A Study on the Relationship of PM10 between China and Korea Using Big Data for a Sustainable Environment
Abstract
1. Introduction
2. Literature Review
3. Data and Research Methods
3.1. Data Preprocessing for Hourly Data of Beijing, China
3.2. Data Preprocessing for Hourly Data of Seoul, Korea
- (1)
- Preprocessing of wind direction and wind speed data
- (2)
- Particulate matter data for Seoul
3.3. Data Merge
3.4. Correlation and Regression Analysis
α: constant β: coefficient ε: residuals
4. Results and Discussion
4.1. Descriptive Statistics
4.2. Correlation Analysis
- (1)
- Results of the model without time lag
- (2)
- Results of the 42-h time lag model 1: when a westerly wind blows in Beijing
- (3)
- Results of the 42-h time lag model 2: when a westerly wind blows in Seoul and Beijing at the same time
- (4)
- Results of the 42-h time lag model 3: when the wind speed in Seoul is over 4 m/s.
4.3. Regression Analysis
- (1)
- Regression model 1: 42-h delayed data
α: constant β: coefficient ε: residuals
- (2)
- Regression model 2: the case of westerly winds in Beijing and Seoul at the same time
- (3)
- Regression model 3: moderated regression analysis
+ β4 × Beijing_PM10_Beijing_WS + ε
α: constant β: coefficient ε: residuals
4.4. Discussion
5. Concluding Remarks and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Institute of Environmental Research, A Study on the Characteristics of PM2.5 in Major Cities of South Korea and China (I). 2020. Available online: https://www.nirs.go.kr/ (accessed on 30 May 2024).
- Ministry of the Interior and Safety. Available online: https://www.mois.go.kr/frt/bbs/type010/commonSelectBoardArticle.do?bbsId=BBSMSTR_000000000008&nttId=68536 (accessed on 30 May 2024).
- The Chosun Media. The Particulate Matter Is Made by the ‘Jing Jin Ji’ in China, Hits Seoul One or Two Days Later. Available online: https://www.chosun.com/national/transport-environment/2020/11/16/VD54A7D5KRF4JA52BVCTZOKLCM/ (accessed on 30 May 2024).
- The Kyung Hyang Shinmun. Available online: https://www.khan.co.kr/national/national-general/article/201911202139015 (accessed on 30 May 2024).
- The Hankyoreh. Available online: https://www.hani.co.kr/arti/society/environment/970232.html (accessed on 30 May 2024).
- DongA.com. Available online: https://www.donga.com/news/Opinion/article/all/20201116/104000215/1 (accessed on 30 May 2024).
- KBS.co.kr. Available online: https://news.kbs.co.kr/news/view.do?ncd=5049081 (accessed on 30 May 2024).
- Nocutnews.co.kr. Available online: https://www.nocutnews.co.kr/news/5448047 (accessed on 30 May 2024).
- Park, S.; Shin, H. Analysis of the Factors Influencing PM2.5 in Korea: Focusing on Seasonal Factors. J. Environ. Policy Adm. 2017, 25, 227–248. [Google Scholar] [CrossRef]
- Kim, H.C.; Kwon, S.; Kim, B.U.; Kim, S. Review of Shandong Peninsular Emissions Change and South Korean Air Quality. J. Korean Soc. Atmos. Environ. 2018, 34, 356–365. [Google Scholar] [CrossRef]
- Joo, H.S.; Lee, S.M.; Choi, J.W.; Kim, C.Y.; Choi, M.W.; Kim, K.H. A Study on Concentration Trends of Particulate Matter in China and Correlation between Air Pollution Levels in Korea and China. Korean Environ. Inst. 2019, 219. [Google Scholar]
- Kim, K.; Kim, O.S. Analyzing Transboundary Particulate Matters of Korea and China Using Time-series Analyses. J. Assoc. Korean Geogr. 2019, 8, 33–46. [Google Scholar]
- Chun, S.-H.; Lee, K.W.; Jang, J.W. Correlation Analysis between China and Korea for PM2.5 and PM10 using Big Data: Comparison of Before and After COVID-19. In Proceedings of the Korean Energy Society Conference, Daegu, Republic of Korea, 28–30 April 2021; p. 154. [Google Scholar]
- Choi, W.-C.; Cheong, K.-S. Analysis of the Factors Affecting Fine Dust Concentration Before and After COVID-19. J. Korean Soc. Hazard Mitig. 2021, 21, 395–402. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Yao, F. Source-receptor relationship of transboundary particulate matter pollution between China, South Korea and Japan: Approaches, current understanding and limitations. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3896–3920. [Google Scholar] [CrossRef]
- Park, M.B.; Lee, T.J.; Lee, E.S.; Kim, D.S. Enhancing source identification of hourly PM2.5 data in Seoul based on a dataset segmentation scheme by positive matrix factorization (PMF). Atmos. Pollut. Res. 2019, 10, 1042–1059. [Google Scholar]
- Kukminilbo. Seoul’s Ultrafine Dust a Greater Domestic Impact … Foreign Factors Account for 27%. Available online: http://news.kmib.co.kr/article/view.asp?arcid=0924061242 (accessed on 30 May 2024).
