Responsible Carbon Resource Management through Input-Oriented Cap and Trade (IOCT)
Abstract
:1. Introduction
- why supply-side mechanisms have been taken into account to a very limited extent so far;
- which key aspects must be considered to ensure a successful input-oriented cap and trade mechanism;
- and what measures are necessary to achieve a comprehensive fossil fuel extraction within climate limits [9].
2. Materials and Methods
3. Results and Discussion
3.1. Overview on the Bibliographic Results
3.2. Advantages of IOCT (and Other Supply-Side Mechanisms)
3.3. Barriers for IOCT
3.4. General Aspects for a Comprehensive Fossil Fuel Extraction within Climate Limits
3.5. Key Aspects for Successful IOCT
4. Conclusions
- Create a global understanding on phasing out fossil fuels through an input-oriented mechanism, ideally by putting it into an international agreement, for instance an UN convention.
- Preparation of the practical phasing out of fossil fuels through elimination of subsidies or similar hidden support in the existing fossil fuel extraction processes.
- Continuation of the establishment of green and renewable energy sources to ensure alternative energy sources, including upgrading grids and infrastructure if necessary.
- Continuation of the development and implementation of energy efficient technologies on all levels in order to reduce the energy and fuel consumption.
- Mitigate potential resource and energy scarcity conflicts through a participation and dialogue process as well as financial support if necessary.
- Implement the renewable energy production systems on a global scale.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Barnard, P.; Moomaw, W.R. World scientists’ warning of a climate emergency. BioScience 2020, 70, 8–12. [Google Scholar] [CrossRef]
- Piggot, G.; Verkuijl, C.; van Asselt, H.; Lazarus, M. Curbing fossil fuel supply to achieve climate goals. Clim. Policy 2020, 20, 881–887. [Google Scholar] [CrossRef]
- Rashedi, A.; Khanam, T.; Jonkman, M. On reduced consumption of fossil fuels in 2020 and its consequences in global environment and exergy demand. Energies 2020, 13, 6048. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The threat to climate change mitigation posed by the abundance of fossil fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Erickson, P.; Lazarus, M.; Verkuijl, C.; Yehle, E.; Van de Graaf, T. The Production Gap Report: The Discrepancy between Countries’ Planned Fossil Fuel Production and Global Production Levels Consistent with Limiting Warming to 1.5 °C or 2 °C: 2020 Special Report; Ghent University: Ghent, Belgium, 2020; Available online: http://hdl.handle.net/1854/LU-8683251 (accessed on 20 August 2021).
- McGlade, C.; Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 2015, 517, 187–190. [Google Scholar] [CrossRef]
- Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 2021, 597, 230–234. [Google Scholar] [CrossRef]
- Zakkour, P.D.; Heidug, W.; Howard, A.; Haszeldine, R.S.; Allen, M.R.; Hone, D. Progressive supply-side policy under the Paris Agreement to enhance geological carbon storage. Clim. Policy 2021, 21, 63–77. [Google Scholar] [CrossRef]
- Muttitt, G.; Kartha, S. Equity, climate justice and fossil fuel extraction: Principles for a managed phase out. Clim. Policy 2020, 20, 1024–1042. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. Available online: http://www.jstor.org/stable/26268316 (accessed on 20 August 2021). [CrossRef]
- European Union. The EU Emissions Trading System (EU ETS), Publications Office 2016. Available online: https://ec.europa.eu/clima/sites/clima/files/factsheet_ets_en.pdf (accessed on 10 August 2021).
- Brunner, S.; Flachsland, C.; Luderer, G.; Edenhofer, O. Emissions Trading Systems: An Overview. PIK Discussion Paper. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.535.2125&rep=rep1&type=pdf (accessed on 6 September 2021).
- Hotelling, H. The economics of exhaustible resources. J. Political Econ. 1931, 39, 137–175. [Google Scholar] [CrossRef]
- Daly, H.E. Toward a Steady-State Economy; W.H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Daly, H.E. Towards a Steady-State Economy; Sustainable Development Commission: London, UK, 2008; Available online: https://is.muni.cz/el/1423/jaro2015/ENS242/um/55677449/3_Daly_2008_Towards_a_Steady_State_Economy.pdf (accessed on 26 July 2021).
