Impact on Education and Ecological Footprint as a Consequence of SARS-CoV-2 in the Perception of the Quality of Teaching Engineering Students in the Brazilian Amazon
Abstract
:1. Introduction
- What is the student’s perception regarding the quality of the classes taught and the level of learning by adopting virtual classes?
- How large is the ecological footprint of these students when attending face-to-face classes?
- What was the reduction in the students’ ecological footprint when the courses adopted virtual classes?
2. Literature Review
2.1. Ecological Footprint
2.2. Tools for Calculating the Ecological Footprint
2.3. Teaching–Learning Process during the Pandemic
3. Research Methodology
Data Collection
- The first stage aimed to collect information about the student’s profile, perception of the learning process and performance during online classes, and whether the activities offered by the program were synchronous and/or asynchronous;
- In the second stage, students were invited to answer a questionnaire about their habits before the COVID-19 pandemic, i.e., during the period of face-to-face classes. The questions were adapted from the Global Footprint Network® (Oakland, CA, USA) tool;
- In the third stage, the respondents were required to respond to the same questionnaire as in stage II; however, they were asked to provide information regarding their habits during the COVID-19 pandemic and the resultant period of virtual classes;
- In the fourth stage of this research, an analysis was carried out using the generalized estimating equations (GEE), where we aimed to identify whether there was a significant difference between the resources consumed before and during the COVID-19 pandemic through the measurement of the ecological footprint.
4. Case Description
5. Results and Findings
5.1. Teaching and Learning through Online Classes
5.2. Ecological Footprint before and during the COVID-19 Pandemic
6. Conclusions and Future Works
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.-H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Bartik, A.W.; Bertrand, M.; Cullen, Z.; Glaeser, E.L.; Luca, M.; Stanton, C. The impact of COVID-19 on small business outcomes and expectations. Proc. Natl. Acad. Sci. USA 2020, 117, 17656–17666. [Google Scholar] [CrossRef] [PubMed]
- Presidente del Consiglio dei Ministri. Vedi intero documento Vedi inte ro Documento Page 2 of 10. 2020; pp. 1–10. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/11/20A01605/sg (accessed on 20 August 2021).
- Ruktanonchai, N.W.; Floyd, J.R.; Lai, S.; Ruktanonchai, C.W.; Sadilek, A.; Rente-Lourenco, P.; Ben, X.; Carioli, A.; Gwinn, J.; Steele, J.E.; et al. Assessing the impact of coordinated COVID-19 exit strategies across Europe. Science 2020, 369, 1465–1470. Available online: https://science-sciencemag-org.ez3.periodicos.capes.gov.br/content/369/6510/1465/tab-pdf (accessed on 15 October 2021). [CrossRef]
- Bonaccorsi, G.; Pierri, F.; Cinelli, M.; Flori, A.; Galeazzi, A.; Porcelli, F.; Schmidt, A.L.; Valensise, C.M.; Scala, A.; Quattrociocchi, W.; et al. Economic and social consequences of human mobility restrictions under COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 15530–15535. [Google Scholar] [CrossRef]
- Zaagsma, M.; Volkers, K.M.; Swart, E.A.K.; Schippers, A.P.; Van Hove, G. The use of online support by people with intellectual disabilities living independently during COVID-19. J. Intellect. Disabil. Res. 2020, 64, 750–756. [Google Scholar] [CrossRef]
- McFadden, P.; Russ, E.; Blakeman, P.; Kirwin, G.; Anand, J.; Lähteinen, S.; Baugerud, G.A.; Tham, P. COVID-19 impact on social work admissions and education in seven international universities. Soc. Work Educ. 2020, 39, 1154–1163. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Omidvarborna, H.; Sharma, A.; Sahani, J.; Abhijith, K.; Debele, S.E.; Zavala-Reyes, J.C.; Barwise, Y.; Tiwari, A. Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities. Sustain. Cities Soc. 2020, 62, 102382. [Google Scholar] [CrossRef]