- Hwang, S.Y.; Moon, J.Y.; Kim, J.J. Relationship Analysis between Fine Dust and Traffic in Seoul using R. J. Inst. Internet Broadcast. Commun. 2019, 19, 139–149. [Google Scholar]
- Lim, J.-H.; Han, S.-W.; Lim, Y.-J.; Shin, H.-J.; Ahn, J.-Y.; Han, J.-S. The Characteristics of PM2.5 Corresponding to Inflow Pathway of Seoul and Baengnyeong Island. J. Korean Soc. Urban Environ. 2016, 16, 313–322. [Google Scholar]
- Nam, K.P.; Lee, D.G.; Jang, L.S. Analysis of PM 2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patterns in East Asia: Focusing on the Intensive Measurement Periods in 2015. J. Environ. Impact Assess. 2019, 28, 183–200. [Google Scholar]
- Lee, S.H.; Kang, J.E. Spatial Disparity of Visitors Changes during Particulate Matter Warning Using Big Data Focused on Seoul, Korea. Int. J. Environ. Res. Public Health 2022, 19, 6478. [Google Scholar] [CrossRef] [PubMed]
- UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data (accessed on 30 May 2024).
- KMA National Climate Data Center. Available online: https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36 (accessed on 30 May 2024).
- Air Korea, Korea Environment Corporation. Available online: https://www.airkorea.or.kr/ (accessed on 30 May 2024).
Date | Seoul_PM10 | Seoul_WD | Seoul_WS | Beijing_PM10 | Beijing_WD | Beijing_WS |
---|---|---|---|---|---|---|
2013030100 | 51 | W | 3.9 | 6 | NW | 9.3 |
2013030101 | 41 | W | 2.9 | 12 | NW | 9.4 |
2013030102 | 25 | SW | 2 | 14 | NW | 8.6 |
2013030103 | 20 | W | 4 | 12 | NW | 6.6 |
2013030104 | 25 | W | 3.4 | 12 | NW | 4.5 |
2013030105 | 33 | W | 3.7 | 11 | NNW | 1.7 |
* | * | * | * | * | * | * |
201701010 | 80 | NNE | 1.4 | 600 | SSE | 0.4 |
Beijing_PM10 | Seoul_PM10 | Beijing_WS | Seoul_WS | |
---|---|---|---|---|
Count | 33,982 | 33,982 | 33,982 | 33,982 |
Mean | 98.3 | 44.9 | 1.8 | 2.5 |
Std | 88.7 | 32.8 | 1.2 | 1.3 |
Min | 2.0 | 1.0 | 0.0 | 0.0 |
25% | 31.0 | 26.0 | 1.0 | 1.6 |
50% | 77.0 | 39.0 | 1.5 | 2.4 |
75% | 138.0 | 55.0 | 2.3 | 3.4 |
Max | 999.0 | 906.0 | 12.8 | 10.6 |
Seoul_PM10 | Beijing_PM10 | Seoul_WS | Beijing_WS | |
---|---|---|---|---|
Seoul_PM10 | 1.000 | |||
Beijing_PM10 | 0.121 * | 1.000 | ||
Seoul_WS | −0.018 * | −0.141 * | 1.000 | |
Beijing_WS | 0.0565 * | −0.195 * | 0.238 * | 1.000 |
Seoul_PM10_42 | Seoul_PM10 | Beijing_PM10 | Seoul_WS | Beijing_WS | |
---|---|---|---|---|---|
Seoul_PM10_42 | 1.000 | ||||
Seoul_PM10 | 0.214 * | 1.000 | |||
Beijing_PM10 | 0.216 * | 0.150 * | 1.000 | ||