- Erickson, P.; Lazarus, M.; Piggot, G. Limiting fossil fuel production as the next big step in climate policy. Nat. Clim. Chang. 2018, 8, 1037–1043. [Google Scholar] [CrossRef]
- Sinn, H.-W. Public policies against global warming: A supply side approach. Int. Tax Public Financ. 2008, 15, 360–394. [Google Scholar] [CrossRef]
- Tudela, F. Obstacles and opportunities for moratoria on oil and gas exploration or extraction in Latin America and the Caribbean. Clim. Policy 2020, 20, 922–930. [Google Scholar] [CrossRef]
- German Environment Agency. National Emissions Trading. Available online: https://www.dehst.de/EN/national-emissions-trading/national-emissions-trading_node.html (accessed on 30 August 2021).
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [Green Version]
- Jalali, S.; Wohlin, C. Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the 2012 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, Lund, Sweden, 19–20 September 2012; pp. 29–38. [Google Scholar] [CrossRef]
- Lazarus, M.; van Asselt, H. Fossil fuel supply and climate policy: Exploring the road less taken. Clim. Chang. 2018, 150, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Green, F.; Denniss, R. Cutting with both arms of the scissors: The economic and political case for restrictive supply-side climate policies. Clim. Chang. 2018, 150, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Gaulin, N.; Le Billon, P. Climate change and fossil fuel production cuts: Assessing global supply-side constraints and policy implications. Clim. Policy 2020, 20, 888–901. [Google Scholar] [CrossRef] [Green Version]
- Harrison, K. The politics of carbon pricing. Nat. Clim. Chang. 2018, 8, 852. [Google Scholar] [CrossRef]
- Mitchell-Larson, E.; Zakkour, P.; Heidung, W. Achieving net-zero in the G20: A novel supply-side climate policy to value carbon sinks. G 20 Insights Clim. Chang. Environ. 2020. Available online: https://www.g20-insights.org/wp-content/uploads/2020/11/achieving-net-zero-in-the-g20-a-novel-supply-side-climate-policy-to-value-carbon-sinks-1606065435.pdf (accessed on 26 July 2021).
- Piggot, G. The influence of social movements on policies that constrain fossil fuel supply. Clim. Policy 2018, 18, 942–954. [Google Scholar] [CrossRef]
- Rempel, A.; Gupta, J. Equitable, effective, and feasible approaches for a prospective fossil fuel transition. WIREs Clim. Chang. 2021, 13, e756. [Google Scholar] [CrossRef]
- Nicolas, L.; Portolano, P. Reflections on an upstream carbon indicator (upstream tax). 2021; preprint. [Google Scholar] [CrossRef]
- Mutua, M. Demand Versus Supply Side Climate Policies. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2019. Available online: https://hdl.handle.net/11250/2642188 (accessed on 26 July 2021).
- Eaton, E. Approaches to energy transitions: Carbon pricing, managed decline, and/or green new deal? Geogr. Compass 2021, 15, e12554. [Google Scholar] [CrossRef]
- Jenkins, S.; Mitchell-Larson, E.; Ives, M.C.; Haszeldine, S.; Allen, M. Upstream decarbonization through a carbon takeback obligation: An affordable backstop climate policy. Joule 2021, 5, 2777–2796. [Google Scholar] [CrossRef]
- Linquiti, P.; Cogswell, N. The carbon ask: Effects of climate policy on the value of fossil fuel resources and the implications for technological innovation. J. Environ. Stud. Sci. 2016, 6, 662–676. [Google Scholar] [CrossRef] [Green Version]
- Somerville, P. A critique of climate change mitigation policy. Policy Politics 2020, 48, 355–378. [Google Scholar] [CrossRef]
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R., III; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [Google Scholar] [CrossRef]
- Mendelevitch, R. Coal Markets and Carbon Capture: Model Development and Climate Policy Applications. Ph.D. Thesis, TU Berlin, Berlin, Germany, 2016. [Google Scholar] [CrossRef]
