Does Internet Use Boost the Sustainable Subjective Well-Being of Rural Residents? Evidence from Rural China
Abstract
:1. Introduction
2. Conceptual Framework
3. Estimating Methods and Data
3.1. Model and Methodology
3.1.1. Ordered-Logit Model
3.1.2. Propensity Score Matching
3.1.3. Endogenous Switching Regression
3.2. Data and Variable Descriptions
4. Empirical Results
4.1. Empirical Results and Discussion
4.2. Results of the Endogenous Test
4.2.1. Results of PSM
4.2.2. Results of ESR
4.3. Robustness Check
5. Further Discussion
5.1. Influencing Mechanism
5.2. Heterogeneity
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Group | FrEquation | Percent | Cum. |
---|---|---|---|---|
Subjective well-being | 1 = very unhappy | 2167 | 13.48 | 13.48 |
2 = relatively unhappy | 2915 | 18.13 | 31.62 | |
3 = relatively happy | 6035 | 37.55 | 69.16 | |
4 = very happy | 4957 | 30.84 | 100 | |
Education | 1 = illiteracy | 3982 | 28.12 | 28.12 |
2 = primary school | 3047 | 21.52 | 49.64 | |
3 = junior high school | 4390 | 31 | 80.64 | |
4 = senior high school and college | 2742 | 19.36 | 100 |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Category_subjective well-being | 13,986 | 2.9241 | 0.9545 | 1 | 4 |
Category_education | 13,986 | 2.4178 | 1.0915 | 1 | 4 |
Life satisfaction | 13,986 | 3.8772 | 1.1803 | 1 | 5 |
Internet as the main information channel | 13,986 | 0.4605 | 0.4985 | 0 | 1 |
References
- Trilar, J.; Kos, A.; Jazbinšek, S.; Jensterle, L.; Duh, E.S. ICT to Promote Well-Being within Families. Sensors 2018, 18, 2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokubun, K.; Ogawa, T.; Browne, R.; Shinada, T.; Granrath, L.; Moeller, J.; Tram, N.; Wieching, R.; Taki, Y. Social Capital Mediates the Association between the ICT Usage and Well-Being of Older People in Japan: Implication for a New Design Paradigm. Sustainability 2022, 14, 4148. [Google Scholar] [CrossRef]
- Kim, J.; Estrada, G.; Jinjarak, Y.; Park, D.; Tian, S. ICT and Economic Resilience during COVID-19: Cross-Country Analysis. Sustainability 2022, 14, 15109. [Google Scholar] [CrossRef]
- Stofkova, J.; Poliakova, A.; Stofkova, K.R.; Malega, P.; Krejnus, M.; Binasova, V.; Daneshjo, N. Digital Skills as a Significant Factor of Human Resources Development. Sustainability 2022, 14, 13117. [Google Scholar] [CrossRef]
- Jin, H.; Li, L.; Qian, X.; Zeng, Y. Can rural e-commerce service centers improve farmers’ subject well-being? A new practice of ‘internet plus rural public services’ from China. Int. Food Agribus. Manag. Rev. 2020, 23, 681–695. [Google Scholar] [CrossRef]
- Mergel, I. Social media institutionalization in the U.S. federal government. Gov. Inf. Q. 2016, 33, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Yu, L. The Relationship between Government Information Supply and Public Information Demand in the Early Stage of COVID-19 in China—An Empirical Analysis. Healthcare 2022, 10, 77. [Google Scholar] [CrossRef]
- Easterlin, R.A. Does Economic Growth Improve the Human Lot? Some Empirical Evidence. In Nations & Households in Economic Growth; Academic Press: Cambridge, MA, USA, 1974; pp. 89–125. [Google Scholar]
