Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Luenberger Index
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data and Variable Information
3.2. Estimation Procedure
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Southern Africa | GML | BPC | EC | GM | BPC | EC |
---|---|---|---|---|---|---|
2000∼2001 | 1.03 | 0.98 | 1.05 | 1.02 | 0.98 | 1.04 |
2001∼2002 | 0.99 | 1.04 | 0.97 | 0.95 | 0.98 | 0.97 |
2002∼2003 | 1.01 | 0.98 | 1.05 | 1.02 | 1.01 | 1.01 |
2003∼2004 | 1.01 | 1.00 | 1.01 | 0.99 | 0.99 | 1.01 |
2004∼2005 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.02 |
2005∼2006 | 0.99 | 0.98 | 1.01 | 0.98 | 0.98 | 1.00 |
2006∼2007 | 1.01 | 1.00 | 1.01 | 1.03 | 0.99 | 1.05 |
2007∼2008 | 1.01 | 1.00 | 1.01 | 1.01 | 1.00 | 1.01 |
2008∼2009 | 1.01 | 1.00 | 1.01 | 1.03 | 1.01 | 1.02 |
2009∼2010 | 1.01 | 1.01 | 1.00 | 1.02 | 1.02 | 1.01 |
2010∼2011 | 1.02 | 1.02 | 1.00 | 1.02 | 1.01 | 1.01 |
2011∼2012 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 1.01 |
2012∼2013 | 1.01 | 0.99 | 1.02 | 1.01 | 0.99 | 1.02 |
2013∼2014 | 0.98 | 1.00 | 0.98 | 0.96 | 0.98 | 0.98 |
2014∼2015 | 1.02 | 1.02 | 1.01 | 1.02 | 1.02 | 1.00 |
2015∼2016 | 1.02 | 1.01 | 1.01 | 1.01 | 1.00 | 1.01 |
2016∼2017 | 0.97 | 0.96 | 1.01 | 0.98 | 0.95 | 1.03 |
2017∼2018 | 1.01 | 1.01 | 1.00 | 1.01 | 1.01 | 1.00 |
2018∼2019 | 1.06 | 1.06 | 1.01 | 1.08 | 1.06 | 1.02 |
Mean | 1.008 | 1.002 | 1.008 | 1.009 | 0.998 | 1.011 |
West Africa | GML | BPC | EC | GM | BPC | EC |
---|---|---|---|---|---|---|
2000∼2001 | 1.02 | 1.01 | 1.01 | 1.03 | 0.99 | 1.04 |
2001∼2002 | 0.98 | 1.00 | 0.98 | 0.98 | 1.00 | 0.98 |
2002∼2003 | 1.00 | 1.00 | 1.00 | 1.02 | 1.02 | 1.01 |
2003∼2004 | 1.02 | 1.01 | 1.01 | 1.01 | 1.00 | 1.00 |
2004∼2005 | 0.99 | 1.01 | 0.98 | 1.02 | 1.00 | 1.02 |
2005∼2006 | 0.99 | 1.00 | 0.99 | 0.99 | 1.01 | 0.98 |
2006∼2007 | 0.99 | 0.96 | 1.04 | 0.97 | 0.94 | 1.04 |
2007∼2008 | 1.06 | 1.07 | 0.99 | 1.09 | 1.07 | 1.01 |
2008∼2009 | 0.99 | 0.98 | 1.01 | 1.01 | 1.00 | 1.01 |
2009∼2010 | 1.05 | 1.05 | 0.99 | 1.05 | 1.06 | 1.00 |
2010∼2011 | 0.97 | 0.96 | 1.02 | 0.97 | 0.95 | 1.02 |
2011∼2012 | 1.03 | 1.02 | 1.01 | 1.04 | 1.02 | 1.02 |
2012∼2013 | 1.00 | 1.00 | 1.01 | 1.01 | 1.02 | 0.99 |
2013∼2014 | 1.02 | 0.99 | 1.02 | 1.02 | 1.00 | 1.02 |
2014∼2015 | 1.00 | 1.02 | 0.98 | 1.01 | 1.04 | 0.97 |
2015∼2016 | 1.00 | 1.01 | 1.00 | 0.99 | 0.96 | 1.03 |
2016∼2017 | 1.01 | 0.98 | 1.04 | 1.01 | 0.99 | 1.02 |
2017∼2018 | 1.01 | 1.01 | 1.00 | 1.01 | 1.00 | 1.01 |
2018∼2019 | 1.01 | 1.01 | 1.00 | 1.01 | 1.01 | 1.00 |
Mean | 1.007 | 1.004 | 1.005 | 1.011 | 1.004 | 1.008 |
