Assessment of Outdoor Design Conditions on the Energy Performance of Cooling Systems in Future Climate Scenarios—A Case Study over Three Cities of Texas, Unites States
Abstract
:1. Introduction
- Q1: What is the impact of climate change on climatic outdoor design conditions based on the technical report of ASHRAE (DBT and WBT)?
- Q2: How has climate change impacted the process of cooling degree hours (CDH) and heating degree hours (HDH)?
- Q3: To what extent have climate changes impacted the operation of cooling systems, specifically on absorption (Abs) and vapor compression (VC)?
2. Materials and Methods
2.1. Selected Cities
2.1.1. Overview of Selected Cities in Texas
2.1.2. Climate Conditions of Selected Study Cities in Texas
Dallas–Fort Worth
Houston
San Antonio
2.2. Climatic Data
- 99.6% and 99% heating DBT;
- 0.4%, 1%, and 2% cooling DBT;
- 0.4%, 1%, and 2% evaporation WBT.
2.3. Calculation Methods
2.4. ARIMA Forecasting Model
3. Results and Discussion
3.1. Outdoor Design Condition Evaluation in Terms of DBT and WBT Distribution
3.2. Monthly Distribution of HDH, CDH, and NM Days during 1990–2020
3.3. Evaluation of Cooling Systems
3.4. Prediction of Climate Change in Terms of DBT and WBT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, A.; Ho, H.; Yu, Y. Prediction of building electricity usage using Gaussian Process Regression. J. Build. Eng. 2020, 28, 101054. [Google Scholar] [CrossRef]
- Hosseini, M.; Tardy, F.; Lee, B. Cooling and heating energy performance of a building with a variety of roof designs; the effects of future weather data in a cold climate. J. Build. Eng. 2018, 17, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Jafarpur, P.; Berardi, U. Effects of climate changes on building energy demand and thermal comfort in Canadian office buildings adopting different temperature setpoints. J. Build. Eng. 2021, 42, 102725. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Rockwood, D.; Doan, M.K.; Le, T.K.D. Performance assessment of contemporary energy-optimized office buildings under the impact of climate change. J. Build. Eng. 2021, 35, 102089. [Google Scholar] [CrossRef]
- Mariano-Hernández, D.; Hernández-Callejo, L.; Zorita-Lamadrid, A.; Duque-Pérez, O.; García, F.S. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. J. Build. Eng. 2021, 33, 101692. [Google Scholar]
- Karimi, A.; Mohammad, P.; García-Martínez, A.; Moreno-Rangel, D.; Gachkar, D.; Gachkar, S. New developments and future challenges in reducing and controlling heat island effect in urban areas. Environ. Dev. Sustain. 2022, 1–47. [Google Scholar] [CrossRef]
- Huo, T.; Ma, Y.; Cai, W.; Liu, B.; Mu, L. Will the urbanization process influence the peak of carbon emissions in the building sector? A dynamic scenario simulation. Energy Build. 2021, 232, 110590. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, X.; Wang, S.; Chen, J.; Zhao, T.; Dai, E. Times series forecasting for urban building energy consumption based on graph convolutional network. Appl. Energy. 2022, 307, 118231. [Google Scholar] [CrossRef]
- Kyle, P.; Clarke, L.; Rong, F.; Smith, S.J. Climate policy and the long-term evolution of the US buildings sector. Energy J. Int. Assoc. Energy Econ. 2010, 31, 145–172. [Google Scholar]
- U.S. Energy Information Administration. State Energy Data System (SEDS): 1960–2019 (Complete): Consumption. U.S. Energy Inf. Adm. 2019. Available online: https://www.eia.gov/state/seds/seds-data-complete.php#Consumption> (accessed on 2 February 2022).
- Birol, F. The Future of Cooling: Opportunities for Energy-Efficient Air Conditioning. International Energy Agency 2018. Available online: https://iea.blob.core.windows.net/assets/0bb45525-277f-4c9c-8d0c-9c0cb5e7d525/The_Future_of_Cooling.pdf (accessed on 26 January 2022).
