A.; Abdullah, A.F.; Bejo, S.K.; Mahadi, M.R.; Mijic, A. The Use of LiDAR-Derived DEM in Flood Applications: A Review. Remote Sens. 2020, 12, 2308. [Google Scholar] [CrossRef]
- Poppenga, S.; Worstell, B.B.; Danielson, J.J.; Brock, J.C.; Evans, G.A.; Heidemann, H.K. Hydrologic Enforcement of Lidar DEMs; U.S. Geological Survey: Reston, VA, USA, 2014. [CrossRef]
- The Basics of LiDAR—Light Detection and Ranging—Remote Sensing. NSF NEON—Open Data to Understand Our Ecosystems. Available online: https://www.neonscience.org/resources/learning-hub/tutorials/lidar-basics (accessed on 9 November 2023).
- Sage, J.; Berthier, E.; Gromaire, M.-C. Modeling Soil Moisture Redistribution and Infiltration Dynamics in Urban Drainage Systems. J. Hydrol. Eng. 2020, 25, 04020041. [Google Scholar] [CrossRef]
- Kumar, A.K.; Setia, R.; Kumar, D.; Putrevu, D.; Misra, A. Soil Moisture Retrieval Techniques Using Satellite Remote Sensing. In Geospatial Technologies for Crops and Soils; Springer: Singapore, 2020; pp. 357–385. ISBN 9789811568640. [Google Scholar]
- Li, Z.; Leng, P.; Zhou, C.; Chen, K.; Zhou, F. Earth-Science Reviews Soil Moisture Retrieval from Remote Sensing Measurements: Current Knowledge and Directions for the Future. Earth Sci. Rev. 2021, 218, 103673. [Google Scholar] [CrossRef]
- Kerle, N.; Janssen, L.L.; Huurneman, G.C. Principles of Remote Sensing; ITC Educational Textbook Series; International Institute for Geo-Information Science and Earth Observation (ITC): Enschede, The Netherlands, 2004; p. 250. [Google Scholar]
- Engman, E.T. Applications of Microwave Remote Sensing of Soil Moisture for Water Resources and Agriculture. Remote Sens. Environ. 1991, 35, 213–226. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef]
- Dente, L. Microwave Remote Sensing for Soil Moisture Monitoring: Synergy of Active and Passive Observations and Validation of Retrieved Products; International Institute for Geo-Information Science and Earth Observation (ITC): Enschede, The Netherlands, 2016. [Google Scholar]
- PAZ • HisdeSAT. Available online: https://www.hisdesat.es/en/paz/ (accessed on 3 October 2023).
- Abdikan, S.; Bayik, C.; Ustuner, M.; Sanli, F.B. Repeat-Pass Interferometric and Backscatter Analysis of X-Band PAZ Satellite—First Results. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 253–258. [Google Scholar] [CrossRef]
- Fuchs, K.; Fuchs, L.; Lepot, M.; Lipeme Kouyi, G. Soil Moisture Measurement in a Swale for SUDS Modelling Improvement. In Proceedings of the Novatech 2023, Lyon, France, 3–7 July 2023. [Google Scholar]
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Ratan Ganguly, A.; Jato-Espino, D. Editorial: Urban Drainage in a Context of Climate and Land Cover Changes. Front. Water 2023, 4, 1118338. [Google Scholar]
- Rosenberger, L.; Leandro, J.; Pauleit, S.; Erlwein, S. Sustainable Stormwater Management under the Impact of Climate Change and Urban Densification. J. Hydrol. 2021, 596, 126137. [Google Scholar] [CrossRef]
- Ma, Y.; Xia, X.; Liang, Q.; Wan, H. Investigating the Impact of Spatial Distribution of Sustainable Drainage System (SuDS) Components on Their Flood Mitigation Performance in Communities with High Groundwater Levels. Water 2022, 14, 1367. [Google Scholar] [CrossRef]
- Oh, Y.; Kwon, S.-G.; Hwang, J.-H. Soil Moisture Detection Algorithm at X-Band. In Proceedings of the 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Republic of Korea, 26–30 September 2011. [Google Scholar]
- Oh, Y.; Kwon, S.-G.; Hwang, J.-H. Soil Moisture Measurement of Bare and Vegetated Surfaces by X-Band Radars. J. Korean Inst. Electromagn. Sci. 2010, 10, 212–218. [Google Scholar] [CrossRef]
- Serafino, F.; Bianco, A. Use of X-Band Radars to Monitor Small Garbage Islands. Remote Sens. 2021, 13, 3558. [Google Scholar] [CrossRef]
- Jackson, T.J.; Schmugge, T.J. Vegetation Effects on the Microwave Emission of Soils. Remote Sens. Environ. 1991, 36, 203–212. [Google Scholar] [CrossRef]
- Verhoest, N.E.C.; Lievens, H.; Wagner, W.; Álvarez-Mozos, J.; Moran, M.S.; Mattia, F. On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar. Sensors 2008, 8, 4213–4248. [Google Scholar] [CrossRef]
- Ninyerola, M.; Pons, X.; Roure, J.M. MIRA ON ® GIS & RS ATLAS CLIMÁTICO DIGITAL DE LA PENÍNSULA IBÉRICA. Available online: https://opengis.grumets.cat/wms/iberia/espanol/ES_MODEL.HTM (accessed on 9 November 2023).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- SNAP Download—STEP. Available online: https://step.esa.int/main/download/snap-download/ (accessed on 13 October 2023).
- Askari, S.H.; De-Ville, S.; Hathway, E.A.; Stovin, V. Estimating Evapotranspiration from Commonly Occurring Urban Plant Species Using Porometry and Canopy Stomatal Conductance. Water 2021, 13, 2262. [Google Scholar] [CrossRef]
Variable (Units) | Mean | Std. Dev. | Percentiles (%) | ||||
---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |||
Soil Moisture | 0.623 | 0.046 | 0.525 | 0.606 | 0.638 | 0.651 | 0.709 |
Topographic Wetness Index | 0.876 | 0.092 | 0.639 | 0.829 | 0.930 | 0.940 | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allende-Prieto, C.; Roces-García, J.; Sañudo-Fontaneda, L.Á. The High-Resolution Calibration of the Topographic Wetness Index Using PAZ Satellite Radar Data to Determine the Optimal Positions for the Placement of Smart Sustainable Drainage Systems (SuDS) in Urban Environments. Sustainability 2024, 16, 598. https://doi.org/10.3390/su16020598
Allende-Prieto C, Roces-García J, Sañudo-Fontaneda LÁ. The High-Resolution Calibration of the Topographic Wetness Index Using PAZ Satellite Radar Data to Determine the Optimal Positions for the Placement of Smart Sustainable Drainage Systems (SuDS) in Urban Environments. Sustainability. 2024; 16(2):598. https://doi.org/10.3390/su16020598
Chicago/Turabian StyleAllende-Prieto, Cristina, Jorge Roces-García, and Luis Ángel Sañudo-Fontaneda. 2024. "The High-Resolution Calibration of the Topographic Wetness Index Using PAZ Satellite Radar Data to Determine the Optimal Positions for the Placement of Smart Sustainable Drainage Systems (SuDS) in Urban Environments" Sustainability 16, no. 2: 598. https://doi.org/10.3390/su16020598