Environmental Impacts of Organic and Biodynamic Wine Produced in Northeast Italy
Abstract
:1. Introduction
2. Methods
2.1. Goal and Scope
2.2. System Boundaries
2.3. Systems under Study and Data Acquisition
2.4. Life-Cycle Inventory
2.4.1. Vineyard Materials
- -
- Concrete poles: 30 years
- -
- Wooden poles: 12 years
- -
- Iron wires and iron stakes: 20 years
- -
- Galvanized iron wires: 50 years
- -
- Steel wires: 60 years
- -
- Paper twist ties: 1 year
- -
- Iron twist ties: 2 years
2.4.2. Fertilization and Pest Management
2.4.3. Agricultural Machinery Use
2.4.4. Transport
2.4.5. Winemaking
2.4.6. Packaging Materials
3. Results and Discussion
3.1. ORG1
3.2. ORG2
3.3. BD1
3.4. BD2
3.5. Farm Systems Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Transforming Our World: The 2030 Agenda for Sustainable Development. In A New Era in Global Health; Rosa, W. (Ed.) Springer Publishing Company: New York, NY, USA, 2017; ISBN 978-0-8261-9011-6. [Google Scholar]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The Role of Life Cycle Assessment in Supporting Sustainable Agri-Food Systems: A Review of the Challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Christ, K.L.; Burritt, R.L. Critical Environmental Concerns in Wine Production: An Integrative Review. J. Clean. Prod. 2013, 53, 232–242. [Google Scholar] [CrossRef]
- D’Amico, M.; Di Vita, G.; Monaco, L. Exploring Environmental Consciousness and Consumer Preferences for Organic Wines without Sulfites. J. Clean. Prod. 2016, 120, 64–71. [Google Scholar] [CrossRef]
- Castellini, A.; Mauracher, C.; Troiano, S. An Overview of the Biodynamic Wine Sector. IJWR 2017, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tait, P.; Saunders, C.; Dalziel, P.; Rutherford, P.; Driver, T.; Guenther, M. Estimating Wine Consumer Preferences for Sustainability Attributes: A Discrete Choice Experiment of Californian Sauvignon Blanc Purchasers. J. Clean. Prod. 2019, 233, 412–420. [Google Scholar] [CrossRef]
- Nassivera, F.; Gallenti, G.; Troiano, S.; Marangon, F.; Cosmina, M.; Bogoni, P.; Campisi, B.; Carzedda, M. Italian Millennials’ Preferences for Wine: An Exploratory Study. Br. Food J. 2020, 122, 2403–2423. [Google Scholar] [CrossRef]
- Rugani, B.; Vázquez-Rowe, I.; Benedetto, G.; Benetto, E. A Comprehensive Review of Carbon Footprint Analysis as an Extended Environmental Indicator in the Wine Sector. J. Clean. Prod. 2013, 54, 61–77. [Google Scholar] [CrossRef]
- Corbo, C.; Lamastra, L.; Capri, E. From Environmental to Sustainability Programs: A Review of Sustainability Initiatives in the Italian Wine Sector. Sustainability 2014, 6, 2133–2159. [Google Scholar] [CrossRef] [Green Version]
- Maicas, S.; Mateo, J.J. Sustainability of Wine Production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef] [Green Version]