- Davis, L.W.; Gertler, P.J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl. Acad. Sci. USA 2015, 112, 5962–5967. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A.; Mohammad, P. Effect of outdoor thermal comfort condition on visit of tourists in historical urban plazas of Sevilla and Madrid. Environ. Sci. Pollut. Res. 2022, 29, 60641–60661. [Google Scholar] [CrossRef]
- Karimi, A.; Mohammad, P.; Gachkar, S.; Gachkar, D.; García-Martínez, A.; Moreno-Rangel, D.; Brown, R.D. Surface Urban Heat Island Assessment of a Cold Desert City: A Case Study over the Isfahan Metropolitan Area of Iran. Atmosphere 2021, 12, 1368. [Google Scholar] [CrossRef]
- Belussi, L.; Barozzi, B.; Bellazzi, A.; Danza, L.; Devitofrancesco, A.; Fanciulli, C.; Ghellere, M.; Guazzi, G.; Meroni, I.; Salamone, F.; et al. A review of performance of zero energy buildings and energy efficiency solutions. J. Build. Eng. 2019, 25, 100772. [Google Scholar] [CrossRef]
- Lam, T.N.T.; Wan, K.K.W.; Wong, S.L.; Lam, J.C. Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong. Appl. Energy 2010, 87, 2321–2327. [Google Scholar] [CrossRef]
- Losi, G.; Bonzanini, A.; Aquino, A.; Poesio, P. Analysis of thermal comfort in a football stadium designed for hot and humid climates by CFD. J. Build. Eng. 2021, 33, 101599. [Google Scholar] [CrossRef]
- Delfani, S.; Karami, M.; Pasdarshahri, H. The effects of climate change on energy consumption of cooling systems in Tehran. Energy Build. 2010, 42, 1952–1957. [Google Scholar] [CrossRef]
- Zhou, Y.; Eom, J.; Clarke, L. The effect of global climate change, population distribution, and climate mitigation on building energy use in the US and China. Clim. Change 2013, 119, 979–992. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Q. Impact of climate change heating and cooling energy use in buildings in the United States. Energy Build. 2014, 82, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Clarke, L.; Eom, J.; Kyle, P.; Patel, P.; Kim, S.H.; Dirks, J.; Jensen, E.; Liu, Y.; Rice, J.; et al. Modeling the effect of climate change on US state-level buildings energy demands in an integrated assessment framework. Appl. Energy 2014, 113, 1077–1088. [Google Scholar] [CrossRef]
- Chakraborty, D.; Alam, A.; Chaudhuri, S.; Başağaoğlu, H.; Sulbaran, T.; Langar, S. Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence. Appl. Energy 2021, 291, 116807. [Google Scholar] [CrossRef]
- Ortiz, L.; González, J.E.; Lin, W. Climate change impacts on peak building cooling energy demand in a coastal megacity. Environ. Res. Lett. 2018, 13, 94008. [Google Scholar] [CrossRef]
- Troup, L.; Eckelman, M.J.; Fannon, D. Simulating future energy consumption in office buildings using an ensemble of morphed climate data. Appl. Energy 2019, 255, 113821. [Google Scholar] [CrossRef]
- Rhodes, J.D. Texas Electric Grid Sets New System-Wide All-Time Peak Demand Record, Twice; Forbes: Jersey, NJ, USA, 2018. [Google Scholar]
- Thevenard, D.J.; Humphries, R.G. The Calculation of Climatic Design Conditions in the 2005 ASHRAE Handbook—Fundamentals. ASHRAE Trans. 2005, 111, 457–466. [Google Scholar]
- Ahmed, A. Climate Change Will Drive Up Energy Use in Texas and Beyond. 2019. Available online: https://www.texasobserver.org/climate-change-will-drive-up-energy-use-in-texas-and-beyond/ (accessed on 29 January 2022).
- Boice, D.C.; Garza, M.E.; Holmes, S.E. The Urban Heat Island of San Antonio, Texas. Curr. Perspect. Environ. Clim. Chang. 2019, 2, 19–35. [Google Scholar]
- Moser, A.; Uhl, E.; Rötzer, T.; Biber, P.; Dahlhausen, J.; Lefer, B.; Pretzsch, H. Effects of climate and the urban heat island effect on urban tree growth in Houston. Open J. For. 2017, 7, 428–445. [Google Scholar] [CrossRef] [Green Version]
- Winguth, A.M.E.; Kelp, B. The urban heat island of the north-central Texas region and its relation to the 2011 severe Texas drought. J. Appl. Meteorol. Climatol. 2013, 52, 2418–2433. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.; Escobedo, J.; Ott, C.; Dedrick, J.; Van Fleet, A. Assessment of Historic and Future Trends of Extreme Weather in Texas, 1900–2036; Prevention Web: Geneva, Switzerland, 2020. [Google Scholar]
- U.S. Census Bureau. QuickFacts: Texas. 2020. Available online: https://www.census.gov/quickfacts/TX> (accessed on 5 February 2022).