- Stevenson, B.; Wolfers, J. Economic Growth and Subjective Well-Being: Reassessing the Easterlin Paradox. In Brookings Papers on Economic Activity; Brookings Institution Press: Washington, DC, USA, 2008. [Google Scholar]
- Brzezinski, M. Top Incomes and Subjective Well-being. J. Econ. Psychol. 2019, 73, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Hitt, L.; Tambe, P. Broadband adoption and content consumption. Inf. Econ. Policy 2007, 19, 362–378. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Williams, R.P.; Detre, J.D. Internet Access and Internet Purchasing Patterns of Farm Households. Agric. Resour. Econ. Rev. 2009, 38, 240–257. [Google Scholar] [CrossRef]
- Blanchflower, D.G.; Oswald, A. Money, Sex and Happiness: An Empirical Study. Scand. J. Econ. 2004, 106, 393–415. [Google Scholar] [CrossRef] [Green Version]
- Grover, S.; Helliwell, J.F. How’s Life at Home? New Evidence on Marriage and the Set Point for Happiness. J. Happiness Stud. 2019, 20, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Stutzer, A.; Frey, B.S. Does Marriage Make People Happy, or Do Happy People Get Married? J. Socio-Econ. 2006, 35, 326–347. [Google Scholar] [CrossRef] [Green Version]
- Takashi, O.; Kayo, N.; Miki, K. Relative Income and Happiness in Asia: Evidence from Nationwide Surveys in China, Japan, and Korea. Soc. Indic. Res. 2010, 104, 351–367. [Google Scholar]
- Welsch, H. Environment and happiness: Valuation of air pollution using life satisfaction data. Ecol. Econ. 2006, 58, 801–813. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Chen, X. Happiness in the Air: How Does a Dirty Sky Affect Mental Health and Subjective Well-being? J. Environ. Econ. Manag. 2017, 85, 81–94. [Google Scholar] [CrossRef]
- Mitchell, M.; Lebow, J.; Uribe, R.; Grathouse, H.; Shoger, W. Internet use, happiness, social support and introversion: A more fine grained analysis of person variables and internet activity. Comput. Hum. Behav. 2011, 27, 1857–1861. [Google Scholar] [CrossRef]
- Bruni, L.; Stanca, L. Watching alone: Relational goods, television and happiness. J. Econ. Behav. Organ. 2008, 65, 506–528. [Google Scholar] [CrossRef] [Green Version]
- Gui, B.; Stanca, L. Happiness and relational goods: Well-being and interpersonal relations in the economic sphere. Int. Rev. Econ. 2010, 57, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Franzen, A. Social Capital and the Internet: Evidence from Swiss Panel Data. Kyklos 2010, 56, 341–360. [Google Scholar] [CrossRef]
- Quintana, D.; Cervantes, A.; Sáez, Y.; Isasi, P. Internet use and psychological well-being at advanced age: Evidence from the English longitudinal study of aging. Int. J. Environ. Res. Public Health 2018, 15, 480. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Internet use among young and older adults: Relation to psychological well-being. Educ. Gerontol. 2002, 28, 731–744. [Google Scholar] [CrossRef]
