The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fatima, F.; Du, H.; Kommalapati, R.R. Treatment of poultry slaughterhouse wastewater with membrane technologies: A review. Water 2021, 13, 1905. [Google Scholar] [CrossRef]
- Pelić, M. Ispitivanje Uticaja Korišćenja Otpadnih Voda iz Klanice na Zdravlje i Proizvodnju Mesa Šarana (Cyprinus carpio) Bezbednog za Ishranu Ljudi. Doctoral Dissertation, University of Belgrade, Belgrade, Serbia, 2020. [Google Scholar]
- Barash, H.; Plavnik, I.; Moav, R. Integration of duck and fish farming: Experimental results. Aquaculture 1982, 27, 129–140. [Google Scholar] [CrossRef]
- Ahmed, N.; Zander, K.K.; Garnett, S.T. Socioeconomic aspects of rice-fish farming in Bangladesh: Opportunities, challenges and production efficiency. Aust. J. Agric. Resour. Econ. 2011, 55, 199–219. [Google Scholar] [CrossRef]
- Lu, J.; Li, X. Review of rice–fish-farming systems in China—One of the globally important ingenious agricultural heritage systems (GIAHS). Aquaculture 2006, 260, 106–113. [Google Scholar] [CrossRef]
- Ahmed, N.; Bunting, S.W.; Rahman, S.; Garforth, C.J. Community-based climate change adaptation strategies for integrated prawn–fish–rice farming in B angladesh to promote social–ecological resilience. Rev. Aquac. 2014, 6, 20–35. [Google Scholar] [CrossRef]
- Xu, Q.; Dai, L.; Gao, P.; Dou, Z. The environmental, nutritional, and economic benefits of rice-aquaculture animal coculture in China. Energy 2022, 249, 123723. [Google Scholar] [CrossRef]
- Voigt, G.; Howard, B.J.; Beresford, N.A. Transfer of radionuclides in animal production systems. Radioact. Environ. 2007, 10, 71–96. [Google Scholar]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. Bioremediat. Biotechnol. 2020, 27, 1–26. [Google Scholar]
- Kozłowska, B.; Walencik, A.; Dorda, J.; Przylibski, T.A. Uranium, radium and 40K isotopes in bottled mineral waters from Outer Carpathians, Poland. Radiat. Meas. 2007, 42, 1380–1386. [Google Scholar] [CrossRef]
- Kaniu, M.I.; Angeyo, K.H.; Darby, I.G. Occurrence and multivariate exploratory analysis of the natural radioactivity anomaly in the south coastal region of Kenya. Radiat. Phys. Chem. 2018, 146, 34–41. [Google Scholar] [CrossRef]
- Rääf, C.L.; Falk, R.; Thornberg, C.; Zakaria, M.; Mattsson, S. Human metabolism of radiocaesium revisited. Radiat. Prot. Dosim. 2004, 112, 395–404. [Google Scholar] [CrossRef]
- Curini, M.; Rosati, O.; Borio, R.; Saetta, D.M.S.; Cicioni, R.; Forini, N.; Rongoni, A.; Dipilato, A.C. Evaluation of 137Cs activity in plant drugs and in some phytoderivatives from Chernobyl accident up to present (1986–1994). Pharmacol. Res. 1995, 32, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Adel, A.; Uosif, M.; El-Taher, A. Natural radioactivity and dose assessment for phosphate rock from Wadi El-Mashash and El-Mahamid Mines, Egypt. J. Environ. Radioact. 2005, 84, 65–78. [Google Scholar]
- Bolca, M.; Sac, M.; Cokuysal, B.; Karali, T.; Ekdal, E. Radioactivity in soils and various foodstuffs from the Gediz river Basin of Turkey. Radiat. Meas. 2007, 42, 263–270. [Google Scholar] [CrossRef]
- Gordana, V.; Svetlana, G.; Branislava, M.; Milan, O.; Branko, P. Radi-oecological investigation of food of animal origin in Belgrade environment. Jpn. J. Vet. Res. 2009, 57, 169–173. [Google Scholar]
- Pelić, M.; Živkov Baloš, M.; Popov, N.; Vidaković Knežević, S.; Novakov, N.; Puvača, N.; Ljubojević Pelić, D. Quality of carp meat (Cyprinus carpio) produced in a pond with the addition of purified wastewater originating from the slaughterhouse. Arch. Vet. Med. 2021, 14, 25–36. [Google Scholar] [CrossRef]
- Pelić, M.; Gavrilović, A.; Jug-Dujaković, J.; Marinović, Z.; Mirilović, M.; Đorđević, V.; Ljubojević Pelić, D. Microbiological characteristics of fish reared in purified wastewater from an abattoir. Vet. Glas. 2022, 76, 147. [Google Scholar] [CrossRef]