- Varia, F.; Macaluso, D.; Agosta, I.; Spatafora, F.; Guccione, G.D. Transitioning towards Organic Farming: Perspectives for the Future of the Italian Organic Wine Sector. Sustainability 2021, 13, 2815. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A Review of Life Cycle Assessment (LCA) on Some Food Products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental Impacts of Organic and Conventional Agricultural Products—Are the Differences Captured by Life Cycle Assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Petti, L.; Arzoumanidis, I.; Benedetto, G.; Bosco, S.; Cellura, M.; De Camillis, C.; Fantin, V.; Masotti, P.; Pattara, C.; Raggi, A.; et al. Life Cycle Assessment in the Wine Sector. In Life Cycle Assessment in the Agri-Food Sector: Case Studies, Methodological Issues and Best Practices; Notarnicola, B., Salomone, R., Petti, L., Renzulli, P.A., Roma, R., Cerutti, A.K., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 123–184. ISBN 978-3-319-11940-3. [Google Scholar]
- Steiner, R. Agriculture Course: The Birth of the Biodynamic Method; Rudolf Steiner Press: East Sussex, UK, 2013; ISBN 978-1-85584-353-0. [Google Scholar]
- Chalker-Scott, L. The Science Behind Biodynamic Preparations: A Literature Review. Hort. Technol. 2013, 23, 814–819. [Google Scholar] [CrossRef] [Green Version]
- Brock, C.; Geier, U.; Greiner, R.; Olbrich-Majer, M.; Fritz, J. Research in Biodynamic Food and Farming—A Review. Open Agric. 2019, 4, 743–757. [Google Scholar] [CrossRef]
- Christel, A.; Maron, P.-A.; Ranjard, L. Impact of Farming Systems on Soil Ecological Quality: A Meta-Analysis. Environ. Chem. Lett. 2021, 19, 4603–4625. [Google Scholar] [CrossRef]
- Döring, J.; Collins, C.; Frisch, M.; Kauer, R. Organic and Biodynamic Viticulture Affect Biodiversity and Properties of Vine and Wine: A Systematic Quantitative Review. Am. J. Enol. Vitic. 2019, 70, 221–242. [Google Scholar] [CrossRef]
- Cravero, M.C. Organic and Biodynamic Wines Quality and Characteristics: A Review. Food Chem. 2019, 295, 334–340. [Google Scholar] [CrossRef]
- Picchi, M.; Canuti, V.; Bertuccioli, M.; Zanoni, B. The Influence of Conventional and Biodynamic Winemaking Processes on the Quality of Sangiovese Wine. Int. J. Wine Res. 2020, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Maioli, F.; Picchi, M.; Millarini, V.; Domizio, P.; Scozzafava, G.; Zanoni, B.; Canuti, V. A Methodological Approach to Assess the Effect of Organic, Biodynamic, and Conventional Production Processes on the Intrinsic and Perceived Quality of a Typical Wine: The Case Study of Chianti Docg. Foods 2021, 10, 1894. [Google Scholar] [CrossRef]
- Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. 1. Available online: https://eur-lex.europa.eu/eli/reg/2018/848/oj (accessed on 25 March 2022).
- Biodynamic Federation—Demeter International e.V. Production, Processing and Labelling International Standard for the Use and Certification of Demeter, Biodynamic and Related Trademarks (as of: Octomber 2021). Available online: https://demeter.net/certification/standard/ (accessed on 27 January 2022).
- Willer, H.; Trávníček, J.; Meier, C.; Schlatter, B. The World of Organic Agriculture. Statistics and Emerging Trends 2021. Research Institute of Organic Agriculture FiBL, Frick, and IFOAM—Organics International, Bonn (v20210301). 2021. Available online: https://www.organic-world.net/yearbook/yearbook-2021.html/ (accessed on 27 January 2022).
- Biodynamic Federation—Demeter International e.V. Biodynamic Winegrowers International. Available online: https://demeter.net/demeter-products/wine/ (accessed on 27 January 2022).