- Erickson, J.; Johnson, G.M. Internet Use and Psychological Wellness during Late Adulthood. Can. J. Aging 2011, 30, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Sims, T.; Reed, A.E.; Carr, D.C. Information and Communication Technology Use Is Related to Higher Well-Being Among the Oldest-Old. J. Gerontol. 2016, 72, 761–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Nie, P.; Zhang, P.; Renwick, A. Impact of Internet use on economic well-being of rural households: Evidence from China. Rev. Dev. Econ. 2020, 24, 503–523. [Google Scholar] [CrossRef]
- Ma, W.; Wang, X. Internet Use, Sustainable Agricultural Practices and Rural Incomes: Evidence from China. Aust. J. Agric. Resour. Econ. 2020, 64, 1087–1112. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, W.; Leng, C. ICT Adoption, Individual Income and Psychological Health of Rural Farmers in China. Appl. Res. Qual. Life 2020, 17, 71–91. [Google Scholar] [CrossRef]
- Dalmaso, M.; Castelli, L.; Galfano, G. Increased gaze cueing of attention during COVID-19 lockdown. iScience 2021, 24, 103283. [Google Scholar] [CrossRef]
- Ren, Q.; Treiman, D.J. Living arrangements of the elderly in China and consequences for their emotional well-being. Chin. Sociol. Rev. 2015, 47, 255–286. [Google Scholar] [CrossRef]
- Khalaila, R.; Vitman-Schorr, A. Internet use, social networks, loneliness, and quality of life among adults aged 50 and older: Mediating and moderating effects. Qual. Life Res. 2017, 27, 479–489. [Google Scholar] [CrossRef]
- Szabó, Á.; Allen, J.; Stephens, C.; Alpass, F.M. Longitudinal Analysis of the Relationship Between Purposes of Internet Use and Well-being Among Older Adults. Gerontologist 2019, 59, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wang, H.; Edelman, L.S.; Tracy, E.L.; Demiris, G.; Sward, K.A.; Donaldson, G.W. Loneliness as a mediator of the impact of social isolation on cognitive functioning of Chinese older adults. Age Ageing 2022, 49, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Sibley, C.G.; Greaves, L.M.; Satherley, N.; Wilson, M.S.; Overall, N.C.; Lee, C.H.J.; Milojev, P.; Bulbulia, J.; Osborne, D.; Milfont, T.L.; et al. Effects of the COVID-19 Pandemic and Nationwide Lockdown on Trust, Attitudes towards Government, and Wellbeing. Am. Psychol. 2022, 75, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H. Internet use and mental health problems among older people in shanghai, China: The moderating roles of chronic diseases and household income. Aging Ment. Health 2020, 25, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-R.R.; Schulz, P.J. The effect of information communication technology interventions on reducing social isolation in the elderly: A systematic review. J. Med. Internet Res. 2016, 18, e18. [Google Scholar] [CrossRef]
- Quan-Haase, A.; Mo, G.Y.; Wellman, B. Connected seniors: How older adults in East York exchange social support online and offline. Information. Commun. Soc. 2017, 20, 967–983. [Google Scholar] [CrossRef] [Green Version]
- Wicaksono, M.G.S.; Suryani, E.; Hendrawan, R.A. Increasing productivity of rice plants based on IoT (Internet Of Things) to realize Smart Agriculture using System Thinking approach. Procedia Comput. Sci. 2022, 197, 607–616. [Google Scholar] [CrossRef]