- Armstrong, C. Decarbonisation and world poverty: A just transition for fossil fuel exporting countries? Political Stud. 2019, 68, 671–688. [Google Scholar] [CrossRef] [Green Version]
- Krane, J. Climate change and fossil fuel: An examination of risks for the energy industry and producer states. MRS Energy Sustain. 2017, 4, E2. [Google Scholar] [CrossRef] [Green Version]
- Wilde, D.; Price, R. Can a global oil royalty help to limit climate change? Commonw. Secr. Discuss. Pap. 2017, 24. [Google Scholar] [CrossRef]
- Green, F. The normative foundations of climate legislation. In Trends in Climate Change Legislation; Averechenkoca, A., Fankhauser, S., Nachmany, M., Eds.; Edward Elgar Publishing: Cheltenham, UK, 2017; pp. 85–107. [Google Scholar] [CrossRef]
- Bernasconi, L. A Natural approach to net zero. In Settling Climate Accounts; Heller, T., Seiger, A., Eds.; Palgrave Macmillan: Cham, Germany, 2021; pp. 121–144. [Google Scholar] [CrossRef]
- Iacobuţă, G.I.; Höhne, N.; van Soest, H.L.; Leemans, R. Transitioning to low-carbon economies under the 2030 agenda: Minimizing trade-offs and enhancing co-benefits of climate-change action for the SDGs. Sustainability 2021, 13, 10774. [Google Scholar] [CrossRef]
- Gard-Murray, A. De-risking decarbonization: Shifting costs from present losers to future winners. Working Paper. 2021. Available online: https://web.lists.fas.harvard.edu/archive/list/[email protected]/message/PN7QWE63CGACVZZOYBFM5M3TDS6LC3TB/attachment/4/Gard-Murray2021De-riskingDecarbonization.pdf (accessed on 25 January 2022).
- Moz-Christofoletti, M.A.; Carvalho Pereda, P. Winners and losers: The distributional impacts of a carbon tax in Brazil. Ecol. Econ. 2021, 183. [Google Scholar] [CrossRef]
- Buck, H.J. Ending Fossil Fuels—Why Net Zero is Not Enough; Verso: London, UK, 2021. [Google Scholar]
- Boyce, J. The Case for Carbon Dividends; Polity Press: Cambridge, UK, 2019. [Google Scholar]
- Peszko, G.; van der Mensbrugghe, D.; Golub, A.; Ward, J.; Zenghelis, D.; Marijs, C.; Schopp, A.; Rogers, J.A.; Modgley, A. Diversification and Cooperation in a Decarbonizing World: Climate Strategies for Fossil Fuel-Dependent Countries; The World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Gupta, S. Oil industry’s pro-climate agenda: Fifty shades of green. Wash. Univ. Glob. Stud. Law Rev. 2021, 20, 491. Available online: https://law-journals-books.vlex.com/vid/oil-industry-s-pro-876003083 (accessed on 25 January 2022).
- Baldwin, E.; Cai, Y.; Kuralbayeva, K. To build or not to build? Capital stocks and climate policy. J. Environ. Econ. Manag. 2020, 100, 102235. [Google Scholar] [CrossRef] [Green Version]
- Van der Ploeg, F. Race to burn the last ton of carbon and the risk of stranded assets. Eur. J. Political Econ. 2020, 64, 101915. [Google Scholar] [CrossRef]
- Noisecat, J. An insider’s guide to the climate debate. Data Prog. 2021. Available online: https://www.filesforprogress.org/memos/insiders-guide-climate-debate.pdf (accessed on 25 January 2022).
- Okoh, A.S. Roadmap to Nigeria’s future without oil. In Oil Mortality in Post-Fossil Fuel Era Nigeria; Springer: Berlin/Heidelberg, Germany, 2021; pp. 141–174. [Google Scholar] [CrossRef]
- Abraham-Dukuma, M.C. The Role of Law in Climate Change Mitigation in Oil and Gas Production. Ph.D. Thesis, The University of Waikato, Waikato, New Zealand, 2021. Available online: https://hdl.handle.net/10289/14600 (accessed on 26 July 2021).
- MacLean, J. Manufacturing consent to climate inaction: A case study of the globe and mail’s pipeline coverage. Dalhous. Law J. 2019, 42, 283. Available online: https://digitalcommons.schulichlaw.dal.ca/dlj/vol42/iss2/4/ (accessed on 26 July 2021).