- U.S. Environmental Protection Agency. What Climate Change Means for Texas. 2016. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/climate-change-tx.pdf> (accessed on 5 February 2022).
- Reidmiller, D.R.; Avery, C.W.; Easterling, D.R.; Kunkel, K.E.; Lewis, K.L.M.; Maycock, T.K.; Stewart, B.C. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2017; Volume 2. [Google Scholar]
- National Weather Service. DFW Climate Narrative. 2020. Available online: https://www.weather.gov/fwd/dfw_normals> (accessed on 5 February 2022).
- Lott, J.N. 7.8 the Quality Control of the Integrated Surface Hourly Database; American Meteorological Society: Seattle, WA, USA, 2004. [Google Scholar]
- Del Greco, S.A.; Lott, N.; Hawkins, K.; Baldwin, R.; Anders, D.D.; Ray, R.; Dellinger, D.; Jones, P.; Smith, F. J2.1 Surface Data Integration at NOAA’S National Climatic Data Center: Data Format, Processing, QC, and Product Generation. 2006. Available online: https://ams.confex.com/ams/Annual2006/techprogram/paper_100500.htm (accessed on 5 February 2022).
- Wang, S.K. Chapter 27: Climate Design Information. In ASHRAE Fundamentals Handbook 2001; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2001. [Google Scholar]
- ASHRAE. ASHRAE Fundamentals Handbook 2001; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2001. [Google Scholar]
- Castaño-Rosa, R.; Barrella, R.; Sánchez-Guevara, C.; Barbosa, R.; Kyprianou, I.; Paschalidou, E.; Thomaidis, N.; Dokupilova, D.; Gouveia, J.; Kádár, J.; et al. Cooling degree models and future energy demand in the residential sector. A seven-country case study. Sustainability 2021, 13, 2987. [Google Scholar] [CrossRef]
- Ledesma, G.; Nikolic, J.; Pons-Valladares, O. Co-simulation for thermodynamic coupling of crops in buildings. Case study of free-running schools in Quito, Ecuador. Build. Environ. 2022, 207, 108407. [Google Scholar] [CrossRef]
- Kumar, S.; Mathur, J.; Mathur, S.; Singh, M.K.; Loftness, V. An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India. Build Environ. 2016, 109, 135–153. [Google Scholar] [CrossRef] [Green Version]
- Teitelbaum, E.; Jayathissa, P.; Miller, C.; Meggers, F. Design with Comfort: Expanding the psychrometric chart with radiation and convection dimensions. Energy Build. 2020, 209, 109591. [Google Scholar] [CrossRef]
- Austin, T.U.; Department of Mechanical Engineering the University of Texas. Sol Cool Proc First SOLERAS Work April 1980, Univ Pet Miner Dhahran, Saudi Arab. United States-Saudi Arabian Joint Program for Cooperation in the Field of …. 1980; p. 245. Available online: https://www.nrel.gov/docs/legosti/old/4147.pdf (accessed on 5 February 2022).