- Aker, J.C.; Mbiti, I.M. Mobile phones and economic development in Africa. J. Econ. Perspect. 2010, 24, 207–232. [Google Scholar] [CrossRef] [Green Version]
- Hübler, M.; Hartje, R. Are smartphones smart for economic development? Econ. Lett. 2016, 141, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.P.; Li, J.H.; Liu, J.H.; Zhang, W.F.; Jia, X.P. ICT-based agricultural advisory services and nitrogen management practices: A case study of wheat production in China. J. Integr. Agric. 2022, 21, 13. [Google Scholar]
- Leng, C.; Ma, W.; Tang, J.; Zhu, Z. ICT adoption and income diversification among rural households in China. Appl. Econ. 2020, 52, 3614–3628. [Google Scholar] [CrossRef]
- Brown, P.; Roper, S. Innovation and networks in New Zealand farming. Aust. J. Agric. Resour. Econ. 2017, 61, 422–442. [Google Scholar] [CrossRef]
- Yu, H.; Cui, L. China’s e-commerce: Empowering rural women. China Q. 2019, 238, 418–437. [Google Scholar] [CrossRef]
- Avom, D.; Dadegnon, A.K.; Igue, C.B. Does digitalization promote net job creation? Empirical evidence from WAEMU countries. Telecommun. Policy 2021, 45, 102215. [Google Scholar] [CrossRef]
- Hartje, R.; Hübler, M. Smartphones support smart labour. Appl. Econ. Lett. 2017, 24, 467–471. [Google Scholar] [CrossRef]
- Ma, W.; Grafton, R.Q.; Renwick, A. Smartphone use and income growth in rural China: Empirical results and policy implications. Electron. Commer. Res. 2018, 20, 713–736. [Google Scholar] [CrossRef]
- Alshakhsi, S.; Chemnad, K.; Almourad, M.B.; Altuwairiqi, M.; McAlaney, J.; Ali, R. Problematic internet usage: The impact of objectively Recorded and categorized usage time, emotional intelligence components and subjective happiness about usage. Heliyon 2022, 8, e11055. [Google Scholar] [CrossRef]
- Li, L.; Du, K.; Zhang, W.; Mao, J.-Y. Poverty alleviation through government-led e-commerce development in rural China: An activity theory perspective. Inf. Syst. J. 2019, 29, 914–952. [Google Scholar] [CrossRef]
- Qi, J.; Zheng, X.; Cao, P.; Zhu, L. The effect of e-commerce agribusiness clusters on farmers’ migration decisions in China. Agribusiness 2019, 35, 20–35. [Google Scholar] [CrossRef]
- Cheng, O. Inclusive Growth and e-Commerce: China’s Experience; AliResearch: Hangzhou, China, 2018. [Google Scholar]
- Wang, P.; Pan, J.; Luo, Z. The Impact of Income Inequality on Individual Happiness: Evidence from China. Soc. Indic. Res. 2015, 121, 413–435. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, W.; Leng, C.; Nie, P. The Relationship Between Happiness and Consumption Expenditure: Evidence from Rural China. Appl. Res. Qual. Life 2020, 16, 1587–1611. [Google Scholar] [CrossRef]
- Yu, D.; Fiebig, D.G. Internet use and cognition among middle-aged and older adults in China: A cross-lagged panel analysis. J. Econ. Ageing 2020, 17, 100262. [Google Scholar] [CrossRef]