- Pelić, M.; Kartalović, B.; Đorđević, V.; Puvača, N.; Teodorović, V.; Ćirković, M.; Ljubojević Pelić, D. Occurrence and dietary exposure of organochlorine pesticides in common carp obtained from integrated production systems. Food Addit. Contam. 2019, 12, 303–309. [Google Scholar] [CrossRef]
- Pelić, M.; Kartalović, B.; Živkov-Baloš, M.; Mirilović, M.; Đorđević, M.; Teodorović, V.; Ćirković, M.; Ljubojević-Pelić, D. Health Risks associated with residual pesticide levels in fish reared in purified wastewater from slaughterhouse. J. Hell. Vet. Med. Soc. 2020, 71, 1991–1996. [Google Scholar] [CrossRef]
- Pelić, M.; Puvača, N.; Kartalović, B.; Živkov Baloš, M.; Novakov, N.; Ljubojević Pelić, D. Antibiotics and Sulfonamides in Water, Sediment and Fish in an Integrated Production System. J. Agron. Technol. Eng. Manag. 2023, 6, 851–856. [Google Scholar] [CrossRef]
- Pelić, M.; Novakov, N.; Djordjevic, V.; Ljubojevic Pelic, D. Health status and microbial quality of common carp reared in a pond fed with treated wastewater from a slaughterhouse. Environ. Earth Sci. 2021, 854, 012070. [Google Scholar]
- Measurement of Radionuclides in Food and the Environment; Technical Report Series No. 295; International Atomic Energy Agency: Vienna, Austria, 1989.
- Serbian Regulation. Regulation on Limits of Radionuclides Content in Drinking Water, Foodstuffs, Feeding Stuffs, Medicines, General Use Products, Construction Materials and Other Goods That Are Put on Market; Official Gazette of the Republic of Serbia: Belgrade, Serbia, 2018; Volume 36.
- ICRP. Age-dependent doses to the Members of the public from intake of radionuclides—Part 5 compilation of ingestion and inhalation coefficients. In ICRP Publication 72. Annual International Commission on Radiological Protection; ICRP: Ottawa, ON, Canada, 1995; Volume 26. [Google Scholar]
- ICRP. Compendium of dose coefficients based on ICRP publication 60. In ICRP Publication 119. Annual ICRP 41 (Suppl. l); ICRP: Ottawa, ON, Canada, 2012. [Google Scholar]
- Mihaljev, Ž.; Sladić, S.; Kartalović, B.; Novakov, N.; Živkov Baloš, M.; Jakšić, S.; Ćirković, M. Ratio of population of fish to radioactive residues. In Proceedings and Abstract Book; Serbian Veterinary Society: Zlatibor, Serbia, 2017; p. 254. [Google Scholar]
- Janković-Mandić, L.J.; Dragović, R.M.; Đorđević, M.M.; Đolić, M.B.; Dragović, S.D.; Bačić, G.G. Spatial variability of 137 Cs in the soil of Belgrade region (Serbia). Chem. Ind. 2014, 68, 449–455. [Google Scholar] [CrossRef]
- Derin, M.T.; Vijayagopal, P.; Venkatraman, B.; Chaubey, R.C.; Gopinathan, A. Radionuclides and radiation indices of high background radiation area in Chavara-Neendakara placer deposits (Kerala, India). PLoS ONE 2012, 7, e50468. [Google Scholar] [CrossRef]
- Damla, N.; Cevik, U.; Kobya, A.I.; Celik, A.; Celik, N.; Van Grieken, R. Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey. J. Hazard. Mater. 2010, 176, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Shetty, P.K.; Narayana, Y. Variation of radiation level and radionuclide enrichment in high background area. J. Environ. Radioact. 2010, 101, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Janković, M.M.; Todorović, D.J.; Sarap, N.B.; Krneta Nikolić, J.D.; Rajačić, M.M.; Pantelić, G.K. Natural radionuclides in waste water discharged from coal-fired power plants in Serbia. Water Sci. Technol. 2016, 74, 2634–2638. [Google Scholar] [CrossRef]
- Mashiatullah, A.; Maryam, B.; Asma, M.; Yaqoob, N.; Robab, U.E.; Ghaffar, A. Activity concentration and dose estimation of 226Ra, 232Th, 40K and 137Cs in drinking water of selected areas of Punjab, Pakistan. Water Sci. Technol. Water Supply 2016, 16, 253–262. [Google Scholar] [CrossRef]
- Janković, M.M.; Todorović, D.J.; Todorović, N.A.; Nikolov, J. Natural radionuclides in drinking waters in Serbia. Appl. Radiat. Isot. 2012, 70, 2703–2710. [Google Scholar] [CrossRef]
- Karamanis, D.; Ioannides, K.; Stamoulis, K. Environmental assessment of natural radionuclides and heavy metals in waters discharged from a lignite-fired power plant. Fuel 2009, 88, 2046–2052. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011.