- Lenzen, M.; Li, M.; Malik, A.; Pomponi, F.; Sun, Y.-Y.; Wiedmann, T.; Faturay, F.; Fry, J.; Gallego, B.; Geschke, A.; et al. Global socio-economic losses and environmental gains from the coronavirus pandemic. PLoS ONE 2020, 15, e0235654. [Google Scholar] [CrossRef]
- Bera, B.; Bhattacharjee, S.; Shit, P.K.; Sengupta, N.; Saha, S. Significant impacts of COVID-19 lockdown on urban air pollution in Kolkata (India) and amelioration of environmental health. Environ. Dev. Sustain. 2020, 23, 6913–6940. [Google Scholar] [CrossRef]
- Seo, J.; Jeon, H.; Sung, U.; Sohn, J.-R. Impact of the COVID-19 outbreak on air quality in Korea. Atmosphere 2020, 11, 1137. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.R.; Pascual-Flores, R.M.; Puliafito, S.E.; Camargo-Caicedo, Y.; Berná-Peña, L.L.; Ruggeri, M.F.; Lopez-Noreña, A.I.; Tames, M.F.; Cereceda-Balic, F. Spread of COVID-19, Meteorological Conditions and Air Quality in the City of Buenos Aires, Argentina: Two Facets Observed during Its Pandemic Lockdown. Atmosphere 2020, 11, 1045. [Google Scholar] [CrossRef]
- Tian, L.; Xu, G.; Fan, C.; Zhang, Y.; Gu, C.; Zhang, Y. Analyzing Mega city-regions through integrating urbanization and eco-environment systems: A case study of the Beijing-Tianjin-Hebei region. Int. J. Environ. Res. Public Health 2019, 16, 114. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Urbanization Prospects: The 2018 Revision, Highlights. Population Division, United Nations. 2018. Available online: https://population.un.org/wup/DataQuery/ (accessed on 19 November 2020).
- IBGE. Pesquisa Por Domicílio. 2010. Available online: https://cidades.ibge.gov.br/brasil/pa/panorama (accessed on 15 October 2021).
- Hou, D.; Li, G.; Nathanail, P. An emerging market for groundwater remediation in China: Policies, statistics, and future outlook. Front. Environ. Sci Eng. 2018, 12, 2015–2017. [Google Scholar] [CrossRef]
- Peng, T.; O’Connor, D.; Zhao, B.; Jin, Y.; Zhang, Y.; Tian, L.; Zheng, N.; Li, X.; Hou, D. Spatial distribution of lead contamination in soil and equipment dust at children’s playgrounds in Beijing, China. Environ. Pollut. 2019, 245, 363–370. [Google Scholar] [CrossRef] [PubMed]
- ISO 14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. International Organization for Standardization: Geneva, Switzerland, 2018.
- Institute for Global Environmental Strategis—IGES. IPCC Guidelines for National Greenhouse Inventories; Institute for Global Environmental Strategis—IGES: Hayama, Japan, 2006; 20p. [Google Scholar]
- Rossi, E.; Sales, A. Carbon footprint of coarse aggregate in Brazilian construction. Constr. Build. Mater. 2014, 72, 333–339. [Google Scholar] [CrossRef]
- Biswas, W.K. Carbon footprint and embodied energy consumption assessment of building construction works in Western Australia. Int. J. Sustain. Built. Environ. 2014, 3, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Rashid, A.; Irum, A.; Malik, I.A.; Ashraf, A.; Rongqiong, L.; Liu, G.; Ullah, H.; Ali, M.U.; Yousaf, B. Ecological footprint of Rawalpindi; Pakistan’s first footprint analysis from urbanization perspective. J. Clean. Prod. 2018, 170, 362–368. [Google Scholar] [CrossRef]
- Ercan, T.; Onat, N.C.; Tatari, O. Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach. J. Clean. Prod. 2016, 133, 1260–1276. [Google Scholar] [CrossRef]
- Xun, F.; Hu, Y. Evaluation of ecological sustainability based on a revised three-dimensional ecological footprint model in Shandong Province, China. Sci. Total Environ. 2019, 649, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Huang, Z.; Ries, R.J.; Masanet, E. The embodied air pollutant emissions and water footprints of buildings in China: A quantification using disaggregated input-output life cycle inventory model. J. Clean. Prod. 2016, 113, 274–284. [Google Scholar] [CrossRef]
- Sinha, R.; Lennartsson, M.; Frostell, B. Environmental footprint assessment of building structures: A comparative study. Build. Environ. 2016, 104, 162–171. [Google Scholar] [CrossRef]
- Zabalza Bribián, I.; Valero Capilla, A.; Aranda Usón, A. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build. Environ. 2011, 46, 1133–1140. [Google Scholar] [CrossRef]