- Zhou, Z.; Mao, F.; Ma, J.; Hao, S.; Qian, Z.; Elder, K.; Turner, J.; Fang, Y. A longitudinal analysis of the association between living arrangements and health among older adults in China. Res. Aging 2018, 40, 72–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, D. Cross-National Pattern of Happiness: Do Higher Education and Less Urbanization Degrade Happiness? Appl. Res. Qual. Life 2018, 13, 21–35. [Google Scholar] [CrossRef]
- Frijters, P.; Beatton, T. The mystery of the U-shaped relationship between happiness and age. J. Econ. Behav. Organ. 2012, 82, 525–542. [Google Scholar] [CrossRef] [Green Version]
- Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhou, X. Internet use and Chinese older adults’ subjective well-being (SWB): The role of parent-child contact and relationship. Comput. Hum. Behav. 2021, 119, 106725. [Google Scholar] [CrossRef]
Variables | Definitions | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
Subjective well-being | Self-reported subjective well-being from 0 = very unhappy to 10 = very happy | 13,986 | 7.0017 | 2.7689 | 0 | 10 |
Internet use | 1 if respondent uses the internet in 2018, 0 otherwise | 13,986 | 0.4033 | 0.4906 | 0 | 1 |
Gender | Gender of respondent: 1 = male, 0 = female | 13,986 | 0.4954 | 0.5000 | 0 | 1 |
Age | Age of respondent (years) | 13,986 | 48.9261 | 17.3703 | 16 | 100 |
Age2 | Square term of Age | 13,986 | 2695.4710 | 1704.7720 | 256 | 10,000 |
Marital status | 1 if respondent is married, 0 otherwise | 13,986 | 0.7452 | 0.4358 | 0 | 1 |
Education | The schooling years of respondent (years) | 13,986 | 6.3905 | 4.7163 | 0 | 22 |
Health status | 1 if the respondent is healthy, 0 otherwise | 13,986 | 2.8875 | 1.2995 | 1 | 5 |
Political identity | 1 if the respondent belongs to the CCP, 0 otherwise | 13,986 | 0.0671 | 0.2501 | 0 | 1 |
Income | Per-capita net income in logarithmic form | 13,986 | 9.3008 | 0.9309 | 5.0106 | 13.8547 |
Variables | Ologit | ||
---|---|---|---|
(1) | (2) | (3) | |
Internet use | 0.3194 *** (0.0156) | 0.0630 *** (0.0241) | 0.0740 *** (0.0244) |
Gender | −0.0442 ** (0.0184) | −0.0331 * (0.0185) | |
Age | −0.0250 *** (0.0038) | −0.0264 *** (0.0038) | |
Age2 | 0.0002 *** (0.0000) | 0.0002 *** (0.0000) | |
Marital status | 0.7433 *** (0.0282) | 0.7355 *** (0.0284) | |
Education | 0.0073 *** (0.0024) | 0.0032 (0.0025) | |
Health status | 0.1631 *** (0.0081) | 0.1565 *** (0.0081) | |
Political identity | 0.0075 * (0.0038) | 0.0101 *** (0.0039) | |
Income | 0.0234 ** (0.0106) | 0.0193 * (0.0111) | |
Dummy (province) | Uncontrolled | Uncontrolled | Controlled |
Constant | |||
R2 | |||
Pseudo-R2 | 0.0054 | 0.0312 | 0.0355 |
N | 16074 | 13986 | 13986 |
Matching Methods | Sample | Treated | Controls | ATT | S.E. | T-Stat |
---|---|---|---|---|---|---|
K-nearest neighbor matching | Unmatched | 7.5144 | 6.6553 | 0.8591 | 0.0472 | 18.21 |
Matched | 7.51403 | 6.9639 | 0.5501 | 0.0385 | 14.3 | |
Radius matching | Unmatched | 7.5144 | 6.6553 | 0.8591 | 0.0472 | 18.21 |
Matched | 7.51403 | 6.6527 | 0.8614 | 0.1129 | 7.63 | |
Kernel matching | Unmatched | 7.5144 | 6.6553 | 0.8591 | 0.0472 | 18.21 |
Matched | 7.51403 | 6.6426 | 0.8715 | 0.1024 | 8.51 | |
Local linear regression matching | Unmatched | 7.5144 | 6.6553 | 0.8591 | 0.0472 | 18.21 |