- Oberthür, S. COP21: Results and Implications for Pathways and Policies for Low Emissions European Societies, D4.1. 2017. Available online: https://epub.wupperinst.org/frontdoor/deliver/index/docId/7203/file/7203_Governance.pdf (accessed on 26 July 2021).
- Drudi, F.; Moench, E.; Holthausen, C.; Weber, P.-F. Occasional paper series: Climate change and monetary policy in the euro area. Eur. Cent. Bank Strategy Rev. 2021, 271. Available online: https://www.ecb.europa.eu/pub/pdf/scpops/ecb.op271~36775d43c8.en.pdf (accessed on 25 January 2022).
- Albrecht, T. Does decentralization matter for renewable energy sources? The impact of governmental decentralization on the renewable energy transition. Dipòsit Digit. 2021. Available online: http://hdl.handle.net/2445/178768 (accessed on 25 January 2022).
- Moss, J.; Umbers, L. Climate Justice and Non-State Actors: Corporations, Regions, Cities, and Individuals; Routledge: London, UK, 2020. [Google Scholar]
- Bolton, P.; Despres, M.; Pereira da Silva, L.A.; Samama, F.; Svartzman, R. The green swan: Central banking and financial stability in the age of climate change. In Bank for International Settlements; 2020; ISBN 978-92-9259-326-1. Available online: https://www.bis.org/publ/othp31.pdf?fbclid=IwAR1DBQv77u8NWV44lhZRzxOjh9JGyp7RUKBFxP_nQvIYayqpZ0Q_roacfBw (accessed on 25 January 2022).
- Sæther, S.R. Climate Policy Choices: Do Environmental Taxes Work? A Mixed Method Study of the OECD and Norway. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2016. Available online: https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2421375/S%C3%A6ther,%20Simen%20Rostad.pdf?sequence=1 (accessed on 26 July 2021).
- Li, M.; Trencher, G.; Asuka, J. The clean energy claims of BP, Chevron, ExxonMobil and Shell: A mismatch between discourse, actions and investments. PLoS ONE 2022. [Google Scholar] [CrossRef] [PubMed]
- Metcalf, G.E.; Weisbach, D. Design of a Carbon Tax. University of Chicago Law & Economics, Olin Working Paper No. 447, University of Chicago, Public Law Working Paper No. 254. 2009. Available online: https://ssrn.com/abstract=1324854 (accessed on 26 July 2021).
- Harstad, B. Buy coal! A case for supply side environmental policy. J. Political Econ. 2012, 120, 77–115. [Google Scholar] [CrossRef]
- Collier, P.; Venables, A.J. Closing coal: Economic and moral incentives. Oxf. Rev. Econ. Policy 2015, 30, 492–512. [Google Scholar] [CrossRef]
- Hargrave, T. US Carbon Emissions Trading: Description of An Upstream Approach. 1998. Available online: https://www.osti.gov/biblio/679431 (accessed on 6 September 2021).
- Newell, P.; Simms, A. Towards a fossil fuel non-proliferation treaty. Clim. Policy 2020, 20, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Asheim, G.B.; Fæhn, T.; Nyborg, K.; Greaker, M.; Hagem, C.; Harstad, B.; Hoel, M.O.; Lund, D.; Rosendahl, K.E. The case for a supply-side climate treaty. Science 2019, 365, 325–327. [Google Scholar] [CrossRef] [Green Version]
- Trucost, TEEB for Business Coalition. Natural Capital at Risk: The Top 100 Externalities of Business. Trucost PLC 2013. Available online: https://www.naturalcapitalcoalition.org/wp-content/uploads/2016/07/Trucost-Nat-Cap-at-Risk-Final-Report-web.pdf (accessed on 30 August 2021).
- International Council on Mining and Metals ICMM. Integrated Mine Closure—Good Practice Guide; ICMM: London, UK, 2019; Available online: https://guidance.miningwithprinciples.com/integrated-mine-closure-good-practice-guide/ (accessed on 23 February 2020).