- González-Vallejo, P.; Marrero, M.; Solís-Guzmán, J. The ecological footprint of dwelling construction in Spain. Ecol. Indic. 2015, 52, 75–84. [Google Scholar] [CrossRef]
- Finkbeiner, M. Product environmental footprint—Breakthrough or breakdown for policy implementation of life cycle assessment? Int. J. Life Cycle Assess. 2014, 19, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Galli, A.; Wackernagel, M.; Iha, K.; Lazarus, E. Ecological footprint: Implications for biodiversity. Biol. Conserv. 2014, 173, 121–132. [Google Scholar] [CrossRef]
- O’Brien, M.; Schütz, H.; Bringezu, S. The land footprint of the EU bioeconomy: Monitoring tools, gaps and needs. Land Use Policy 2015, 47, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Neppach, S.; Nunes, K.R.A.; Schebek, L. Organizational Environmental Footprint in German construction companies. J. Clean. Prod. 2017, 142, 78–86. [Google Scholar] [CrossRef]
- Yang, X.; Hu, M.; Wu, J.; Zhao, B. Building-information-modeling enabled life cycle assessment, a case study on carbon footprint accounting for a residential building in China. J. Clean. Prod. 2018, 183, 729–743. [Google Scholar] [CrossRef]
- Pellegrini, G.; Ingrao, C.; Camposeo, S.; Tricase, C.; Contò, F.; Huisingh, D. Application of water footprint to olive growing systems in the Apulia region: A comparative assessment. J. Clean. Prod. 2016, 112, 2407–2418. [Google Scholar] [CrossRef]
- Florindo, T.J.; Medeiros, D.; Florindo, G.I.B.; Talamini, E.; da Costa, J.S.; Ruviaro, C.F. Carbon footprint and Life Cycle Costing of beef cattle in the Brazilian midwest. J. Clean. Prod. 2017, 147, 119–129. [Google Scholar] [CrossRef]
- Franz, J.; Papyrakis, E. Online calculators of ecological footprint: Do they promote or dissuade sustainable behaviour? Sustain. Dev. 2011, 19, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Collins, A.; Galili, A.; Patrizi, N.; Pulselli, F.M. Learning and teaching sustainability: The contribution of Ecological Footprint calculators. J. Clean. Prod. 2018, 174, 1000–1010. [Google Scholar] [CrossRef]
- Bao, W.; United Nations Educational, Scientific and Cultural Organisation. COVID-19 Educational Disruption and Response; UNESCO: Paris, France, 2020. [Google Scholar]
- IBGE—Instituto Brasileiro De Geografia E Estatística. Sidra: Sistema IBGE de Recuperação Automática; IBGE: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Bao, W. COVID-19 and online teaching in higher education: A case study of Peking University. Hum. Behav. Emerg. Technol. 2020, 2, 113–115. [Google Scholar] [CrossRef] [Green Version]
- Gusso, H.L.; Archer, A.B.; Luiz, F.B.; Sahão, F.T.; Luca, G.G.D.; Henklain, M.H.O.; Gonçalves, V.M. Ensino Superior em tempo de pandemia: Diretrizes à Gestão Universitária. Educ. Soc. 2020, 41, 1–27. [Google Scholar] [CrossRef]
- Freire, P. Pedagogia da Autonomia: Saberes Necessários à Prática Educativa, 25th ed.; Paz e Terra: São Paulo, Brazil, 1996. [Google Scholar]
- Huber, S.G.; Helm, C. COVID-19 and schooling: Evaluation, assessment and accountability in times of crises—Reacting quickly to explore key issues for policy, practice and research with the school barometer. Educ. Assess. Eval. Account. 2020, 32, 237–270. [Google Scholar] [CrossRef] [PubMed]
- Zajdel, M.; Michalcewicz-Kaniowska, M.; Modrzyński, P.; Komarnicka, A.; Modrzyńska, J. Conditions and Determinants of Distance Education for Students during the COVID-19 Pandemic—Evaluation in the Kuyavia-Pomerania Region in Poland. Sustainability 2021, 13, 10373. [Google Scholar] [CrossRef]
- Rapanta, C.; Botturi, L.; Goodyear, P.; Guàrdia, L.; Koole, M. Online University Teaching During and After the COVID-19 Crisis: Refocusing Teacher Presence and Learning Activity. Postdigital Sci. Educ. 2020, 2, 923–945. [Google Scholar] [CrossRef]
- Novitasari, D.; Yuwono, T.; Cahyono, Y.; Asbari, M.; Sajudin, M. Effect of Hard Skills, Soft Skills, Organizational Learning and Innovation Capability on Indonesian Teachers’ Performance during COVID-19 Pandemic. Solid State Technol. 2020, 63, 2927–2952. Available online: http://www.solidstatetechnology.us/index.php/JSST/article/view/3379 (accessed on 1 June 2022).