Noth Africa | GML | BPC | EC | GM | BPC | EC |
---|---|---|---|---|---|---|
2000∼2001 | 0.99 | 1.01 | 0.98 | 0.95 | 0.98 | 0.97 |
2001∼2002 | 1.01 | 1.01 | 1.00 | 1.03 | 0.97 | 1.07 |
2002∼2003 | 1.07 | 1.00 | 1.07 | 1.11 | 1.09 | 1.02 |
2003∼2004 | 0.96 | 1.00 | 0.96 | 0.98 | 1.06 | 0.93 |
2004∼2005 | 1.02 | 0.99 | 1.03 | 1.02 | 0.96 | 1.06 |
2005∼2006 | 1.00 | 1.00 | 1.00 | 1.03 | 1.06 | 0.97 |
2006∼2007 | 0.98 | 0.99 | 1.00 | 0.99 | 0.95 | 1.03 |
2007∼2008 | 1.02 | 1.00 | 1.02 | 1.04 | 0.98 | 1.06 |
2008∼2009 | 1.02 | 1.02 | 1.00 | 1.06 | 1.06 | 1.00 |
2009∼2010 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.02 |
2010∼2011 | 1.01 | 1.00 | 1.01 | 1.02 | 0.97 | 1.06 |
2011∼2012 | 1.02 | 0.99 | 1.03 | 1.03 | 0.98 | 1.05 |
2012∼2013 | 1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 1.01 |
2013∼2014 | 1.00 | 0.99 | 1.00 | 0.98 | 0.96 | 1.03 |
2014∼2015 | 1.03 | 1.00 | 1.03 | 1.07 | 1.07 | 1.00 |
2015∼2016 | 0.97 | 1.00 | 0.97 | 0.95 | 0.97 | 0.98 |
2016∼2017 | 1.00 | 0.99 | 1.01 | 1.00 | 0.98 | 1.03 |
2017∼2018 | 1.01 | 1.00 | 1.01 | 1.02 | 1.03 | 0.99 |
2018∼2019 | 1.01 | 1.01 | 1.00 | 1.02 | 0.99 | 1.03 |
Mean | 1.007 | 1.000 | 1.007 | 1.016 | 1.002 | 1.016 |
Central Africa | GML | BPC | EC | GM | BPC | EC |
---|---|---|---|---|---|---|
2000∼2001 | 0.99 | 0.98 | 1.01 | 1.01 | 0.95 | 1.07 |
2001∼2002 | 0.98 | 0.99 | 0.99 | 1.01 | 1.02 | 0.99 |
2002∼2003 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
2003∼2004 | 0.98 | 0.99 | 1.00 | 0.97 | 0.95 | 1.02 |
2004∼2005 | 1.05 | 1.01 | 1.04 | 1.04 | 1.01 | 1.03 |
2005∼2006 | 0.98 | 0.99 | 0.99 | 1.00 | 1.01 | 0.99 |
2006∼2007 | 1.03 | 0.97 | 1.07 | 0.99 | 0.97 | 1.03 |
2007∼2008 | 1.00 | 1.00 | 0.99 | 1.01 | 0.99 | 1.03 |
2008∼2009 | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | 1.00 |
2009∼2010 | 1.04 | 1.03 | 1.02 | 1.05 | 1.04 | 1.01 |
2010∼2011 | 0.98 | 0.99 | 0.99 | 0.99 | 1.01 | 0.99 |
2011∼2012 | 1.05 | 1.01 | 1.04 | 1.05 | 1.03 | 1.02 |
2012∼2013 | 0.99 | 1.02 | 0.98 | 1.00 | 1.02 | 0.99 |
2013∼2014 | 1.00 | 1.01 | 0.99 | 0.98 | 1.00 | 0.99 |
2014∼2015 | 1.00 | 1.02 | 0.98 | 0.99 | 1.01 | 0.98 |
2015∼2016 | 1.03 | 1.01 | 1.03 | 1.05 | 1.03 | 1.02 |
2016∼2017 | 0.99 | 0.99 | 1.00 | 1.01 | 1.00 | 1.01 |
2017∼2018 | 1.01 | 1.01 | 1.00 | 1.00 | 0.98 | 1.02 |
2018∼2019 | 1.00 | 0.98 | 1.02 | 1.03 | 1.06 | 0.99 |
Mean | 1.005 | 1.000 | 1.006 | 1.009 | 1.003 | 1.009 |
East Africa | GML | BPC | EC | GM | BPC | EC |
---|---|---|---|---|---|---|
2000∼2001 | 1.02 | 1.00 | 1.02 | 1.01 | 1.00 | 1.01 |
2001∼2002 | 1.02 | 1.00 | 1.02 | 1.03 | 1.00 | 1.03 |