- Ferrara, C.; De Feo, G. Life Cycle Assessment Application to the Wine Sector: A Critical Review. Sustainability 2018, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Maesano, G.; Milani, M.; Nicolosi, E.; D’Amico, M.; Chinnici, G. A Network Analysis for Environmental Assessment in Wine Supply Chain. Agronomy 2022, 12, 211. [Google Scholar] [CrossRef]
- Point, E.; Tyedmers, P.; Naugler, C. Life Cycle Environmental Impacts of Wine Production and Consumption in Nova Scotia, Canada. J. Clean. Prod. 2012, 27, 11–20. [Google Scholar] [CrossRef]
- Neto, B.; Dias, A.C.; Machado, M. Life Cycle Assessment of the Supply Chain of a Portuguese Wine: From Viticulture to Distribution. Int. J. Life Cycle Ass. 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Amienyo, D.; Camilleri, C.; Azapagic, A. Environmental Impacts of Consumption of Australian Red Wine in the UK. J. Clean. Prod. 2014, 72, 110–119. [Google Scholar] [CrossRef]
- Fusi, A.; Guidetti, R.; Benedetto, G. Delving into the Environmental Aspect of a Sardinian White Wine: From Partial to Total Life Cycle Assessment. Sci. Total Environ. 2014, 472, 989–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva-Rey, P.; Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Comparative Life Cycle Assessment in the Wine Sector: Biodynamic vs. Conventional Viticulture Activities in NW Spain. J. Clean. Prod. 2014, 65, 330–341. [Google Scholar] [CrossRef]
- Abbott, T.; Longbottom, M.; Wilkes, E.; Johnson, D. AWRI: Assessing the Environmental Credentials of Australian Wine. Wine Vitic. J. 2016, 31, 35–37. [Google Scholar] [CrossRef]
- Falcone, G.; De Luca, A.I.; Stillitano, T.; Strano, A.; Romeo, G.; Gulisano, G. Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis. Sustainability 2016, 8, 793. [Google Scholar] [CrossRef] [Green Version]
- Iannone, R.; Miranda, S.; Riemma, S.; De Marco, I. Improving Environmental Performances in Wine Production by a Life Cycle Assessment Analysis. J. Clean. Prod. 2016, 111, 172–180. [Google Scholar] [CrossRef]
- Jradi, S.; Chameeva, T.B.; Delhomme, B.; Jaegler, A. Tracking Carbon Footprint in French Vineyards: A DEA Performance Assessment. J. Clean. Prod. 2018, 192, 43–54. [Google Scholar] [CrossRef]
- Martins, A.A.; Araújo, A.R.; Graça, A.; Caetano, N.S.; Mata, T.M. Towards Sustainable Wine: Comparison of Two Portuguese Wines. J. Clean. Prod. 2018, 183, 662–676. [Google Scholar] [CrossRef]
- Dede, D.; Didaskalou, E.; Bersimis, S.; Georgakellos, D. A Statistical Framework for Assessing Environmental Performance of Quality Wine Production. Sustainability 2020, 12, 10246. [Google Scholar] [CrossRef]
- Ncube, A.; Fiorentino, G.; Colella, M.; Ulgiati, S. Upgrading Wineries to Biorefineries within a Circular Economy Perspective: An Italian Case Study. Sci. Total Environ. 2021, 775, 145809. [Google Scholar] [CrossRef] [PubMed]
- Volanti, M.; Cubillas Martínez, C.; Cespi, D.; Lopez-Baeza, E.; Vassura, I.; Passarini, F. Environmental Sustainability Assessment of Organic Vineyard Practices from a Life Cycle Perspective. Int. J. Environ. Sci. Technol. 2021, 19, 4645–4658. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment e Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment. International Organization for Standardization: Geneva, Switzerland, 2006.
- PRé Consultants, B.V. SimaPro (Version 8.3.0) [Computer Software]; Pré Sustainability: Amersfoort, The Netherlands, 2017; Available online: https://simapro.com (accessed on 10 March 2022).
- ISTAT. Principali Statistiche Geografiche sui Comuni. Available online: https://www.istat.it/it/archivio/156224 (accessed on 8 February 2022).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Ass. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Notarnicola, B.; Tassielli, G.; Nicoletti, G.M. Life Cycle Assessment (LCA) of Wine Production. In Environmentally-Friendly Food Processing; Mattsson, B., Sonesson, U., Eds.; Woodhead Publishing: Sawston, UK, 2003; pp. 306–326. ISBN 978-1-85573-677-1. [Google Scholar]
- Heller, M. Food Product Environmental Footprint Literature Summary: Wine. In Monographic Report by: Center for Sustainable Systems University of Michigan; State of Oregon, Dept Environmental Quality: Portland, OR, USA, 2017; pp. 1–17. [Google Scholar]
- Cooper, J. Briefing: Developing a More Circular Economy Model for Wine Packaging and Delivery. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2019, 172, 40–41. [Google Scholar] [CrossRef]
- Ferrara, C.; De Feo, G. Comparative Life Cycle Assessment of Alternative Systems for Wine Packaging in Italy. J. Clean. Prod. 2020, 259, 120888. [Google Scholar] [CrossRef]
- De Feo, G.; Ferrara, C.; Minichini, F. Comparison between the Perceived and Actual Environmental Sustainability of Beverage Packagings in Glass, Plastic, and Aluminium. J. Clean. Prod. 2022, 333, 130158. [Google Scholar] [CrossRef]
- Fuentes-Pila, J.; Luis-Garcia, J. TESLA (Transfering Energy Save Laid on Agroindustry—EU Project)—Manuale Sull’ Efficienza Energetica Nelle Aziende Vinicole. 2014. Available online: http://teslaproject.chil.me/download-doc/63966 (accessed on 27 January 2022).