Seoul_WS | −0.028 | −0.004 | −0.208 * | 1.000 | |
Beijing_WS | 0.065 ** | 0.094 * | −0.172 * | 0.303 * | 1.000 |
Seoul_PM10_42 | Seoul_PM10 | Beijing_PM10 | Seoul_WS | Beijing_WS | |
---|---|---|---|---|---|
Seoul_PM10_42 | 1.000 | ||||
Seoul_PM10 | 0.250 * | 1.000 | |||
CN_PM10 | 0.354 * | 0.092 | 1.000 | ||
Seoul_WS | 0.089 | 0.134 *** | −0.129 *** | 1.000 | |
China_WS | 0.139 ** | 0.234 * | −0.088 | 0.328 * | 1.000 |
Seoul_PM10_42 | Seoul_PM10 | Seoul_WS | Beijing_PM10 | Beijing_WS | |
---|---|---|---|---|---|
Seoul_PM10_42 | 1.000 | ||||
Seoul_PM10 | 0.421 * | 1.000 | |||
Seoul_WS | 0.201 | 0.174 | 1.000 | ||
Beijing_PM10 | 0.412 * | 0.309 ** | 0.027 | 1.000 | |
Beijing_WS | 0.108 | 0.407 * | 0.250 | 0.164 | 1.000 |
Coef | Std Err | t | p > ∣t∣ | |
---|---|---|---|---|
Intercept | 38.2320 | 0.496 | 77.083 | 0.000 |
Beijing_PM10 | 0.0617 | 0.002 | 30.388 | 0.000 |
Seoul_WS | −0.0614 | 0.13 | −0.471 | 0.638 |
Beijing_WS | 0.4395 | 0.144 | 3.051 | 0.002 |
R2 = 0.027 F = 315 Signif F = 0.000 |
Coef | Std Err | t | p > ∣t∣ | |
---|---|---|---|---|
Intercept | 27.5016 | 27.5016 | 5.605 | 0.000 |
Beijing_PM10 | 0.1130 | 0.020 | 5.765 | 0.000 |
Seoul_WS | 1.7863 | 1.355 | 1.318 | 0.189 |
Beijing_WS | 2.3519 | 1.132 | 2.078 | 0.039 |
R2 = 0.162 F = 12.79 Signif F = 0.000 |
Coef | Std Err | t | p > ∣t∣ | |
---|---|---|---|---|
Intercept | 34.7220 | 5.635 | 6.162 | 0.000 |
Beijing_PM10 | 0.0354 | 0.037 | 0.969 | 0.334 |
Seoul_WS | 1.4128 | 1.346 | 1.050 | 0.295 |
Beijing_WS | 0.3663 | 1.370 | 0.267 | 0.789 |
Beijing_PM10_Beijing_WS | 0.0268 | 0.011 | 2.505 | 0.013 |
R2 = 0.188 F = 11.41 Signif F = 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chun, S.-H.; Kim, J.-W. A Study on the Relationship of PM10 between China and Korea Using Big Data for a Sustainable Environment. Sustainability 2024, 16, 4979. https://doi.org/10.3390/su16124979
Chun S-H, Kim J-W. A Study on the Relationship of PM10 between China and Korea Using Big Data for a Sustainable Environment. Sustainability. 2024; 16(12):4979. https://doi.org/10.3390/su16124979
Chicago/Turabian StyleChun, Se-Hak, and Joong-Wha Kim. 2024. "A Study on the Relationship of PM10 between China and Korea Using Big Data for a Sustainable Environment" Sustainability 16, no. 12: 4979. https://doi.org/10.3390/su16124979
APA StyleChun, S.-H., & Kim, J.-W. (2024). A Study on the Relationship of PM10 between China and Korea Using Big Data for a Sustainable Environment. Sustainability, 16(12), 4979. https://doi.org/10.3390/su16124979