2002∼2003 | 0.98 | 1.00 | 0.98 | 0.97 | 1.00 | 0.97 |
2003∼2004 | 0.98 | 1.00 | 0.98 | 0.99 | 1.00 | 0.99 |
2004∼2005 | 1.03 | 1.00 | 1.03 | 1.02 | 1.00 | 1.01 |
2005∼2006 | 0.96 | 1.00 | 0.96 | 0.97 | 1.00 | 0.97 |
2006∼2007 | 1.03 | 0.99 | 1.04 | 1.03 | 0.98 | 1.06 |
2007∼2008 | 0.97 | 1.01 | 0.96 | 0.97 | 1.02 | 0.95 |
2008∼2009 | 1.00 | 0.98 | 1.02 | 1.02 | 0.98 | 1.04 |
2009∼2010 | 1.03 | 1.00 | 1.02 | 1.03 | 1.01 | 1.02 |
2010∼2011 | 1.00 | 0.99 | 1.01 | 0.99 | 0.99 | 1.00 |
2011∼2012 | 0.98 | 0.98 | 1.00 | 0.97 | 0.97 | 1.00 |
2012∼2013 | 1.01 | 1.02 | 0.99 | 1.04 | 1.03 | 1.01 |
2013∼2014 | 0.94 | 0.97 | 0.97 | 0.91 | 0.95 | 0.96 |
2014∼2015 | 0.96 | 0.99 | 0.97 | 0.96 | 0.97 | 0.99 |
2015∼2016 | 1.04 | 1.00 | 1.04 | 1.02 | 1.02 | 1.00 |
2016∼2017 | 1.01 | 0.98 | 1.03 | 1.01 | 0.94 | 1.07 |
2017∼2018 | 1.03 | 1.03 | 1.00 | 1.04 | 1.02 | 1.02 |
2018∼2019 | 1.01 | 1.00 | 1.01 | 0.99 | 0.98 | 1.02 |
Mean | 0.999 | 0.997 | 1.003 | 0.999 | 0.993 | 1.007 |
Country | GML | BPC | EC | GM | BPC | EC |
---|---|---|---|---|---|---|
Algeria | 1.016 | 1.007 | 1.008 | 1.043 | 1.018 | 1.026 |
Angola | 1.004 | 1.001 | 1.004 | 1.014 | 0.999 | 1.015 |
Benin | 1.015 | 1.002 | 1.013 | 1.016 | 1.005 | 1.010 |
Botswana | 0.988 | 1.000 | 0.988 | 0.985 | 0.990 | 0.994 |
Burkina Faso | 1.028 | 1.030 | 1.000 | 1.036 | 1.032 | 1.005 |
Burundi | 1.000 | 0.998 | 1.004 | 1.003 | 0.983 | 1.022 |
Cabo Verde | 0.997 | 0.994 | 1.003 | 0.974 | 0.974 | 1.002 |
Cameroon | 1.009 | 1.000 | 1.009 | 1.011 | 1.001 | 1.011 |
Central African Republic | 1.007 | 1.003 | 1.011 | 1.007 | 0.994 | 1.014 |
Chad | 1.005 | 1.000 | 1.005 | 1.007 | 1.001 | 1.007 |
Comoros | 0.998 | 0.997 | 1.001 | 0.995 | 0.996 | 1.001 |
Congo DR | 1.010 | 1.010 | 1.001 | 1.022 | 1.009 | 1.015 |
Congo Republic | 0.999 | 0.997 | 1.003 | 1.016 | 1.002 | 1.014 |
Côte d’Ivoire | 1.003 | 1.000 | 1.003 | 1.002 | 0.999 | 1.005 |
Djibouti | 1.009 | 1.000 | 1.009 | 1.006 | 1.001 | 1.003 |
Egypt | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Equatorial Guinea | 1.000 | 1.000 | 1.000 | 0.996 | 0.996 | 1.003 |
Eswatini | 1.011 | 1.000 | 1.011 | 1.011 | 1.001 | 1.010 |
Gabon | 0.997 | 0.989 | 1.009 | 1.000 | 0.986 | 1.015 |
Gambia | 0.991 | 0.985 | 1.012 | 0.982 | 0.977 | 1.008 |
Ghana | 1.012 | 1.000 | 1.012 | 1.016 | 1.001 | 1.015 |
Guinea | 1.005 | 0.998 | 1.008 | 1.007 | 0.998 | 1.010 |
Guinea-Bissau | 1.001 | 0.994 | 1.008 | 1.006 | 0.997 | 1.011 |
Kenya | 1.009 | 1.000 | 1.009 | 1.011 | 1.000 | 1.011 |
Lesotho | 1.047 | 1.024 | 1.025 | 1.055 | 1.031 | 1.022 |
Liberia | 0.986 | 0.989 | 1.000 | 0.990 | 0.975 | 1.016 |