- Tasca, A.L.; Nessi, S.; Rigamonti, L. Environmental Sustainability of Agri-Food Supply Chains: An LCA Comparison between Two Alternative Forms of Production and Distribution of Endive in Northern Italy. J. Clean. Prod. 2017, 140, 725–741. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does Organic Farming Reduce Environmental Impacts?—A Meta-Analysis of European Research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
Company | Wine | Vineyard Extension (ha) | Grape Production (kg) | Wine Production (L) | |
---|---|---|---|---|---|
Gambellara (VI) | |||||
ORG1 | Organic | Sparkling white wine, 100% Garganega | 0.87 | 8077 | 5250 |
BD1 | Biodynamic | Sparkling white wine, 100% Garganega | 0.76 | 11,700 | 9360 |
Corno di Rosazzo (UD) | |||||
ORG2 | Organic | Still white wine, 100% Friulano | 0.70 | 6285 | 4400 |
BD2 | Biodynamic | Still white wine, 100% Friulano | 2.60 | 22,000 | 15,000 |
Inputs | Units | Gambellara (VI) | Corno di Rosazzo (UD) | ||
---|---|---|---|---|---|
ORG | BD1 | ORG2 | BD2 | ||
Vineyard materials (trellis system) | |||||
Concrete (poles) | g | 169.8 | 63.7 | - | 91.0 |
Untreated wood (poles) | m3 | - | 6.23 × 10−6 | 1.81 × 10−4 | 1.68 × 10−4 |
Iron (stakes and twist ties) | g | 0.628 | - | 0.0128 | - |
Galvanized iron (wire) | g | 1.070 | - | 0.164 | - |
Steel (wire) | g | - | 0.3190 | - | 0.400 |
Paper (twist ties) | g | - | - | 0.0426 | - |
Fertilization and pest management | |||||
N-fertilizer | g | 2.59 | - | - | 4.16 |
P-fertilizer (mostly P2O5) | g | 4.31 | - | - | 3.64 |
K-fertilizer (mostly K2O) | g | 6.04 | - | - | 1.04 |
Sulfur (mostly SO3) | g | 4.29 | - | - | - |
Cattle manure | g | - | 0.0219 | - | 0.0315 |
Silica dust | g | - | - | - | 0.0070 |
Water | L | - | 0.0077 | - | 0.0156 |
Wastes | |||||
Plastic | g | 2.140 | - | - | 0.208 |
Cardboard and paper | g | - | - | - | 0.067 |
Pest management | |||||
Copper-based compounds | g | 0.615 | 0.262 | 1.32 | 0.312 |
Sulfur | g | 5.742 | 5.729 | 5.547 | 3.580 |
Pyrethrin | g | - | - | - | 0.091 |
Water | L | 0.80 | 0.1731 | 1.1083 | 0.0949 |
Wastes | |||||
Plastic | g | 0.143 | 0.128 | 0.0511 | 0.005 |
Cardboard and paper | g | 0.857 | 0.160 | 0.120 | 0.0175 |
Agricultural Machinery use | |||||
Energy from fuel combustion (diesel) | MJ | 0.3695 | 0.2057 | 0.8556 | 0.2358 |
Energy from fuel combustion (gasoline) | MJ | - | - | 0.2332 | - |
Transport (from vineyard to winery) | |||||
Transport with agricultural tractor and trailer | tkm | 0.00317 | 0.00383 | 0.01009 | 0.00140 |
Winemaking | |||||
Grape | g | 1154 | 940 | 1072 | 1100 |