- Ahmed, M.E.; Al-Haddad, A.; Mydlarczyk, A.; Aba, A. The Presence and Distribution of Radioactivity and Radionuclides in Kuwait Wastewater Treatment Plants. Arab. J. Sci. Eng. 2019, 44, 8779–8786. [Google Scholar] [CrossRef]
- Krstić, D.; Nikezić, D.; Stevanović, N.; Jelić, M. Vertical profile of 137Cs in soil. Appl. Radiat. Isot. 2004, 61, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes; UN Publications: Vienna, Austria, 2020. [Google Scholar]
- Radomirović, M.; Stanković, S.; Mandić, M.; Jović, M.; Mandić, L.J.; Dragović, S.; Onjia, A. Spatial distribution, radiological risk assessment and positive matrix factorization of gamma-emitting radionuclides in the sediment of the Boka Kotorska Bay. Mar. Pollut. Bull. 2021, 169, 112491. [Google Scholar] [CrossRef]
- Milenkovic, B.; Stajic, J.M.; Stojic, N.; Pucarevic, M.; Strbac, S. Evaluation of heavy metals and radionuclides in fish and seafood products. Chemosphere 2019, 229, 324–331. [Google Scholar] [CrossRef]
- Vitorović, G.; Mitrović, B.; Andrić, V.; Stojanović, M.D.; Lazarević-Macanović, M.; Vitorović, D. Radioactive contamination of food chain around coal mine and coal-fired power stations. Nucl. Technol. Radiat. Prot. 2012, 27, 388–391. [Google Scholar] [CrossRef]
- Ademola, J.A.; Ehiedu, S.I. Radiological analysis of 40 K, 226 Ra and 232 Th in fish, crustacean and sediment samples from fresh and marine water in oil ex-ploration area of Ondo State, Nigeria. Afr. J. Biomed. Res. 2010, 13, 99–106. [Google Scholar]
- Antović, I.; Antović, N.M. Concentration factors of 226Ra in the mullet species Liza aurata. In Proceedings of the 26. Symposium of Radiation Protection Society of Serbia and Montenegro, Tara, Serbia, 12–14 October 2011; pp. 137–140. [Google Scholar]
- Sarap, N.B.; Janković, M.M.; Todorović, D.J.; Nikolić, J.D.; Kovačević, M.S. Environmental radioactivity in southern Serbia at locations where depleted ura-nium was used. Arh. Hig. Rada Toksikol. 2014, 65, 189–197. [Google Scholar] [CrossRef]
- Janković, M.; Todorović, D.; Savanović, M. Radioactivity measurements in soil samples collected in the Republic of Srpska. Radiat. Meas. 2008, 43, 1448–1452. [Google Scholar] [CrossRef]
- Babić, D.; Skoko, B.; Franić, Z.; Senčar, J.; Šoštarić, M.; Petroci, L.; Avdić, M.; Kovačić, M.; Branica, G.; Petrinec, B.; et al. Baseline radioecological data for the soil and selected bioindicator organisms in the temperate forest of Plitvice Lakes National Park, Croatia. Environ. Sci. Pollut. Res. 2020, 27, 21040–21056. [Google Scholar] [CrossRef]
- Dimovska, S.; Stafilov, T.; Šajn, R.; Frontasyeva, M. Distribution of some natural and man-made radionuclides in soil from the city of Veles (Republic of Macedonia) and its environs. Radiat. Prot. Dosim. 2009, 138, 144–157. [Google Scholar] [CrossRef]
- Karahan, G. Risk assessment of baseline outdoor gamma dose rate levels study of natural radiation sources in Bursa, Turkey. Radiat. Prot. Dosim. 2010, 142, 324–331. [Google Scholar] [CrossRef]
- Kılıç, Ö.; Belivermiş, M.; Topçuoğlu, S.; Cotuk, Y.; Coşkun, M.; Çayır, A.; Küçer, R. Radioactivity concentrations and dose assessment in surface soil samples from east and south of Marmara region, Turkey. Radiat. Prot. Dosim. 2007, 128, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Orabi, H.; Al-Shareaif, A.; El Galefi, M. Gamma-ray measurements of naturally occurring radioactive sample from Alkharje City. J. Radioanal. Nucl. Chem. 2006, 269, 99–102. [Google Scholar] [CrossRef]