Libya | 0.994 | 0.986 | 1.008 | 1.005 | 0.971 | 1.039 |
Madagascar | 1.005 | 0.997 | 1.012 | 1.004 | 0.997 | 1.009 |
Malawi | 1.004 | 1.000 | 1.004 | 1.009 | 1.000 | 1.009 |
Mali | 1.001 | 1.000 | 1.001 | 1.003 | 1.000 | 1.003 |
Mauritania | 1.002 | 1.002 | 1.002 | 1.007 | 1.001 | 1.007 |
Mauritius | 1.007 | 1.000 | 1.007 | 1.007 | 1.000 | 1.007 |
Morocco | 1.011 | 1.005 | 1.006 | 1.023 | 1.022 | 1.002 |
Mozambique | 0.997 | 0.978 | 1.021 | 0.982 | 0.964 | 1.020 |
Namibia | 1.001 | 0.996 | 1.005 | 1.004 | 0.986 | 1.019 |
Niger | 1.028 | 1.026 | 1.010 | 1.052 | 1.033 | 1.022 |
Nigeria | 1.001 | 1.000 | 1.001 | 1.001 | 1.000 | 1.001 |
Rwanda | 0.994 | 0.995 | 0.999 | 0.989 | 0.988 | 1.000 |
Sao Tome and Principe | 1.010 | 1.000 | 1.010 | 1.014 | 1.034 | 0.992 |
Senegal | 1.027 | 1.030 | 1.001 | 1.040 | 1.039 | 1.001 |
Sierra Leone | 1.006 | 1.006 | 1.001 | 1.033 | 1.017 | 1.018 |
Somalia | 0.995 | 1.000 | 0.995 | 1.000 | 0.993 | 1.008 |
South Africa | 1.012 | 1.000 | 1.012 | 1.011 | 1.000 | 1.011 |
Tanzania | 1.001 | 1.000 | 1.001 | 1.001 | 1.000 | 1.001 |
Togo | 1.010 | 1.006 | 1.005 | 1.017 | 1.015 | 1.003 |
Tunisia | 1.012 | 1.000 | 1.012 | 1.010 | 0.999 | 1.011 |
Uganda | 0.985 | 0.985 | 1.000 | 0.985 | 0.984 | 1.002 |
Zambia | 1.024 | 1.043 | 1.009 | 1.030 | 1.019 | 1.012 |
Zimbabwe | 1.002 | 0.993 | 1.010 | 1.007 | 0.996 | 1.011 |
References
- Resnick, D.; Diao, X.; Tadesse, G. 2020 Annual Trends and Outlook Report: Sustaining Africa’s Agrifood System Transformation: The Role of Public Policies: Synopsis; International Food Policy Research Institute: Washington, DC, USA, 2020. [Google Scholar]
- Chuhan-Pole, P.; Korman, V.; Brenton, P.; Calderon, C.; Cortes, M.; De Andrade Falcao, N.; Feda, K.; Giovannelli, C.; Haazen, D.S.; Karamba, R.W.; et al. Assessing Africa’s Policies and Institutions: 2017 CPIA Results for Africa; Technical Report; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Coelli, T.J.; Rao, D.P. Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agric. Econ. 2005, 32, 115–134. [Google Scholar] [CrossRef] [Green Version]
- NEPAD. Agriculture in Africa: Transformation and Outlook; Technical Report; New Partnership For Africa’s Development (NEPAD): Johannesburg, South Africa, 2013. [Google Scholar]
- AGRA. Africa Agriculture Status Report. In Feeding Africa’s Cities: Opportunities, Challenges, and Policies for Linking African Farmers with Growing Urban Food Markets (Issue 8).; 2020. Available online: https://agra.org/resource-library/africa-agriculture-status-report/ (accessed on 20 September 2022).