Electricity from renewable source (photovoltaic) | kWh | - | 0.00559 | 0.01458 | 0.02775 |
Electricity from grid | kWh | 0.03831 | 0.00186 | 0.01856 | 0.01189 |
Water | L | 0.214 | 0.096 | 0.853 | 0.010 |
SO2 | g | 0.012 | - | 0.056 | 0.064 |
Citric acid | g | - | - | 0.51 | - |
Wastes | |||||
Cardboard and paper | g | - | - | - | 0.0006 |
Packaging materials | |||||
Glass, partially (15%) recycled (bottle) | g | 650 | 415 | 550 | 400 |
Cork | g | - | - | 6.0 | 6.0 |
Steel (crown cork) | g | 2.0 | 2.0 | - | - |
Printed paper (label) | g | 2.0 | 2.0 | 2.0 | 2.0 |
Polylaminate (capsule) | g | 1.0 | 1.0 | 1.0 | 1.0 |
Wastes | |||||
Plastic | g | 2.57 | 1.44 | 1.71 | 0.03 |
Cardboard and paper | g | 2.14 | 1.20 | 2.56 | 1.15 |
Impact Category | Unit | ORG1 | ORG2 | BD1 | BD2 |
---|---|---|---|---|---|
CC | kg CO2 eq | 0.8293273 | 0.9066404 | 0.5055981 | 0.5481429 |
OD | kg CFC-11 eq | 9.887 × 10−8 | 1.128 × 10−7 | 5.901 × 10−8 | 6.45 × 10−8 |
TA | kg SO2 eq | 0.0059614 | 0.0064259 | 0.0035809 | 0.0039387 |
FE | kg P eq | 0.0002178 | 0.0002434 | 0.0001131 | 0.0001241 |
ME | kg N eq | 0.0002908 | 0.0002474 | 0.0001226 | 0.0002373 |
HT | kg 1,4-DB eq | 0.3462381 | 0.4499326 | 0.1748647 | 0.2422486 |
POF | kg NMVOC | 0.0036964 | 0.0050868 | 0.0022524 | 0.0025582 |
PMF | g PM10 eq | 2.2709 | 2.7391 | 1.3713 | 1.5583 |
TET | g 1,4-DB eq | 0.3012 | 0.1961 | 0.1185 | 0.2517 |
FET | g 1,4-DB eq | 7.5408 | 8.9651 | 3.9959 | 4.8314 |
MET | g 1,4-DB eq | 7.3805 | 8.7856 | 3.8645 | 4.6479 |
IR | kBq 235U eq | 0.0634462 | 0.0640238 | 0.0371092 | 0.038953 |
ALO | m2a | 0.2210942 | 0.2519762 | 0.1382058 | 0.2170459 |
ULO | m2a | 0.0430685 | 0.0154729 | 0.0381184 | 0.0074012 |
NLT | m2 | 0.0002304 | 0.9066404 | 0.0001223 | 0.0001626 |
WD | m3 | 0.0089306 | 1.128 × 10−7 | 0.0053702 | 0.0043032 |
MRD | kg Fe eq | 0.0596891 | 0.0064259 | 0.0254155 | 0.0284801 |
FFD | kg oil eq | 0.249359 | 0.0002434 | 0.154225 | 0.1749101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masotti, P.; Zattera, A.; Malagoli, M.; Bogoni, P. Environmental Impacts of Organic and Biodynamic Wine Produced in Northeast Italy. Sustainability 2022, 14, 6281. https://doi.org/10.3390/su14106281
Masotti P, Zattera A, Malagoli M, Bogoni P. Environmental Impacts of Organic and Biodynamic Wine Produced in Northeast Italy. Sustainability. 2022; 14(10):6281. https://doi.org/10.3390/su14106281
Chicago/Turabian StyleMasotti, Paola, Andrea Zattera, Mario Malagoli, and Paolo Bogoni. 2022. "Environmental Impacts of Organic and Biodynamic Wine Produced in Northeast Italy" Sustainability 14, no. 10: 6281. https://doi.org/10.3390/su14106281