Distribution, Concentration, and Ecological Risk Assessment of Trace Metals in Surface Sediment of a Tropical Bangladeshi Urban River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sediment Sample Collection and Preparation
2.3. Analysis of Sediment Physicochemical Parameter
2.4. Digestion of Samples and Determination of Trace Metals
2.5. Trace Metal Pollution Assessment in Sediment
2.5.1. Geo-Accumulation Index (Igeo)
2.5.2. Contamination Factor (CF)
2.5.3. Potential Ecological Risk Index (PERI)
2.6. Statistical Analysis
2.7. Geostatistical Method
3. Results and Discussions
3.1. Physicochemical Parameter of Sediments
3.2. Concentration of Trace Metal in Sediment
3.3. Comparison of Trace Metals in Sediment of Karnaphuli River with Sediment Guidelines and Previous Studies
3.4. Risk Assessment of Trace Metals
3.5. Identification of Trace Metals Pollution Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M.; Hoque, M.F. Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environ. Earth. Sci. 2015, 73, 1837–1848. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, M.L.; Islam, M.S.; Rahman, M.Z. Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2016, 5, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Salam, M.A.; Paul, S.C.; Shaari, F.I.; Rak, A.E.; Ahmad, R.B.; Kadir, W.R. Geostatistical distribution and contamination status of heavy metals in the sediment of Perak River, Malaysia. Hydrology 2019, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.R.; De Arana, C.; Ramos-Miras, J.; Gil, C.; Boluda, R. Impact of 70 years urban growth associated with heavy metal pollution. Environ. Pollut. 2015, 196, 156–163. [Google Scholar] [CrossRef]
- Nargis, A.; Harun-Or-Rashid; Jhumur, A.K.; Haque, M.E.; Islam, M.N.; Habib, A.; Cai, M. Human health risk assessment of toxic elements in fish species collected from the river Buriganga, Bangladesh. Hum. Ecol. Risk Assess. 2020, 26, 120–146. [Google Scholar] [CrossRef]
- Sultan, K.; Shazili, N.A. Distribution and geochemical baselines of major, minor and trace elements in tropical topsoils of the Terengganu River basin, Malaysia. J. Geochem. Explor. 2009, 103, 57–68. [Google Scholar] [CrossRef]
- Nobi, E.; Dilipan, E.; Thangaradjou, T.; Sivakumar, K.; Kannan, L. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar. Coast. Shelf Sci. 2010, 87, 253–264. [Google Scholar] [CrossRef]
- Rezayi, M.; Ahmadzadeh, S.; Kassim, A.; Lee, Y.H. Thermodynamic studies of complex formation between Co (Salen) ionophore with Chromate (II) ions in AN-H2O binary solutions by the conductometric method. Int. J. Electrochem. Sci. 2011, 6, 6350–6359. [Google Scholar]
- Bhuyan, M.S.; Bakar, M.A.; Akhtar, A.; Hossain, M.B.; Ali, M.M.; Islam, M.S. Heavy metal contamination in surface water and sediment of the Meghna River, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2017, 8, 273–279. [Google Scholar] [CrossRef]
- Ahmad, M.K.; Islam, S.; Rahman, M.S.; Haque, M.R.; Islam, M.M. Heavy metals in water, sediment and some fishes of Buriganga River, Bangladesh. Int. J. Environ. Res. 2010, 4, 321–332. [Google Scholar]
- Chen, B.; Liang, X.; Xu, W.; Huang, X.; Li, X. The changes in trace metal contamination over the last decade in surface sediments of the Pearl River Estuary, South China. Sci. Total Environ. 2012, 439, 141–149. [Google Scholar] [CrossRef]
- Shikazono, N.; Tatewaki, K.; Mohiuddin, K.; Nakano, T.; Zakir, H. Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan. Environ. Geochem. Health 2012, 34, 13–26. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Hasanuzzaman, M.; Islam, H.M.T.; Mia, M.U.; Khan, R.; Habib, M.A.; Rahman, M.M.; Siddique, M.A.B.; Moniruzzaman, M.; Rashid, M.B. Quantifying Source Apportionment, Co-occurrence, and Ecotoxicological Risk of Metals from Upstream, Lower Midstream, and Downstream River Segments, Bangladesh. Environ. Toxicol. Chem. 2020, 39, 2041–2054. [Google Scholar] [CrossRef]