- Habib, M.F.; Ali, M.; Sheikh, N.A.; Badar, A.W.; Mehmood, S. Building thermal load management through integration of solar assisted absorption and desiccant air conditioning systems: A model-based simulation-optimization approach. J. Build. Eng. 2020, 30, 101279. [Google Scholar] [CrossRef]
- Jani, D.B.; Mishra, M.; Sahoo, P.K. A critical review on application of solar energy as renewable regeneration heat source in solid desiccant–vapor compression hybrid cooling system. J. Build. Eng. 2018, 18, 107–124. [Google Scholar] [CrossRef]
- Jalalizadeh, M.; Fayaz, R.; Delfani, S.; Mosleh, H.J.; Karami, M. Dynamic simulation of a trigeneration system using an absorption cooling system and building integrated photovoltaic thermal solar collectors. J. Build. Eng. 2021, 43, 102482. [Google Scholar] [CrossRef]
- Scoccia, R.; Toppi, T.; Aprile, M.; Motta, M. Absorption and compression heat pump systems for space heating and DHW in European buildings: Energy, environmental and economic analysis. J. Build. Eng. 2018, 16, 94–105. [Google Scholar] [CrossRef]
- Khashei, M.; Bijari, M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft. Comput. 2011, 11, 2664–2675. [Google Scholar] [CrossRef]
- Salman, A.G.; Kanigoro, B. Visibility forecasting using autoregressive integrated moving average (ARIMA) models. Procedia Comput. Sci. 2021, 179, 252–259. [Google Scholar] [CrossRef]
- Reikard, G. Predicting solar radiation at high resolutions: A comparison of time series forecasts. Sol. Energy 2009, 83, 342–349. [Google Scholar] [CrossRef]
- Farhath, Z.A.; Arputhamary, B.; Arockiam, L. A survey on ARIMA forecasting using time series model. Int. J. Comput. Sci. Mob. Comput. 2016, 5, 104–109. [Google Scholar]
- Younes, M.K.; Nopiah, Z.M.; Basri, N.E.A.; Basri, H. Medium term municipal solid waste generation prediction by autoregressive integrated moving average. AIP Conf. Proc. 2014, 1613, 427–435. [Google Scholar]
- Ling, T.-Y.; Yen, N.; Lin, C.-H.; Chandra, W. Critical thinking in the urban living habitat: Attributes criteria and typo-morphological exploration of modularity design. J. Build. Eng. 2021, 44, 103278. [Google Scholar] [CrossRef]
- Kabisch, N.; Stadler, J.; Korn, H.; Bonn, A. Nature-Based Solutions to Climate Change Mitigation and Adaptation in Urban Areas–Perspectives on Indicators, Knowledge Gaps, Opportunities and Barriers for Action; BfN-Skripten: Malmö, Sweden, 2016. [Google Scholar]
- Akkose, G.; Akgul, C.M.; Dino, I.G. Educational building retrofit under climate change and urban heat island effect. J. Build. Eng. 2021, 40, 102294. [Google Scholar] [CrossRef]
- Mathur, U.; Damle, R. Impact of air infiltration rate on the thermal transmittance value of building envelope. J. Build. Eng. 2021, 40, 102302. [Google Scholar] [CrossRef]
- Gouveia, J.P.; Fortes, P.; Seixas, J. Projections of energy services demand for residential buildings: Insights from a bottom-up methodology. Energy 2012, 47, 430–442. [Google Scholar] [CrossRef]
- Figueiredo, R.; Nunes, P.; Panão, M.J.N.O.; Brito, M.C. Country residential building stock electricity demand in future climate–Portuguese case study. Energy Build. 2020, 209, 109694. [Google Scholar] [CrossRef]
Period | City | Heating Days | Cooling Days | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.996 | 0.99 | 0.004 | 0.01 | 0.02 | |||||||
DB | WB | DB | WB | DB | WB | DB | WB | DB | WB | ||
1990–1995 | Dallas | −1.25 | −9.36 | −1 | −9.11 | 36.96 | 30.69 | 36.73 | 30.46 | 36.35 | 30.06 |
1996–2000 | −3.44 | −9.44 | −3.18 | −9.2 | 39.81 | 30.94 | 39.54 | 30.69 | 39.11 | 30.29 | |