- Zhang, J.; Lu, G.; Skitmore, M.; Ballesteros-Pérez, P. A critical review of the current research mainstreams and the influencing factors of green total factor productivity. Environ. Sci. Pollut. Res. 2021, 28, 35392–35405. [Google Scholar] [CrossRef] [PubMed]
- Kweku, D.W.; Bismark, O.; Maxwell, A.; Desmond, K.A.; Danso, K.B.; Oti-Mensah, E.A.; Quachie, A.T.; Adormaa, B.B. Greenhouse effect: Greenhouse gases and their impact on global warming. J. Sci. Res. Rep. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Arrigoni, A.; Beckett, C.; Ciancio, D.; Dotelli, G. Life cycle analysis of environmental impact vs. durability of stabilised rammed earth. Constr. Build. Mater. 2017, 142, 128–136. [Google Scholar] [CrossRef]
- Olubusoye, O.E.; Musa, D. Carbon emissions and economic growth in Africa: Are they related? Cogent Econ. Financ. 2020, 8, 1850400. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F. Life-cycle assessment and control measures for carbon emissions of typical buildings in China. Build. Environ. 2015, 86, 89–97. [Google Scholar] [CrossRef]
- Tongwane, M.I.; Moeletsi, M.E. A review of greenhouse gas emissions from the agriculture sector in Africa. Agric. Syst. 2018, 166, 124–134. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/documents/card/en/c/ca9825en (accessed on 5 October 2022).
- Hickel, J.; Kallis, G. Is green growth possible? New Political Econ. 2020, 25, 469–486. [Google Scholar] [CrossRef]
- Seong, J.; Cho, Y.; Song, W. Korea’s transition experiments as a post catch-up project. Asian J. Technol. Innov. 2016, 24, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Li, H.; Pan, A.; Shen, Z. Decomposition of Green Agricultural Productivity Gain Under a Multiple-Frontier Framework. J. Glob. Inf. Manag. 2022, 30, 1–23. [Google Scholar] [CrossRef]
- Akinyemi, O.; Okoli, I.; Chidozie, F. Institutional Framework and the Transition to Green Growth for Sustainable Development in Africa. Afr. J. Bus. Econ. Res. 2021, 16, 47–71. [Google Scholar]
- AU. Malabo Declaration on Accelerated Agricultural Growth and Transformation for Shared Prosperity and Improved Livelihoods Doc. In Assembly/Au/2 (Xxiii) 2014. Available online: https://www.nepad.org/caadp/publication/malabo-declaration-accelerated-agricultural-growth (accessed on 28 July 2022).