- Akber, M.A.; Rahman, M.A.; Islam, M.A.; Islam, M.A. Potential ecological risk of metal pollution in lead smelter-contaminated agricultural soils in Khulna, Bangladesh. Environ. Monit. Assess. 2019, 191, 351. [Google Scholar] [CrossRef]
- Wang, A.J.; Kawser, A.; Xu, Y.H.; Ye, X.; Rani, S.; Chen, K.L. Heavy metal accumulation during the last 30 years in the Karnaphuli River estuary, Chittagong, Bangladesh. Springerplus 2016, 5, 2079. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Karim, M.; Zheng, X.; Li, X. Heavy metal and metalloid pollution of soil, water and foods in Bangladesh: A critical review. Int. J. Environ. Res. Public Health 2018, 15, 2825. [Google Scholar] [CrossRef] [Green Version]
- Rampley, C.P.N.; Whitehead, P.G.; Softley, L.; Hossain, M.A.; Jin, L.; David, J.; Shawal, S.; Das, P.; Thompson, I.P.; Huang, W.E.; et al. River toxicity assessment using molecular biosensors: Heavy metal contamination in the Turag-Balu-Buriganga river systems, Dhaka, Bangladesh. Sci. Total Environ. 2020, 703, 134760. [Google Scholar] [CrossRef]
- Bhuyan, M.S.; Bakar, M.A.; Rashed-Un-Nabi, M.; Senapathi, V.; Chung, S.Y.; Islam, M.S. Monitoring and assessment of heavy metal contamination in surface water and sediment of the Old Brahmaputra River, Bangladesh. Appl. Water Sci. 2019, 9, 125. [Google Scholar] [CrossRef] [Green Version]
- Hossain, H.M.Z.; Hossain, Q.H.; Sultan-Ul-Islam, M. Spatial distribution of heavy metals in surface sediments from the Ganges River basin, Bangladesh. Arab. J. Geosci. 2019, 12, 676. [Google Scholar] [CrossRef]
- Dey, S.; Das, J.; Manchur, M. Studies on heavy metal pollution of Karnaphuli River, Chittagong, Bangladesh. IOSR J. Environ. Sci. Toxicol. Food Technol. 2015, 9, 79–83. [Google Scholar]
- Ahmed, A.S.S.; Sultana, S.; Habib, A.; Ullah, H.; Musa, N.; Hossain, M.B.; Rahman, M.M.; Sarker, M.S. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS ONE 2019, 14, e0219336. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Ali, M.L.; Proshad, R.; Islam, S.; Rahman, Z.; Tusher, T.R. Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli River, Bangladesh. Hum. Ecol. Risk. Assess. 2019, 26, 2646–2662. [Google Scholar] [CrossRef]
- Hossain, M.B.; Shanta, T.B.; Ahmed, A.S.; Hossain, M.K.; Semme, S.A. Baseline study of heavy metal contamination in the Sangu River estuary, Chattogram, Bangladesh. Mar. Pollut. Bull. 2019, 140, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Paul, S.C.; Zain, R.A.M.M.; Bhowmik, S.; Nath, M.R.; Siddiqua, S.A.; Aka, T.D.; Iqbal, M.A.; Kadir, W.R.; Ahamad, R.B.; et al. Trace metals contamination potential and health risk assessment of commonly consumed fish of Perak River, Malaysia. PLoS ONE 2020, 15, e0241320. [Google Scholar] [CrossRef]
- Karim, M.; Das, S.K.; Paul, S.C.; Islam, M.F.; Hossain, M.S. Water quality assessment of Karrnaphuli River, Bangladesh using multivariate analysis and pollution indices. Asian J. Environ. Ecol. 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Uddin, M.R.; Bhuyain, R.H.; Ali, M.E.; Ahsan, M.A. Pollution and ecological risk evaluate for the environmentally impact on Karnaphuli River, Bangladesh. Int. J. Fish. Aquat. Res. 2019, 4, 38–48. [Google Scholar]
- Bhuyan, M.S.; Bakar, M.A. Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh. Environ. Sci. Pollut. Res. 2017, 24, 27587–27600. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M. Geochemical speciation and risk assessment of heavy metals in sediments of a river in Bangladesh. Soil Sediment Contam. 2015, 24, 639–655. [Google Scholar] [CrossRef]