- Alonso-García, M.; Garrido-Letrán, T.; Sánchez-Alzola, A. Impact of COVID-19 on Educational Sustainability. Initial Perceptions of the University Community of the University of Cádiz. Sustainability 2021, 13, 5938. [Google Scholar] [CrossRef]
- IESALC; UNESCO. Cerrar Ahora Para Reabrir Mejor Mañana? Perfiles Educativos 43.174. 2021. Available online: https://www.iesalc.unesco.org/wp-content/uploads/2021/07/Closing-now-to-reopen-better-tomorrow-FINAL_EN.pdf (accessed on 18 January 2022).
- Shahzad, A.; Hassan, R.; Aremu, A.Y.; Hussain, A.; Lodhi, R.N. Effects of COVID-19 in E-learning on higher education institution students: The group comparison between male and female. Qual. Quant. 2021, 55, 805–826. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sarkar, P. Efficiency of blended learning inreduction of anxiety: With special reference to high schoolstudents. Int. J. Grid Distrib. Comput. 2020, 13, 277–285. Available online: https://www.researchgate.net/profile/Dr-Sharma-33/publication/343651122_Sharma_S_and_Sarkar_P_2020_Efficiency_of_Blended_Learning_in_reduction_of_Anxiety_with_special_reference_to_High_School_Students_International_Journal_of_Grid_and_Distributed_Computing_13_1_277-285_20/links/5f6032284585154dbbd2d87f/Sharma-S-and-Sarkar-P-2020-Efficiency-of-Blended-Learning-in-reduction-of-Anxiety-with-special-reference-to-High-School-Students-International-Journal-of-Grid-and-Distributed-Computing-13-1-277-28.pdf (accessed on 9 February 2022).
- Rasheed, R.A.; Kamsin, A.; Abdullah, N.A. Challenges in the online component of blended learning: A systematic review. Comput. Educ. 2020, 144, 103701. [Google Scholar] [CrossRef]
- Watermeyer, R.; Crick, T.; Knight, C.; Goodall, J. COVID-19 and digital disruption in UK universities: Afflictions and affordances of emergency online migration. High. Educ. 2021, 81, 623–641. [Google Scholar] [CrossRef]
- Lassoued, Z.; Alhendawi, M.; Bashitialshaaer, R.J.E.S. An exploratory study of the obstacles for achieving quality in distance learning during the COVID-19 pandemic. Educ. Sci. 2020, 10, 232. [Google Scholar] [CrossRef]
- Susilorini, R.M.I.R.; Ismail, A.; Wastunimpuna, B.Y.A.; Wardhani, D.K.; Prameswari, L.L.N.; Amasto, A.H.; Suryono, A. Tourism Village Carbon Footprint after COVID-19 Pandemic: A Challenge to Sustainability. Sustainability 2022, 14, 2400. [Google Scholar] [CrossRef]
- Maués, L.; Beltrão, N.; Silva, I. GHG Emissions Assessment of Civil Construction Waste Disposal and Transportation Process in the Eastern Amazon. Sustainability 2021, 13, 5666. [Google Scholar] [CrossRef]
- Potenza, R.F.; Quintana, G.O.; Cardoso, A.M.; Tsai, S.D.; Cremer, M.S.; Silva, F.B.; Carvalho, K.A.; Coluna, I.; Shimbo, J.; Silva, C.; et al. Análise das Emissões Brasileiras de e suas Implicações para as metas Climáticas do Brasil 1970–2020 Gases de Efeito Estufa. Seeg. 2021, pp. 1–55. Available online: https://seeg-br.s3.amazonaws.com/DocumentosAnaliticos/SEEG_9/OC_03_relatorio_2021_FINAL.pdf (accessed on 10 January 2022).