- Shen, Y.; Yue, S.; Sun, S.; Guo, M. Sustainable total factor productivity growth: The case of China. J. Clean. Prod. 2020, 256, 120727. [Google Scholar] [CrossRef]
- Feng, G.; Serletis, A. Undesirable outputs and a primal Divisia productivity index based on the directional output distance function. J. Econom. 2014, 183, 135–146. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Emrouznejad, A.; Yang, G.l. A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries. Energy 2016, 115, 840–856. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Wang, X.; Mensah, C.N.; Wang, M.; Zhang, J. Spatial and temporal heterogeneity of environmental efficiency for China’s hotel sector: New evidence through metafrontier global Malmquist-Luenberger. Environ. Sci. Pollut. Res. 2019, 26, 27534–27541. [Google Scholar] [CrossRef]
- Fan, M.; Shao, S.; Yang, L. Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China). Energy Policy 2015, 79, 189–201. [Google Scholar] [CrossRef]
- Oh, D.H. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Streimikis, J.; Saraji, M.K. Green productivity and undesirable outputs in agriculture: A systematic review of DEA approach and policy recommendations. Econ. Res.-Ekon. Istraživanja 2021, 35, 819–853. [Google Scholar] [CrossRef]
- Wang, K.L.; Pang, S.Q.; Ding, L.L.; Miao, Z. Combining the biennial Malmquist–Luenberger index and panel quantile regression to analyze the green total factor productivity of the industrial sector in China. Sci. Total. Environ. 2020, 739, 140280. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M. Effects of technological innovation on energy efficiency in China: Evidence from dynamic panel of 284 cities. Sci. Total. Environ. 2020, 709, 136172. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yang, R.; Wu, D.; Zhou, Z. Green productivity growth and competition analysis of road transportation at the provincial level employing Global Malmquist-Luenberger Index approach. J. Clean. Prod. 2021, 279, 123677. [Google Scholar] [CrossRef]
- Chen, C.; Lan, Q.; Gao, M.; Sun, Y. Green total factor productivity growth and its determinants in China’s industrial economy. Sustainability 2018, 10, 1052. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total. Environ. 2022, 829, 154477. [Google Scholar] [CrossRef]
- Apergis, N.; Gangopadhyay, P. The asymmetric relationships between pollution, energy use and oil prices in Vietnam: Some behavioural implications for energy policy-making. Energy Policy 2020, 140, 111430. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Paradi, J.C.; Sherman, H.D.; Tam, F.K. Data Envelopment Analysis in the Financial Services Industry; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Falavigna, G.; Manello, A.; Pavone, S. Environmental efficiency, productivity and public funds: The case of the Italian agricultural industry. Agric. Syst. 2013, 121, 73–80. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Zhong, S.; Li, Y.; Li, J.; Yang, H. Measurement of total factor productivity of green agriculture in China: Analysis of the regional differences based on China. PLoS ONE 2021, 16, e0257239. [Google Scholar] [CrossRef]
- Liang, J.; Long, S.; Economics, S. China’s agricultural green total factor productivity growth and its affecting factors. Hua Nan Nong Ye Da Xue Xue Bao 2015, 14, 1–12. [Google Scholar]
- Wang, Q.; Wang, H.; Chen, H. A study on agricultural green TFP in China: 1992–2010. Econ. Rev. 2012, 5, 24–33. [Google Scholar]
- Yörük, B.K.; Zaim, O. Productivity growth in OECD countries: A comparison with Malmquist indices. J. Comp. Econ. 2005, 33, 401–420. [Google Scholar] [CrossRef]
- Xu, R.; Wu, Y.; Chen, C. Agricultural green efficiency and productivity incorporating waste recycling. Aust. Econ. Pap. 2022, 61, 635–660. [Google Scholar] [CrossRef]
- Zhang, D. Marketization, environmental regulation, and eco-friendly productivity: A Malmquist–Luenberger index for pollution emissions of large Chinese firms. J. Asian Econ. 2021, 76, 101342. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, J. Growth in total factor productivity of agriculture in China: With introduction of changes in allocative efficiency. Chin. Rural. Econ. 2013, 3, 4–15. [Google Scholar]
- Adom, P.K.; Adams, S. Decomposition of technical efficiency in agricultural production in Africa into transient and persistent technical efficiency under heterogeneous technologies. World Dev. 2020, 129, 104907. [Google Scholar] [CrossRef]
- Nkamleu, G.B. Productivity growth, technical progress and efficiency change in African agriculture. Afr. Dev. Rev. 2004, 16, 203–222. [Google Scholar] [CrossRef] [Green Version]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and productivity. Econom. J. Econom. Soc. 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Grifell-Tatjé, E.; Lovell, C.K.; Pastor, J. A quasi-Malmquist productivity index. J. Product. Anal. 1998, 10, 7–20. [Google Scholar] [CrossRef]
- Chen, Y. A non-radial Malmquist productivity index with an illustrative application to Chinese major industries. Int. J. Prod. Econ. 2003, 83, 27–35. [Google Scholar] [CrossRef]
- Orea, L. Parametric decomposition of a generalized Malmquist productivity index. J. Product. Anal. 2002, 18, 5–22. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- NEPAD. Comprehensive Africa Agriculture Development Programme; Technical Report; New Partnership For Africa’s Development (NEPAD): Johannesburg, South Africa, 2003. [Google Scholar]
- AU. Declaration on Agriculture and Food Security in Africa; Assembly of the African Union, Second Ordinary Session: Maputo, Mozambique, 2003. [Google Scholar]
- Brüntrup, M. The Comprehensive Africa Agriculture Development Programme (CAADP)—An Assessment of a Pan-African Attempt to Revitalise Agriculture. Q. J. Int. Agric. 2011, 50, 79–106. [Google Scholar]
- Benin, S. The CAADP 2020 Biennial Review: Why Many Countries Are Off-Track; International Food Policy Research Institute: Washington, DC, USA, 2020; Volume 32. [Google Scholar]
- Akwang, A. 3rd-CAADP Biennial Review Report 2015. 2022. Available online: https://au.int/en/documents/20220310/3rd-caadp-biennial-review-report (accessed on 21 October 2022).