- Ahmed, B.; Rahman, M.; Islam, R.; Sammonds, P.; Zhou, C.; Uddin, K.; Al-Hussaini, T.M. Developing a dynamic Web-GIS based landslide early warning system for the Chittagong Metropolitan Area, Bangladesh. ISPRS Int. J. Geoinf. 2018, 7, 485. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.F.; Nur-E-Alam, M.; Salam, M.A.; Rahman, H.; Paul, S.C.; Rak, A.E.; Ambade, B.; Towfiqul Islam, A.R.M. Health Risk and Water Quality Assessment of Surface Water in an Urban River of Bangladesh. Sustainability 2021, 13, 6832. [Google Scholar] [CrossRef]
- Naser, H.; Rahman, M.; Sultana, S.; Quddus, M.; Hossain, M. Heavy metal accumulation in leafy vegetables grown in industrial areas under varying levels of pollution. Bangladesh J. Agric. Res. 2018, 43, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Nazem, M.N.I. Examination of land use/land cover changes, urban growth dynamics, and environmental sustainability in Chittagong city, Bangladesh. Environ. Dev. Sustain. 2016, 18, 697–716. [Google Scholar] [CrossRef]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil reaction and exchangeable acidity. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 167–176. [Google Scholar]
- Emmanuel, A.; Hitler, L.; Udochukwu, A.; Ayoola, A.; Tizhe, T. Assessment of organic carbon and available nitrogen in the soil of some selected farmlands located at Modibbo Adama University of Technology, Adamawa State, Nigeria. J. Environ. Anal. Chem. 2018, 5, 2380–2391. [Google Scholar] [CrossRef]
- Piper, C.S. Soil and Plant Analysis; Adelaide University Hassel Press: Adelaide, Australia, 1950; p. 368. [Google Scholar]
- Misra, V.; Chaturvedi, P.K. Plant uptake/bioavailability of heavy metals from the contaminated soil after treatment with humus soil and hydroxyapatite. Environ. Monit. Assess. 2007, 133, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Pandey, J.; Singh, R. Heavy metals in sediments of Ganga River: Up-and downstream urban influences. Appl. Water Sci. 2017, 7, 1669–1678. [Google Scholar] [CrossRef] [Green Version]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Muller, G. Schwermetallbelstung der sedimente des neckars und seiner nebenflusse: Eine estandsaufnahme. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Zheng, N.A.; Wang, Q.; Liang, Z.; Zheng, D. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ. Pollut. 2008, 154, 135–142. [Google Scholar] [CrossRef]
- Kahal, A.; El-Sorogy, A.S.; Qaysi, S.; Almadani, S.; Kassem, O.M.; Al-Dossari, A. Contamination and ecological risk assessment of the Red Sea coastal sediments, southwest Saudi Arabia. Mar. Pollut. Bull. 2020, 154, 111125. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Teng, A.; Xu, W.; Liu, X. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea. Mar. Pollut. Bull. 2014, 83, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Abadi, M.; Zamani, A.; Parizanganeh, A.; Khosravi, Y.; Badiee, H. Distribution pattern and pollution status by analysis of selected heavy metal amounts in coastal sediments from the southern Caspian Sea. Environ. Monit. Assess. 2019, 191, 144. [Google Scholar] [CrossRef] [PubMed]
- Rostami, S.; Kamani, H.; Shahsavani, S.; Hoseini, M. Environmental monitoring and ecological risk assessment of heavy metals in farmland soils. Hum. Ecol. Risk Assess. 2020, 27, 392–404. [Google Scholar] [CrossRef]
- Lim, W.Y.; Aris, A.Z.; Tengku Ismail, T.H. Spatial geochemical distribution and sources of heavy metals in the sediment of Langat River, Western Peninsular Malaysia. Environ. Forensics 2013, 14, 133–145. [Google Scholar] [CrossRef]
- Khan, M.A.A.; Sikder, N.A. Fluctuations of dissolved organic carbon in the Karnaphuli River near BSCIC industrial estate, Chittagong, Bangladesh. J. Biol. Sci. 2005, 5, 323–325. [Google Scholar]