- Tufail, M.; Akhtar, N.; Waqas, M. Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren saline soils of Faisalabad in Pakistan. Radiat. Meas. 2006, 41, 443–451. [Google Scholar] [CrossRef]
- Higgy, R.H.; Pimpl, M. Natural and man-made radioactivity in soils and plants around the research reactor of Inshass. Appl. Radiat. Isot. 1998, 49, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Kannan, V.; Rajan, M.P.; Iyengar, M.A.R.; Ramesh, R. Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl. Radiat. Isot. 2002, 57, 109–119. [Google Scholar] [CrossRef]
- Kumar, A.; Singhal, R.K.; Preetha, J.; Rupali, K.; Joshi, V.M.; Hegde, A.G.; Kushwaha, H.S. A non-parametric statistical analysis in the measurement of outdoor gamma exposure to the residents around Trombay. Radiat. Prot. Dosim. 2007, 124, 378–384. [Google Scholar] [CrossRef]
- Lu, J.G.; Huang, Y.; Li, F.; Wang, L.; Li, S.; Hsia, Y. The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. J. Environ. Radioact. 2006, 90, 89–99. [Google Scholar] [CrossRef]
- Grubačević, M.; Gucić, M.; Mijić, R.; Glamočić, B.; Mladenović, S.; Tanasković, M.; Popović, A. Quality of the Environment of the City of Belgrade in 2012; GZJZ: Beograd, Serbia, 2013. (In Serbian) [Google Scholar]
- Council Regulation (EC) No 733/2008 of 15 July 2008 on the Conditions Governing Imports of Agricultural Products Originating in Third Countries following the Accident at the Chernobyl Nuclear Power Station (Official Journal No: L 201, date: 30.7.2008). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008R0733 (accessed on 8 May 2023).
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. In ICRP Publication 103. Annual International Commission on Radiological Protection 37 (2–4); ICRP: Ottawa, ON, Canada, 2007. [Google Scholar]
- Regulation on Radioactivity Monitoring; Official Gazette of the Republic of Serbia: Belgrade, Serbia, 2011; Volume 97.
Tested Radionuclide | Type of Sample | Target Value (IAEA) [Bq/kg] | Measured Value [Bq/kg] | Precision [%] | Accuracy [%] |
---|---|---|---|---|---|
137Cs | Water (spiked) | 64.4 ± 0.9 | 66.2 ± 2.9 | 3.95 | 102.8 |
Fish | 18.9 ± 1 | 19.3 ± 1.4 | 4.08 | 102.1 | |
22Na | Water (spiked) | 76.8 ± 1.2 | 72.7 ± 3.6 | 3.34 | 94.7 |
40K | Fish | 369 ± 18 | 376 ± 25 | 3.98 | 101.9 |
Soil | 374 ± 15 | 406 ± 27 | 4.11 | 108.6 | |
226Ra | Soil | 31.2 ± 1.5 | 29.1 ± 2.3 | 4.80 | 93.3 |
232Th | Soil | 33.6 ± 3.3 | 31.6 ± 1.6 | 4.66 | 94.0 |
Sample | Water from Purifier | Water After Purifier | Water from Pre-Fishery Pond | Water from Fishpond 1 | Water from Channel for Irrigation | |
---|---|---|---|---|---|---|
Cs-137 (Bq/L) | spring | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
autumn | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | |
p-value | / | / | / | / | / | |
K-40 (Bq/L) | spring | 10.0 ± 2.0 | 8.4 ± 0.5 | 11.3 ± 1.5 | 15.6 ± 1.2 | 10.6 ± 1.1 |
autumn | 10.4 ± 1.4 | 8.5 ± 1.1 | 14.4 ± 2.8 | 15.1 ± 2.1 | 11.1 ± 0.5 | |
p-value | p > 0.05 | p > 0.05 | p < 0.05 | p > 0.05 | p > 0.05 | |
Ra-226 (Bq/L) | spring | 1.92 ± 0.30 | 1.16 ± 0.22 | 1.02 ± 0.11 | 2.76 ± 0.49 | 2.50 ± 0.61 |