- AFDB. Africa Green Growth Readiness Assessment; Technical Report; African Development Bank Group: Abidjan, Côte d’Ivoire; Global Green Growth Institute: Seoul, South Korea; AFDB: Abidjan, Côte d’Ivoire, 2021; Available online: https://www.afdb.org/en/documents/africa-green-growth-readiness-assessment (accessed on 2 November 2022).
- Jong, Y.W.; Beirne, C.; Meunier, Q.; Biyogo, A.P.M.; Mbélé, A.E.; Stewart, C.G.; Poulsen, J.R. Expected carbon emissions from a rubber plantation in Central Africa. For. Ecol. Manag. 2021, 480, 118668. [Google Scholar] [CrossRef]
- Burton, M.E.; Poulsen, J.R.; Lee, M.E.; Medjibe, V.P.; Stewart, C.G.; Venkataraman, A.; White, L.J. Reducing carbon emissions from forest conversion for oil palm agriculture in Gabon. Conserv. Lett. 2017, 10, 297–307. [Google Scholar] [CrossRef]
- Boussemart, J.P.; Briec, W.; Kerstens, K.; Poutineau, J.C. Luenberger and Malmquist productivity indices: Theoretical comparisons and empirical illustration. Bull. Econ. Res. 2003, 55, 391–405. [Google Scholar] [CrossRef]
- Keita, S.; Liousse, C.; Assamoi, E.M.; Doumbia, T.; N’Datchoh, E.T.; Gnamien, S.; Elguindi, N.; Granier, C.; Yoboué, V. African anthropogenic emissions inventory for gases and particles from 1990 to 2015. Earth Syst. Sci. Data 2021, 13, 3691–3705. [Google Scholar] [CrossRef]
- Mlambo, D. Africanizing rebel insurgency in a post-colonial state and ramifications for African regional integration: Insight(s) from the Democratic Republic of Congo (DRC). J. Soc. Political Sci. 2021, 2, 205–224. [Google Scholar] [CrossRef]
- Myeki, L.W.; Bahta, Y.T.; Matthews, N. Exploring the growth of agricultural productivity in Africa: A Färe-Primont Index approach. Agriculture 2022, 12, 1236. [Google Scholar] [CrossRef]
Variable | Mean | Std | Maximum | Minimum | Source |
---|---|---|---|---|---|
Desired output ($) | 5,274,339 | 8,676,909 | 30,024 | 59,306 332 | USDA ERS |
Undesired output (CO ) | 13,592 | 15,066 | 10 | 83,410 | WB |
Land (ha) | 5805 | 8741 | 37 | 62,460 | USDA ERS |
Labour (n) | 3242 | 4273 | 11 | 21,298 | USDA ERS |
Temperature ( C) | 24 | 3 | 11 | 30 | WB |
Rainfall (mm) | 1007 | 664 | 23 | 3146 | WB |
Capital ($) | 5971 | 17,604 | 5 | 188,491 | USDA ERS |
Material ($) | 87 | 39 | 8 | 444 | USDA ERS |
Machinery (40-CV) | 96 | 19 | 49 | 249 | USDA ERS |
Estimates | GML | BPC | EC | GM | BPC | EC | Difference | ||
---|---|---|---|---|---|---|---|---|---|
Column | [1] | [2] | [3] | [4] | [5] | [6] | [1]–[4] | [2]–[5] | [3]–[6] |
Mean | 1.006 | 1.001 | 1.006 | 1.009 | 1.000 | 1.010 | −1.3% | 0.1% | −1.3% |
Std | 0.062 | 0.063 | 0.058 | 0.084 | 0.081 | 0.050 | −1.2% | −1.8% | 0.8% |