- Hossain, M.S.; Islam, M.S.; Chowdhury, M.A.T. Shore based pollution sources of the karnafully river and the effects of oil-grease on the riverine environment. J. Geo Environ. 2005, 5, 55–66. [Google Scholar]
- Liu, Q.; Jia, Z.; Li, S.; Hu, J. Assessment of heavy metal pollution, distribution and quantitative source apportionment in surface sediments along a partially mixed estuary (Modaomen, China). Chemosphere 2019, 225, 829–838. [Google Scholar] [CrossRef]
- Yohannes, Y.B.; Ikenaka, Y.; Saengtienchai, A.; Watanabe, K.P.; Nakayama, S.M.; Ishizuka, M. Occurrence, distribution, and ecological risk assessment of DDTs and heavy metals in surface sediments from Lake Awassa—Ethiopian Rift Valley Lake. Environ. Sci. Pollut. Res. 2013, 20, 8663–8671. [Google Scholar] [CrossRef]
- Shehzad, M.T.; Murtaza, G.; Shafeeque, M.; Sabir, M.; Nawaz, H.; Khan, M.J. Assessment of trace elements in urban topsoils of Rawalpindi-Pakistan: A principal component analysis approach. Environ. Monit. Assess. 2019, 191, 65. [Google Scholar] [CrossRef]
- Jain, C.; Gupta, H.; Chakrapani, G. Enrichment and fractionation of heavy metals in bed sediments of River Narmada, India. Environ. Monit. Assess. 2008, 141, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Mamun, A.; Sumon, K.A.; Sukhan, Z.P.; Hoq, E.; Alam, M.W.; Haq, M.S.; Rashid, F.; Rashid, H. Heavy metal contamination in water and sediments of the river Karnafuli from south-east coast of Bangladesh. In Proceedings of the 4th the International Conference on Environmental Aspects of Bangladesh, Fukuoka, Japan, 24–26 August 2013; pp. 113–116. [Google Scholar]
- US Environmental Protection Agency (US EPA). Sediment Quality Guidelines; US Environmental Protection Agency: Washington, DC, USA, 1999.
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hossain, M.B.; Matin, A.; Sarker, M.S.I. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere 2018, 202, 25–32. [Google Scholar] [CrossRef]
- Shil, S.; Islam, M.; Irin, A.; Tusher, T.; Hoq, M. Heavy metal contamination in water and sediments of Passur River near the Sundarbans Mangrove of Bangladesh. J. Environ. Sci. Nat. Resour. 2017, 10, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.; Rahman, M.A.T.; Saha, B.; Kamal, A.K.I. Status of heavy metals in water and sediment of the Meghna River, Bangladesh. Am. J. Environ. Sci. 2015, 11, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.T.A.; Mandal, S.; Chowdhury, D.A.; Tareq, A.R.M.; Rahman, M.M. Bioaccumulation of some heavy metals in ayre fish (Sperata aor Hamilton, 1822), sediment and water of Dhaleshwari river in dry season. Bangladesh J. Zool. 2012, 40, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; He, M.; Liu, X.; Guo, W.; Liu, S. Distribution and contamination assessment of toxic trace elements in sediment of the Daliao River System, China. Environ. Earth. Sci. 2013, 70, 3163–3173. [Google Scholar] [CrossRef]
- Chen, C.W.; Kao, C.M.; Chen, C.F.; Dong, C.D. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 2007, 66, 1431–1440. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.; Jupp, B. Levels of heavy metals in subtidal sediments in the vicinity of thermal power/desalination plants: A case study. Desalination 2009, 244, 261–282. [Google Scholar] [CrossRef]
- Sharifuzzaman, S.M.; Rahman, H.; Ashekuzzaman, S.M.; Islam, M.M.; Chowdhury, S.R.; Hossain, M.S. Heavy Metals Accumulation in Coastal Sediments BT—Environmental Remediation Technologies for Metal-Contaminated Soils; Hasegawa, H., Rahman, I.M.M., Rahman, M.A., Eds.; Springer: Japan, Tokyo, 2016; pp. 21–42. [Google Scholar]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicologial Profiles, Toxic Substances Portal; ATSDR: Atlanta, GA, USA, 2015.