Matched | 7.5140 | 6.6164 | 0.8977 | 0.1291 | 6.95 | |
Spline matching | - | - | - | 0.8803 | 0.1165 | 7.55 |
Variables | Selection | Internet Use | |
---|---|---|---|
Users | Non-Users | ||
Gender | 0.0648 *** (0.0308) | −0.1309 ** (0.0536) | −0.1796 *** (0.0661) |
Age | −0.0065 (0.0072) | −0.1096 *** (0.0139) | 0.0816 *** (0.0148) |
Age2 | −0.0005 *** (0.0001) | 0.0014 *** (0.0002) | −0.0005 *** (0.0001) |
Marital status | 0.1537 *** (0.0478) | 0.7544 *** (0.0817) | 2.9659 *** (0.0830) |
Education | 0.0616 *** (0.0040) | 0.0076 *** (0.0086) | −0.0066 (0.0089) |
Health status | −0.0087 (0.0123) | 0.3904 (0.0242) | 0.3722 *** (0.0239) |
Political identity | 0.0156 ** (0.0067) | 0.0016 (0.0117) | 0.0374 *** (0.0142) |
Income | 0.1737 *** (0.0174) | 0.0616 * (0.0321) | −0.0195 (0.0344) |
Dummy (province) | Controlled | Controlled | Controlled |
Constant | −1.6111 *** (0.2169) | 7.2214 *** (0.4052) | 0.8544 *** (0.5056) |
Internet as the main information channel | 1.2769 *** (0.0312) | ||
−0.1934 *** (0.0417) | |||
−0.3451 *** (0.0425) | |||
N | 13,986 |
Subjective Well-Being | ATT | ATU | PSM-ATT |
---|---|---|---|
Internet use | 1.9861 *** (0.0238) | 1.5236 *** (0.0175) | 0.8803 *** (0.1165) |
Category_Subjective Well-Being | Subjective Well-Being | Life Satisfaction | Life Satisfaction | |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Internet as the main information channel | 0.1710 *** (0.0221) | 0.1698 *** (0.0223) | ||
Internet use | 0.080 *** (0.025) | 0.0738 *** (0.0245) | ||
Gender | −0.037 * (0.019) | −0.0268 (0.0187) | −0.0336 * (0.0186) | −0.0329 * (0.0186) |
Age | −0.027 *** (0.004) | −0.0231 *** (0.0039) | −0.0250 *** (0.0037) | −0.0236 *** (0.0037) |
Age2 | 0.000 *** (0.000) | 0.0002 *** (0.0000) | 0.0002 *** (0.0000) | 0.0002 *** (0.0000) |
Marital status | 0.710 *** (0.029) | 0.7390 *** (0.0285) | 0.6985 *** (0.0283) | 0.6906 *** (0.0282) |
Primary school | 0.009 (0.030) | −0.0035 (0.0290) | 0.0010 (0.0288) | −0.0053 (0.0288) |
Junior high school | −0.008 (0.029) | −0.0557 * (0.0286) | −0.0268 (0.0286) | −0.0510 * (0.0286) |
Senior high school and college | 0.126 *** (0.035) | 0.0531 (0.0334) | 0.0816 ** (0.0334) | 0.0515 (0.0333) |
Health status | 0.157 *** (0.008) | 0.1563 *** (0.0081) | 0.1569 *** (0.0081) | 0.1564 *** (0.0081) |
Political identity | 0.117 *** (0.037) | 0.0793 ** (0.0349) | 0.0833 ** (0.0348) | 0.0784 ** (0.0349) |
Income | 0.028 ** (0.012) | 0.0149 (0.0110) | 0.0214 * (0.0110) | 0.0182 * (0.0110) |
Dummy (province) | Controlled | Controlled | Controlled | Controlled |
Pseudo-R2 | 0.0512 | 0.0366 | 0.0331 | 0.0340 |
N | 13,986 | 13,986 | 13,986 | 13,986 |
Subjective Well-Being of Farmers | |||
---|---|---|---|
(1) | (2) | (3) | |
Frequency of online study | 0.0408 *** (0.0053) | ||
Frequency of online social interaction | 0.0191 *** (0.0044) | ||
Frequency of online entertainment | 0.0126 *** (0.0045) | ||
Gender | −0.0311 * (0.0185) | −0.0320 * (0.0185) | −0.0335 * (0.0185) |
Age | −0.0237 *** (0.0038) | −0.0252 *** (0.0038) | −0.0263 *** (0.0038) |
Age2 | 0.0002 *** (0.0000) | 0.0002 *** (0.0000) | 0.0002 *** (0.0000) |