Min | 0.580 | 0.590 | 0.610 | 0.555 | 0.592 | 0.767 | 2.5% | −1.2% | −15.7% |
Max | 1.690 | 1.710 | 1.640 | 1.866 | 1.880 | 1.262 | −17.6% | −17.0% | 37.8% |
2000∼2001 | 1.013 | 0.994 | 1.021 | 1.014 | 0.980 | 1.035 | 0.0% | 1.4% | −1.4% |
2001∼2002 | 0.993 | 1.011 | 0.989 | 0.989 | 0.995 | 0.996 | 0.3% | 1.7% | −1.7% |
2002∼2003 | 1.005 | 0.995 | 1.017 | 1.017 | 1.017 | 1.000 | −1.2% | −1.2% | 1.6% |
2003∼2004 | 0.997 | 1.000 | 0.998 | 0.992 | 0.996 | 0.998 | 0.5% | 0.5% | 0.0% |
2004∼2005 | 1.013 | 1.006 | 1.008 | 1.017 | 0.993 | 1.024 | −1.4% | 1.2% | −1.6% |
2005∼2006 | 0.985 | 0.995 | 0.992 | 0.990 | 1.005 | 0.986 | −1.5% | −1.0% | 0.6% |
2006∼2007 | 1.007 | 0.978 | 1.035 | 1.002 | 0.964 | 1.040 | 0.4% | 1.4% | −1.5% |
2007∼2008 | 1.019 | 1.026 | 0.995 | 1.032 | 1.023 | 1.010 | −1.3% | 0.3% | −1.5% |
2008∼2009 | 0.999 | 0.990 | 1.009 | 1.017 | 1.004 | 1.015 | −1.8% | −1.4% | −1.5% |
2009∼2010 | 1.028 | 1.026 | 1.003 | 1.036 | 1.031 | 1.007 | −1.8% | −1.5% | −1.4% |
2010∼2011 | 0.994 | 0.987 | 1.008 | 0.996 | 0.985 | 1.012 | −1.2% | 0.2% | −1.4% |
2011∼2012 | 1.016 | 1.003 | 1.014 | 1.022 | 1.006 | 1.017 | −1.6% | −1.3% | −1.3% |
2012∼2013 | 1.002 | 1.002 | 1.003 | 1.013 | 1.012 | 1.001 | −1.0% | −1.0% | 0.2% |
2013∼2014 | 0.990 | 0.992 | 0.997 | 0.979 | 0.982 | 0.997 | 1.1% | 1.1% | 0.1% |
2014∼2015 | 1.003 | 1.011 | 0.992 | 1.008 | 1.021 | 0.988 | −1.5% | −1.9% | 0.4% |
2015∼2016 | 1.016 | 1.005 | 1.010 | 1.005 | 0.992 | 1.012 | 1.1% | 1.3% | −1.2% |
2016∼2017 | 0.997 | 0.977 | 1.022 | 1.002 | 0.974 | 1.030 | −1.5% | 0.3% | −1.8% |
2017∼2018 | 1.011 | 1.012 | 0.999 | 1.013 | 1.005 | 1.008 | −1.2% | 0.7% | −1.9% |
2018∼2019 | 1.021 | 1.016 | 1.006 | 1.030 | 1.025 | 1.008 | −1.9% | −1.9% | −1.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myeki, L.W.; Matthews, N.; Bahta, Y.T. Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Luenberger Index. Sustainability 2023, 15, 1645. https://doi.org/10.3390/su15021645
Myeki LW, Matthews N, Bahta YT. Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Luenberger Index. Sustainability. 2023; 15(2):1645. https://doi.org/10.3390/su15021645
Chicago/Turabian StyleMyeki, Lindikaya W., Nicolette Matthews, and Yonas T. Bahta. 2023. "Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Luenberger Index" Sustainability 15, no. 2: 1645. https://doi.org/10.3390/su15021645
APA StyleMyeki, L. W., Matthews, N., & Bahta, Y. T. (2023). Decomposition of Green Agriculture Productivity for Policy in Africa: An Application of Global Malmquist–Luenberger Index. Sustainability, 15(2), 1645. https://doi.org/10.3390/su15021645