- Gurría, A. The Climate Challenge: Achieving Zero Emissions. Lecture by the OECD Secretary-General. 2013. Available online: https://www.oecd.org/about/secretary-general/the-climate-challenge-achieving-zero-emissions.htm (accessed on 1 September 2021).
- de Bruin, K.; Monaghan, E.; Yakut, A.M. The impacts of removing fossil fuel subsidies and increasing carbon tax in Ireland. Econ. Soc. Res. Inst. 2019, 98. [Google Scholar] [CrossRef]
- Aldy, J. Eliminating fossil fuel subsidies. In 15 Ways to Rethink the Federal Budget; Greenstone, M., Harris, M., Li, K., Looney, A., Patashnik, J., Eds.; Brookings Institution Press: Washington, DC, USA, 2013; pp. 31–35. [Google Scholar]
- Koplow, D.N.; Lin, C.; Jung, A.; Lonton, L.; Charles, C. Mapping the Characteristics of Producer Subsidies a Review of Pilot Country Studies. International Institute for Sustainable Development 2010, Winnipeg. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1680415 (accessed on 24 September 2021).
- Gençsü, I.; Whitley, S.; Trilling, M.; van der Burg, L.; McLynn, M.; Worrall, L. Phasing out public financial flows to fossil fuel production in Europe. Clim. Policy 2020, 20, 1010–1023. [Google Scholar] [CrossRef]
- Erickson, P.; Down, A.; Lazarus, M.; Koplow, D. Effect of subsidies to fossil fuel companies on United States crude oil production. Nat. Energy 2017, 2, 891–898. [Google Scholar] [CrossRef]
- OECD/IEA. Update on Recent Progress in Reform of Inefficient Fossil-Fuel Subsidies that Encourage Wasteful Consumption. 2021. Available online: www.oecd.org/fossil-fuels/publicationsandfurtherreading/OECD-IEA-G20-Fossil-Fuel-Subsidies-Reform-Update-2021.pdf (accessed on 24 September 2021).
- Anderson, K.; McKibbin, W.J. Reducing coal subsidies and trade barriers: Their contribution to greenhouse gas abatement. Environ. Dev. Econ. 2000, 5, 457–481. [Google Scholar] [CrossRef] [Green Version]
- COP26 Global Coal to Clean Power Transition Statement. Available online: https://ukcop26.org/global-coal-to-clean-power-transition-statement/ (accessed on 12 April 2022).
- International Energy Agency. Data and Statistics. Available online: https://www.iea.org/data-and-statistics (accessed on 26 July 2021).
- Rempel, A.; Gupta, J. Fossil fuels, stranded assets and COVID-19: Imagining an inclusive & transformative recovery. World Dev. 2021, 146, 105608. [Google Scholar] [CrossRef]
- Melaina, M.W.; Antonia, O.; Penev, M. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues; Technical Report NREL/TP-5600-51995; National Renewable Energy Laboratory: Golden, CO, USA, 2013. [Google Scholar]
- Haeseldonckx, D.; D’haeseleer, W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. Int. J. Hydrog. Energy 2007, 32, 1381–1386. [Google Scholar] [CrossRef]
- Mitchell-Larson, E.; Allen, M. Introducing the Carbon Takeback Obligation. 2021. Available online: www.negative-emissions.org (accessed on 30 August 2021).
- Kartha, S.; Lazarus, M.; Tempest, K. Fossil fuel production in a 2 °C world: The Equity Implications of a Diminishing Carbon Budget. SEI Discussion Brief 2016. Available online: https://www.sei.org/publications/equity-carbon-budget/ (accessed on 6 September 2021).
- Carter, A.V.; McKenzie, J. Amplifying “keep it in the ground” first movers: Toward a comparative framework. Soc. Nat. Resour. 2020, 33, 1339–1358. [Google Scholar] [CrossRef]
- Erickson, P.; Lazarus, M. How Would Phasing out U.S. Federal Leases for Fossil Fuel Extraction Affect CO2 Emissions and 2 °C Goals? 2016. Available online: https://www.sei-international.org/publications?pid=2937 (accessed on 26 July 2021).