- Cioca, L.-I.; Bratu, M.L. Sustainable Education in the Context of COVID-19: Study of the Social Perception and Well-Being of Students at the Faculty of Engineering in Sibiu, Romania. Sustainability 2021, 13, 12805. [Google Scholar] [CrossRef]
Variable | Frequency | |
---|---|---|
Course | Civil Engineering | 117 |
Sanitary and Environmental Engineering | 32 | |
Sex | Male | 101 |
Female | 46 | |
Non-binary | 2 | |
Age group | Up to 20 years | 23 |
Between 21 and 25 years old | 94 | |
Between 26 and 30 years old | 13 | |
Over 30 years old | 19 | |
Resources used to follow classes | Cell phone only | 51 |
Laptop only | 71 | |
Computer only | 14 | |
Computer and cell phone | 2 | |
Laptop and cell phone | 8 | |
Cell phone and tablet | 1 | |
Computer, laptop and cell phone | 2 |
Parameters | Estimation | Standard Error | Wald Test | p * |
---|---|---|---|---|
intercept | 7.2453 | 0.3408 | 452,075 | <2 × 10−16 |
Time | −0.3872 | 0.2130 | 3303 | 0.0691 |
Food | ||||
Parameters | Estimation | Standard Error | Wald test | p * |
intercept | 2.1858 | 0.0892 | 600.59 | <2 × 10−16 |
Time | −0.0939 | 0.0584 | 2.59 | 0.11 |
Housing | ||||
Parameters | Estimation | Standard Error | Wald test | p * |
intercept | 1.9095 | 0.2568 | 55.3 | 1.00 × 10−13 |
Time | −0.0101 | 0.1628 | 0 | 0.95 |
Mobility | ||||
Parameters | Estimation | Standard Error | Wald test | p * |
intercept | 1.105 | 0.117 | 89.7 | <2.00 × 10−16 |
Time | −0.419 | 0.064 | 42.8 | 6.10E-11 |
Goods | ||||
Parameters | Estimation | Standard Error | Wald test | p * |
intercept | 0.927 | 0.0873 | 112.8 | <2.00 × 10−16 |
Time | 0.2054 | 0.0594 | 11.9 | 0.00055 |
Services | ||||
Parameters | Estimation | Standard Error | Wald test | p * |
intercept | 1.1345 | 0.0372 | 930 | <2.00 × 10−16 |
Time | −0.0777 | 0.0224 | 12 | 0.00053 |
Groups | Previous Ecological Footprint (GHA) | Ecological Footprint during the Pandemic (GHA) | Variation |
---|---|---|---|
Food | 2.26 | 2.29 | +1.3% |
Housing | 2.02 | 2.07 | −2.47% |
Mobility | 0.95 | 0.37 | −61% |
Goods | 1.31 | 1.67 | +27.5% |
Services | 1.18 | 1.14 | −3.4% |
Total (GHA) | 7.72 | 7.54 | −2.33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maués, L.M.F.; Moreira, F.d.S.; Cordeiro, L.d.N.P.; Saraiva, R.L.d.P.; Santos Junior, P.C.d.; Pinheiro, O.M.P. Impact on Education and Ecological Footprint as a Consequence of SARS-CoV-2 in the Perception of the Quality of Teaching Engineering Students in the Brazilian Amazon. Sustainability 2022, 14, 9891. https://doi.org/10.3390/su14169891
Maués LMF, Moreira FdS, Cordeiro LdNP, Saraiva RLdP, Santos Junior PCd, Pinheiro OMP. Impact on Education and Ecological Footprint as a Consequence of SARS-CoV-2 in the Perception of the Quality of Teaching Engineering Students in the Brazilian Amazon. Sustainability. 2022; 14(16):9891. https://doi.org/10.3390/su14169891
Chicago/Turabian StyleMaués, Luiz Maurício Furtado, Felipe de Sá Moreira, Luciana de Nazaré Pinheiro Cordeiro, Raísse Layane de Paula Saraiva, Paulo Cerqueira dos Santos Junior, and Olga Maria Pinheiro Pinheiro. 2022. "Impact on Education and Ecological Footprint as a Consequence of SARS-CoV-2 in the Perception of the Quality of Teaching Engineering Students in the Brazilian Amazon" Sustainability 14, no. 16: 9891. https://doi.org/10.3390/su14169891