- Huang, X.; Luo, D.; Zhao, D.; Li, N.; Xiao, T.; Liu, J.; Wei, L.; Liu, Y.; Liu, L.; Liu, G. Distribution, Source and Risk Assessment of Heavy Metal (oid)s in Water, Sediments, and Corbicula Fluminea of Xijiang River, China. Int. J. Environ. Res. Public Health 2019, 16, 1823. [Google Scholar] [CrossRef] [Green Version]
Class | Risk for Single Regulator | Pollution Degree | Potential Ecological Risk (PERI) |
---|---|---|---|
1 | < 40 | Low | PERI > 95 |
2 | 40 ≤ ≤ 80 | Moderate | 95 ≤ PERI ≤ 190 |
3 | 80 ≤ ≤ 160 | Considerable | 190 ≤ PERI ≤ 380 |
4 | 160 ≤ ≤ 320 | High | PERI ≥ 380 |
5 | 320 ≤ | Very High |
Sample Station | pH | OM (%) | Cu | Fe (%) | Zn | Pb | Cr | Cd | Ni |
---|---|---|---|---|---|---|---|---|---|
S1 | 6.38 ± 0.15 | 3.30 ± 0.40 | 1.07 ± 0.61 | 58.27 ± 19.93 | 0.93 ± 0.50 | 11.50 ± 1.60 | 45.09 ± 4.69 | 1.05 ± 0.13 | 3.75 ± 0.39 |
S2 | 7.95 ± 0.62 | 1.70 ± 0.11 | 0.62 ± 0.06 | 27.03 ± 7.24 | 0.52 ± 0.04 | 10.44 ± 2.31 | 37.41 ± 1.89 | 0.92 ± 0.21 | 3.08 ± 0.21 |
S3 | 7.05 ± 0.27 | 3.70 ± 0.88 | 0.87 ± 0.09 | 85.70 ± 7.29 | 0.74 ± 0.06 | 10.59 ± 1.01 | 51.11 ± 7.15 | 0.95 ± 0.10 | 4.29 ± 0.60 |
S4 | 6.67 ± 0.14 | 3.60 ± 1.03 | 1.18 ± 0.24 | 78.16 ± 9.55 | 1.01 ± 0.17 | 7.99 ± 1.55 | 45.74 ± 3.05 | 0.81 ± 0.19 | 3.84 ± 0.28 |
S5 | 5.87 ± 0.20 | 4.60 ± 1.11 | 1.53 ± 0.09 | 58.65 ± 11.93 | 1.89 ± 0.27 | 8.53 ± 1.32 | 65.47 ± 8.19 | 0.77 ± 0.12 | 5.36 ± 0.68 |
S6 | 7.33 ± 0.41 | 4.10 ± 1.22 | 1.61 ± 0.33 | 49.40 ± 4.81 | 1.38 ± 0.28 | 10.20 ± 1.33 | 40.06 ± 12.07 | 0.94 ± 0.10 | 3.38 ± 1.02 |
S7 | 7.59 ± 0.17 | 2.90 ± 0.98 | 1.31 ± 0.22 | 53.91 ± 4.12 | 1.10 ± 0.17 | 11.43 ± 3.03 | 48.55 ± 7.60 | 1.02 ± 0.29 | 3.85 ± 0.91 |
S8 | 7.47 ± 0.30 | 3.00 ± 0.88 | 1.32 ± 0.04 | 53.18 ± 8.67 | 1.09 ± 0.03 | 12.90 ± 2.36 | 46.96 ± 4.11 | 1.17 ± 0.21 | 4.10 ± 0.44 |
S9 | 7.40 ± 0.16 | 3.60 ± 0.87 | 1.09 ± 0.17 | 45.88 ± 2.15 | 1.04 ± 0.12 | 11.78 ± 1.17 | 40.57 ± 5.21 | 0.99 ± 0.13 | 3.73 ± 0.46 |
S10 | 7.53 ± 0.10 | 4.00 ± 1.34 | 1.54 ± 0.13 | 23.95 ± 1.07 | 1.22 ± 0.19 | 10.12 ± 0.39 | 40.72 ± 2.97 | 0.93 ± 0.05 | 3.13 ± 0.22 |
S11 | 8.30 ± 0.31 | 3.70 ± 1.14 | 1.14 ± 0.13 | 26.70 ± 3.37 | 0.84 ± 0.13 | 11.84 ± 0.88 | 40.32 ± 4.34 | 1.06 ± 0.11 | 3.56 ± 0.23 |
S12 | 8.05 ± 0.14 | 3.30 ± 1.20 | 1.10 ± 0.11 | 25.66 ± 5.27 | 0.94 ± 0.09 | 8.60 ± 0.95 | 35.62 ± 0.84 | 0.77 ± 0.09 | 3.06 ± 0.12 |
S13 | 7.71 ± 0.02 | 5.40 ± 1.45 | 1.33 ± 0.19 | 42.37 ± 8.87 | 1.53 ± 0.26 | 10.41 ± 0.64 | 35.91 ± 1.94 | 0.93 ± 0.08 | 2.94 ± 0.12 |
S14 | 7.62 ± 0.03 | 3.30 ± 1.11 | 1.12 ± 0.08 | 29.63 ± 3.66 | 0.93 ± 0.05 | 10.57 ± 1.86 | 34.17 ± 2.87 | 0.96 ± 0.17 | 2.93 ± 0.29 |