Marital status | 0.7528 *** (0.0285) | 0.7358 *** (0.0284) | 0.7373 *** (0.0284) |
Education | 0.0003 (0.0025) | 0.0026 (0.0025) | 0.0033 (0.0025) |
Health status | 0.1571 *** (0.0081) | 0.1565 *** (0.0081) | 0.1566 *** (0.0081) |
Political identity | 0.0091 ** (0.0039) | 0.0100 *** (0.0039) | 0.0104 *** (0.0039) |
Income | 0.0186 * (0.0111) | 0.0170 (0.0112) | 0.0189 * (0.0112) |
Dummy (province) | Controlled | Controlled | Controlled |
Pseudo-R2 | 0.0362 | 0.0356 | 0.0355 |
N | 13,986 | 13,986 | 13,986 |
Region | Age | |||||
---|---|---|---|---|---|---|
Eastern Region | Central Region | Western Region | Young | Middle-Aged | Elderly | |
Internet use | 0.0266 (0.0444) | 0.0816 * (0.0465) | 0.0897 ** (0.0370) | 0.3643 *** (0.0528) | 0.0640 ** (0.0314) | 0.0936 (0.0714) |
Gender | −0.0681 ** (0.0325) | −0.0285 (0.0341) | −0.0310 (0.0303) | −0.0084 (0.0322) | −0.0522 * (0.0299) | −0.1865 *** (0.0380) |
Age | −0.0216 *** (0.0069) | −0.0212 *** (0.0069) | −0.0298 *** (0.0061) | −0.1474 *** (0.0231) | −0.1444 *** (0.0477) | 0.3912 *** (0.0492) |
Age2 | 0.0002 *** (0.0001) | 0.0002 *** (0.0001) | 0.0002 *** (0.0001) | 0.0023 *** (0.0004) | 0.0014 *** (0.0005) | −0.0028 *** (0.0003) |
Marital status | 0.7653 *** (0.0507) | 0.8322 *** (0.0537) | 0.6326 *** (0.0449) | 0.5221 *** (0.0513) | 0.8774 *** (0.0606) | 1.0106 *** (0.0463) |
Education | 0.0017 (0.0047) | 0.0074 (0.0048) | 0.0016 (0.0038) | 0.0179 *** (0.0053) | 0.0002 (0.0039) | 0.0061 (0.0045) |
Health status | 0.1897 *** (0.0143) | 0.1776 *** (0.0146) | 0.1212 *** (0.0134) | 0.1966 *** (0.0164) | 0.1673 *** (0.0124) | 0.1533 *** (0.0139) |
Political identity | 0.0075 (0.0073) | 0.0178 ** (0.0071) | 0.0078 (0.0060) | −0.0047 (0.0080) | 0.0067 (0.0059) | 0.0165 *** (0.0062) |
Income | 0.0276 (0.0179) | 0.0170 (0.0207) | −0.0015 (0.0179) | −0.0119 (0.0206) | 0.0649 *** (0.0176) | 0.0287 (0.0176) |
Dummy (province) | Controlled | Controlled | Controlled | Controlled | Controlled | Controlled |
Pseudo-R2 | 0.0346 | 0.0377 | 0.0247 | 0.0247 | 0.0285 | 0.0654 |
N | 4518 | 4191 | 5082 | 4350 | 5526 | 4110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Zhang, X.; Ge, C.; Wang, J.; Sun, X. Does Internet Use Boost the Sustainable Subjective Well-Being of Rural Residents? Evidence from Rural China. Sustainability 2023, 15, 1652. https://doi.org/10.3390/su15021652
Zhou H, Zhang X, Ge C, Wang J, Sun X. Does Internet Use Boost the Sustainable Subjective Well-Being of Rural Residents? Evidence from Rural China. Sustainability. 2023; 15(2):1652. https://doi.org/10.3390/su15021652
Chicago/Turabian StyleZhou, Houxi, Xuebiao Zhang, Candi Ge, Jingyi Wang, and Xiaolong Sun. 2023. "Does Internet Use Boost the Sustainable Subjective Well-Being of Rural Residents? Evidence from Rural China" Sustainability 15, no. 2: 1652. https://doi.org/10.3390/su15021652
APA StyleZhou, H., Zhang, X., Ge, C., Wang, J., & Sun, X. (2023). Does Internet Use Boost the Sustainable Subjective Well-Being of Rural Residents? Evidence from Rural China. Sustainability, 15(2), 1652. https://doi.org/10.3390/su15021652