autumn | 1.98 ± 0.21 | 1.26 ± 0.45 | 1.21 ± 0.34 | 2.58 ± 0.35 | 2. 33 ± 0.41 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Th-232 (Bq/L) | spring | <3 | <3 | <3 | <3 | <3 |
autumn | <3 | <3 | <3 | <3 | <3 | |
p-value | / | / | / | / | / | |
Na-22 (Bq/L) | spring | 0.87 ± 0.11 | 0.60 ± 0.10 | 1.12 ± 0.31 | 1.34 ± 0.40 | 0.95 ± 0.36 |
autumn | 0.94 ± 0.32 | 0.54 ± 0.21 | 1.24 ± 0.29 | 1.22 ± 0.33 | 1.11 ± 0.21 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
Sample | Sediment in Vicinity of Treatment Plant | Sediment from Pre-Fishery Pond | Sediment from Fishpond 1 | Sediment from Fishpond 2 | Sediment from Channel for Irigation | |
---|---|---|---|---|---|---|
Cs-137 (Bq/kg) | spring | <0.5 | 2.84 ± 0.17 | 4.81 ± 0.14 | 7.66 ± 0.23 | 4.76 ± 0.13 |
autumn | 1.24 ± 0.21 | 2.91 ± 0.32 | 6.26 ± 0.24 | 7.26 ± 0.32 | 4.22 ± 0.22 | |
p-value | p < 0.05 | p > 0.05 | p < 0.05 | p > 0.05 | p > 0.05 | |
K-40 (Bq/kg) | spring | 457 ± 55 | 544 ± 10.0 | 514 ± 9.0 | 629 ± 11.0 | 440 ± 8.0 |
autumn | 441 ± 64 | 558 ± 44.2 | 549 ± 18.1 | 569 ± 26.3 | 462 ± 9.2 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p < 0.05 | p > 0.05 | |
Ra-226 (Bq7 kg) | spring | 31.2 ± 4.8 | 25.0 ± 0.7 | 44.4 ± 5.2 | 42.3 ± 5.1 | 20.2 ± 1.1 |
autumn | 32.8 ± 4.2 | 29.2 ± 4.4 | 46.5 ± 6.2 | 40.2 ± 5.5 | 20.8 ± 1.8 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Th-232 (Bq/kg) | spring | 11.3 ± 0.4 | 10.7 ± 0.4 | 12.6 ± 0.71 | 15.0 ± 2.9 | 10.9 ± 0.22 |
autumn | 11.8 ± 1.2 | 10.9 ± 1.2 | 11.9 ± 0.88 | 14.5 ± 3.2 | 11.5 ± 0.56 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
Na-22 (Bq/kg) | spring | 2.06 ± 0.14 | 1.99 ± 0.14 | 2.04 ± 0.18 | 1.92 ± 0.20 | 1.08 ± 0.30 |
autumn | 2.01 ± 0.26 | 1.89 ± 0.12 | 1.95 ± 0.22 | 1.98 ± 0.32 | 1.22 ± 0.50 | |
p-value | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
Radionucleides | Spring | Autumn | p-Value |
---|---|---|---|
Cs-137 (Bq/kg) | <0.5 | <0.5 | / |
K-40 (Bq/kg) | 144.75 ± 16.32 | 138 ± 17.11 | p > 0.05 |
Ra-226 (Bq/kg) | 25.72 ± 18.60 | 22.75 ± 8.15 | p > 0.05 |
Th-232 (Bq/kg) | <3 | <3 | / |
Na-22 (Bq7 kg) | <2 | 2.74 ± 0.32 | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelić, M.; Mihaljev, Ž.; Živkov Baloš, M.; Popov, N.; Gavrilović, A.; Jug-Dujaković, J.; Ljubojević Pelić, D. The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse. Sustainability 2023, 15, 12352. https://doi.org/10.3390/su151612352
Pelić M, Mihaljev Ž, Živkov Baloš M, Popov N, Gavrilović A, Jug-Dujaković J, Ljubojević Pelić D. The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse. Sustainability. 2023; 15(16):12352. https://doi.org/10.3390/su151612352
Chicago/Turabian StylePelić, Miloš, Željko Mihaljev, Milica Živkov Baloš, Nenad Popov, Ana Gavrilović, Jurica Jug-Dujaković, and Dragana Ljubojević Pelić. 2023. "The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse" Sustainability 15, no. 16: 12352. https://doi.org/10.3390/su151612352
APA StylePelić, M., Mihaljev, Ž., Živkov Baloš, M., Popov, N., Gavrilović, A., Jug-Dujaković, J., & Ljubojević Pelić, D. (2023). The Activity of Natural Radionuclides Th-232, Ra-226, K-40, and Na-22, and Anthropogenic Cs-137, in the Water, Sediment, and Common Carp Produced in Purified Wastewater from a Slaughterhouse. Sustainability, 15(16), 12352. https://doi.org/10.3390/su151612352