S15 | 7.56 ± 0.21 | 4.00 ± 1.23 | 1.12 ± 0.07 | 28.31 ± 8.49 | 0.89 ± 0.08 | 8.89 ± 1.12 | 33.91 ± 1.57 | 0.77 ± 0.13 | 2.73 ± 0.06 |
Range | 5.87–8.30 | 1.70–5.40 | 0.62–1.61 | 23.95–85.70 | 0.52–1.89 | 7.99–12.90 | 33.91–65.47 | 0.77–1.17 | 2.73–5.36 |
Mean ± SD | 7.36 ± 0.65 | 3.61 ± 0.83 | 1.20 ±0.26 | 45.79 ± 19.41 | 1.07 ± 0.33 | 10.39 ± 1.40 | 42.77 ± 8.25 | 0.94 ± 0.12 | 3.58 ± 0.68 |
River (Locations) | Cr | Ni | Cd | Pb | Cu | Zn | Fe (%) | References |
---|---|---|---|---|---|---|---|---|
Karnaphuli River (Bangladesh) | 42.77 | 3.58 | 0.94 | 10.39 | 1.20 | 1.07 | 45.79 | Present study |
Karnaphuli River (Bangladesh) | 70.06 | NA | 1.51 | 38.33 | NA | NA | NA | Ali et al. [2] |
Old Brahmaputra River (Bangladesh) | 6.6 | 12.8 | 0.48 | 7.6 | 6.2 | 52.7 | NA | Bhuyan et al. [18] |
Feni River (Bangladesh) | 35.28 | 33.27 | NA | 6.47 | NA | NA | NA | Islam et al. [57] |
Halda River (Bangladesh) | 8.84 | 15.97 | 0.04 | 8.80 | 5.90 | 79.58 | NA | Bhuyan et al. [27] |
Passur River (Bangladesh) | 19.36 | 20.61 | NA | 6.91 | 15.83 | NA | 21,306.03 (mg/kg) | Shil et al. [58] |
Meghna River (Bangladesh) | 31.74 | 76.1 | 0.23 | 9.47 | NA | 79.02 | 1281.42 (mg/kg) | Hasan et al. [59] |
Dhaleshwari River (Bangladesh) | 27.39 | NA | 2.08 | 15.79 | 37.45 | NA | NA | Ahmed et al. [60] |
Perak River (Malaysia) | NA | NA | 2.94 | 28.86 | 24.67 | 55.38 | 35.07 | Salam et al. [3] |
DRS River (China) | NA | NA | 0.29 | 25.2 | 24.6 | 72.5 | 3.65 | Lin et al. [61] |
Tamagawa River (Japan) | NA | NA | 0.15 | 14.4 | 28.77 | 72.7 | 4.01 | Shikazono et al. [12] |
Sediment Guidelines | ||||||||
ASV | 90 | 68 | 0.30 | 20 | 45 | 95 | 4.72 | Turekian and Wedepohl [38] |
TRV | 26 | 16 | 0.60 | 31 | 16 | 110 | 30 | USEPA SQG [55] |
TEL | 37.3 | 35 | 0.59 | 18 | 35.7 | 123 | NA | MacDonald et al. [56] |
Sample Station | Potential Ecological Risk Factor () | Risk Index (PERI) | Pollution Degree | |||||
---|---|---|---|---|---|---|---|---|
Cu | Zn | Pb | Cr | Cd | Ni | |||
S1 | 0.12 | 0.01 | 2.88 | 1.00 | 105 | 0.28 | 109.28 | Moderate |
S2 | 0.07 | 0.01 | 2.61 | 0.83 | 92 | 0.23 | 95.74 | Moderate |
S3 | 0.10 | 0.01 | 2.65 | 1.14 | 95 | 0.32 | 99.20 | Moderate |
S4 | 0.13 | 0.01 | 2.00 | 1.02 | 81 | 0.28 | 84.44 | Low |
S5 | 0.17 | 0.02 | 2.13 | 1.45 | 77 | 0.39 | 81.17 | Low |
S6 | 0.18 | 0.01 | 2.55 | 0.89 | 94 | 0.25 | 97.88 | Moderate |
S7 | 0.15 | 0.01 | 2.86 | 1.08 | 102 | 0.28 | 106.38 | Moderate |
S8 | 0.15 | 0.01 | 3.23 | 1.04 | 117 | 0.30 | 121.73 | Moderate |
S9 | 0.12 | 0.01 | 2.95 | 0.90 | 99 | 0.27 | 103.25 | Moderate |