- Finighan, R. The Case for a Coal Mine Moratorium: Reserves within Existing Mines versus the Carbon Budget; Briefing Paper; University of Melbourne: Melbourne, Australia, 2016. [Google Scholar]
- Hielscher, S.; Wittmayer, J.M.; Dańkowska, A. Social movements in energy transitions: The politics of fossil fuel energy pathways in the United Kingdom, the Netherlands and Poland. Extr. Ind. Soc. 2022. [Google Scholar] [CrossRef]
- Davis, S.J.; Peters, G.P.; Caldeira, K. The supply chain of CO2 emissions. PNAS 2011, 108, 18554–18559. [Google Scholar] [CrossRef] [Green Version]
Publication | Peer− Reviewed? | Includes “Input−Oriented” | Includes “Fossil Fuel Production Cuts” | Implementation Barriers | Overall Relevance |
---|---|---|---|---|---|
Lazarus et al., 2018 [25] | + | + | + | + | A |
Green et al., 2018 [26] | + | + | + | − | A |
Gaulin et al., 2020 [27] | + | + | + | − | A |
Harrison, 2018 [28] | + | − | − | − | C |
Mitchell−Larson et al., 2020 [29] | − | + | + | + | B |
Piggot, 2018 [30] | + | + | + | + | A |
Rempel et al., 2021 [31] | + | − | − | + | B |
Nicolas et al., 2021 [32] | − | + | + | − | B |
Mutua, 2019 [33] | − | + | + | − | A |
Eaton, 2021 [34] | + | + | + | − | A |
Jenkins et al., 2021 [35] | + | + | + | + | A |
Linquiti et al., 2016 [36] | + | + | − | + | A |
Somerville, 2020 [37] | + | + | − | + | A |
Rissman et al., 2020 [38] | + | + | − | + | B |
Mendelevitch, 2016 [39] | − | + | + | + | A |
Armstrong, 2020 [40] | + | + | + | + | A |
Krane, 2017 [41] | (+) | − | − | + | B |
Wilde et al., 2017 [42] | − | + | − | + | A |
Green, 2017 [43] | (+) | − | − | − | B |
Bernasconi, 2021 [44] | − | + | − | − | C |
Iacobuţă et al., 2021 [45] | + | + | − | − | C |
Gard−Murray, 2021 [46] | − | + | − | − | C |
Moz−Christofoletti et al., 2021 [47] | + | − | − | − | C |
Buck, 2021 [48] | − | + | + | − | B |
Boyce, 2019 [49] | − | + | − | − | B–C |
Peszko et al., 2020 [50] | − | + | − | − | B |
Gupta, 2021 [51] | + | − | − | + | C |
Baldwin et al., 2020 [52] | + | + | − | + | B–C |
van der Ploeg, 2020 [53] | + | − | − | − | B–C |
Noisecat, 2021 [54] | − | + | + | + | A |
Okoh, 2021 [55] | + | + | − | + | B |
Abraham−Dukuma, 2021 [56] | − | + | + | − | C |
MacLean, 2019 [57] | − | + | − | + | A |
Oberthür et al., 2019 [58] | − | + | − | − | B–C |
Drudi et al., 2021 [59] | − | + | − | + | C |
Albrecht, 2021 [60] | − | + | − | − | B |
Moss et al., 2020 [61] | − | + | − | − | C |
Bolton, 2020 [62] | − | − | − | + | C |
Sæther, 2016 [63] | − | + | + | − | B–C |
Li et al., 2022 [64] | + | + | + | + | A |
21 | 32 | 16 | 20 | A = 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folkens, L.; Schneider, P. Responsible Carbon Resource Management through Input-Oriented Cap and Trade (IOCT). Sustainability 2022, 14, 5503. https://doi.org/10.3390/su14095503
Folkens L, Schneider P. Responsible Carbon Resource Management through Input-Oriented Cap and Trade (IOCT). Sustainability. 2022; 14(9):5503. https://doi.org/10.3390/su14095503
Chicago/Turabian StyleFolkens, Lukas, and Petra Schneider. 2022. "Responsible Carbon Resource Management through Input-Oriented Cap and Trade (IOCT)" Sustainability 14, no. 9: 5503. https://doi.org/10.3390/su14095503