2001–2005 | −1.29 | −9.87 | −1.05 | −9.62 | 37.49 | 31.44 | 37.25 | 31.19 | 36.86 | 30.77 | |
2006–2010 | −1.36 | −10.18 | −1.11 | −9.93 | 38.9 | 30.16 | 38.66 | 29.92 | 38.25 | 29.51 | |
2011–2015 | −2.15 | −10.81 | −1.89 | −10.56 | 39.63 | 31.33 | 39.38 | 31.08 | 38.96 | 30.65 | |
2016–2020 | −0.84 | −8.43 | −0.61 | −8.19 | 39.34 | 31.57 | 39.1 | 31.32 | 38.69 | 30.91 | |
1990–1995 | Houston | −3.35 | −5.39 | −4.02 | −5.14 | 36.89 | 35.82 | 36.63 | 31.96 | 35.44 | 31.62 |
1996–2000 | −1.05 | −5.86 | −0.83 | −5.6 | 36.12 | 32.17 | 35.86 | 33.58 | 33.66 | 33.22 | |
2001–2005 | −2.21 | −5.74 | −2.01 | −5.49 | 34.29 | 33.79 | 34.49 | 34.06 | 35.04 | 34.13 | |
2006–2010 | −1.82 | −5.06 | −1.6 | −4.82 | 35.7 | 34.71 | 35.45 | 33.79 | 35.73 | 33.42 | |
2011–2015 | −1.69 | −5.7 | −1.47 | −5.45 | 36.38 | 34 | 36.14 | 35.6 | 36.2 | 35.22 | |
2016–2020 | −2.05 | −4.05 | −1.83 | −3.8 | 37.43 | 36.31 | 37.18 | 36.06 | 36.76 | 35.64 | |
1990–1995 | San Antonio | 0.02 | −2.02 | 0.2 | −1.81 | 32.93 | 31.23 | 32.72 | 31.05 | 32.37 | 30.73 |
1996–2000 | −0.63 | −1.63 | −0.4 | −1.42 | 37.2 | 33.28 | 36.98 | 33.07 | 36.59 | 32.72 | |
2001–2005 | −0.93 | −1.5 | −0.71 | −1.28 | 36.37 | 34.22 | 36.14 | 34.01 | 35.77 | 33.65 | |
2006–2010 | 0.15 | −2.31 | 0.39 | −2.08 | 40.28 | 34.24 | 40.03 | 34.02 | 39.63 | 33.65 | |
2011–2015 | −1.08 | −1.82 | −0.85 | −1.6 | 36.81 | 34.29 | 36.58 | 34.07 | 36.2 | 33.71 | |
2016–2020 | −1.61 | −3.7 | −1.38 | −3.48 | 35.02 | 32.65 | 34.8 | 32.43 | 34.43 | 32.06 |
Season | City | |||
---|---|---|---|---|
Dallas | Houston | San Antonio | ||
Spring | HDH | −2215.1 | −363.95 | −263.05 |
NM | −856 | −360.75 | −76.7 | |
CDH | 634.5 | 0 | 194.5 | |
Summer | HDH | 0 | 0 | 0 |
NM | −4121.55 | −2967.7 | −2811.7 | |
CDH | 3948.75 | 0 | 699.7 | |
Autumn | HDH | −2229.45 | −916.6 | −721.05 |
NM | 1032 | 713.6 | 941.7 | |
CDH | 932.95 | 0 | 128.25 | |
Winter | HDH | −5286.3 | −762.1 | −712.55 |
NM | 4.7 | 1397.75 | 1802.35 | |
CDH | 0 | 0 | −4.2 | |
Annual | HDH | −2774.03 | −510.663 | −424.163 |
NM | −985.212 | −304.275 | −36.0875 | |
CDH | 1379.05 | 0 | 254.5625 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimi, A.; Kim, Y.J.; Zadeh, N.M.; García-Martínez, A.; Delfani, S.; Brown, R.D.; Moreno-Rangel, D.; Mohammad, P. Assessment of Outdoor Design Conditions on the Energy Performance of Cooling Systems in Future Climate Scenarios—A Case Study over Three Cities of Texas, Unites States. Sustainability 2022, 14, 14848. https://doi.org/10.3390/su142214848
Karimi A, Kim YJ, Zadeh NM, García-Martínez A, Delfani S, Brown RD, Moreno-Rangel D, Mohammad P. Assessment of Outdoor Design Conditions on the Energy Performance of Cooling Systems in Future Climate Scenarios—A Case Study over Three Cities of Texas, Unites States. Sustainability. 2022; 14(22):14848. https://doi.org/10.3390/su142214848
Chicago/Turabian StyleKarimi, Alireza, You Joung Kim, Negar Mohammad Zadeh, Antonio García-Martínez, Shahram Delfani, Robert D. Brown, David Moreno-Rangel, and Pir Mohammad. 2022. "Assessment of Outdoor Design Conditions on the Energy Performance of Cooling Systems in Future Climate Scenarios—A Case Study over Three Cities of Texas, Unites States" Sustainability 14, no. 22: 14848. https://doi.org/10.3390/su142214848
APA StyleKarimi, A., Kim, Y. J., Zadeh, N. M., García-Martínez, A., Delfani, S., Brown, R. D., Moreno-Rangel, D., & Mohammad, P. (2022). Assessment of Outdoor Design Conditions on the Energy Performance of Cooling Systems in Future Climate Scenarios—A Case Study over Three Cities of Texas, Unites States. Sustainability, 14(22), 14848. https://doi.org/10.3390/su142214848