S10 | 0.17 | 0.01 | 2.53 | 0.90 | 93 | 0.23 | 96.85 | Moderate |
S11 | 0.13 | 0.01 | 2.96 | 0.90 | 106 | 0.26 | 110.25 | Moderate |
S12 | 0.12 | 0.01 | 2.15 | 0.79 | 77 | 0.23 | 80.30 | Low |
S13 | 0.15 | 0.02 | 2.60 | 0.80 | 93 | 0.22 | 96.78 | Moderate |
S14 | 0.12 | 0.01 | 2.64 | 0.76 | 96 | 0.22 | 99.75 | Moderate |
S15 | 0.12 | 0.01 | 2.22 | 0.75 | 77 | 0.20 | 80.31 | Low |
Cu | Fe | Zn | Pb | Cr | Cd | Ni | |
---|---|---|---|---|---|---|---|
Cu | 1 | ||||||
Fe | 0.015 | 1 | |||||
Zn | 0.841 ** | 0.144 | 1 | ||||
Pb | −0.101 | −0.044 | −0.234 | 1 | |||
Cr | 0.283 | 0.657 ** | 0.483 | −0.062 | 1 | ||
Cd | −0.028 | 0.067 | −0.214 | 0.964 ** | −0.010 | 1 | |
Ni | 0.223 | 0.676 ** | 0.431 | 0.028 | 0.974 ** | 0.069 | 1 |
PC1 | PC2 | PC3 | |
---|---|---|---|
pH | −0.42559 | −0.11714 | 0.20314 |
OM | 0.27934 | −0.35917 | 0.30190 |
Cu | 0.29395 | −0.23626 | 0.49318 |
Fe | 0.32270 | 0.31929 | −0.22262 |
Zn | 0.30524 | −0.23902 | 0.39386 |
Pb | −0.16313 | 0.47887 | 0.45225 |
Cr | 0.42922 | 0.27313 | −0.09142 |
Cd | −0.12766 | 0.49136 | 0.46849 |
Ni | 0.40859 | 0.32634 | −0.07548 |
Eigen value | 3.91542 | 2.28297 | 1.64747 |
Percentage of variance | 43.50% | 25.37% | 18.31% |
Cumulative percentage | 43.50% | 68.87% | 87.18% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nur-E-Alam, M.; Salam, M.A.; Dewanjee, S.; Hasan, M.F.; Rahman, H.; Rak, A.E.; Islam, A.R.M.T.; Miah, M.Y. Distribution, Concentration, and Ecological Risk Assessment of Trace Metals in Surface Sediment of a Tropical Bangladeshi Urban River. Sustainability 2022, 14, 5033. https://doi.org/10.3390/su14095033
Nur-E-Alam M, Salam MA, Dewanjee S, Hasan MF, Rahman H, Rak AE, Islam ARMT, Miah MY. Distribution, Concentration, and Ecological Risk Assessment of Trace Metals in Surface Sediment of a Tropical Bangladeshi Urban River. Sustainability. 2022; 14(9):5033. https://doi.org/10.3390/su14095033
Chicago/Turabian StyleNur-E-Alam, Md., Mohammed Abdus Salam, Sanchita Dewanjee, Md. Foysal Hasan, Hafizur Rahman, Aweng Eh Rak, Abu Reza Md. Towfiqul Islam, and Md. Yunus Miah. 2022. "Distribution, Concentration, and Ecological Risk Assessment of Trace Metals in Surface Sediment of a Tropical Bangladeshi Urban River" Sustainability 14, no. 9: 5033. https://doi.org/10.3390/su14095033
APA StyleNur-E-Alam, M., Salam, M. A., Dewanjee, S., Hasan, M. F., Rahman, H., Rak, A. E., Islam, A. R. M. T., & Miah, M. Y. (2022). Distribution, Concentration, and Ecological Risk Assessment of Trace Metals in Surface Sediment of a Tropical Bangladeshi Urban River. Sustainability, 14(9), 5033. https://doi.org/10.3390/su14095033