A European Emissions Trading System Powered by Distributed Ledger Technology: An Evaluation Framework
Abstract
:1. Introduction
2. Related Literature
3. Background Information
3.1. The European Emissions Trading System
3.2. Distributed Ledger Technology
4. Theoretical Foundation
4.1. Effects of Fraud on the Carbon Market
4.2. Expected Fraud Reduction Opportunities
5. Proposed DLT Application for EU ETS
6. Evaluation Framework for a DLT-Based EU ETS
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. EU ETS Handbook. Available online: https://ec.europa.eu/clima/sites/clima/files/docs/ets_handbook_en.pdf (accessed on 9 January 2020).
- Refinitiv. Carbon Market Year in Review: Record High Value of Carbon Markets in 2019. Available online: https://www.refinitiv.com/content/dam/marketing/en_us/documents/reports/global-carbon-market-emission-trading-system-review-2019.pdf (accessed on 19 November 2020).
- Interpol. Guide to Carbon Trading Crime. Available online: https://www.interpol.int/content/download/5172/file/Guide%20to%20Carbon%20Trading%20Crime.pdf (accessed on 15 August 2020).
- Dyck, I.J.; Morse, A.; Zingales, L. How Pervasive is Corporate Fraud? Working Paper; Rotman School of Management: Toronto, ON, Canada, 2013. [Google Scholar]
- Bruehl, R.; Basse Mama, H. Beware of the High-Flying: The Effects of Corporate Social Responsibility and High Aspirations on Corporate Misconduct; Working Paper; ESCP Europe Business School: Paris, France, 2020. [Google Scholar]
- Di Maesa, D.F.; Mori, P. Blockchain 3.0 applications survey. J. Parallel Distrib. Comput. 2020, 138, 99–114. [Google Scholar] [CrossRef]
- Kannengießer, N.; Lins, S.; Dehling, T.; Sunyaev, A. Trade-offs between Distributed Ledger Technology Characteristics. ACM Comput. Surv. 2020, 53, 1–37. [Google Scholar] [CrossRef]
- United Nations. How Blockchain Technology Could Boost Climate Action. Available online: https://unfccc.int/news/how-blockchain-technology-could-boost-climate-action (accessed on 11 August 2020).
- Sustain Europe. The Russian Blockchain Revolution: Moscow, Russian Federation. Available online: https://www.sustaineurope.com/the-russian-blockchain-revolution-04042917.html (accessed on 27 November 2020).
- IBM. Energy-Blockchain Labs and IBM Create Carbon Credit Management Platform Using Hyperledger Fabric on the IBM Cloud: Blockchain Platform Dedicated to Green Asset Development Helping Enable a Low-Carbon Future for China. Available online: https://www-03.ibm.com/press/us/en/pressrelease/51839.wss (accessed on 13 December 2020).
- European Commission. European Countries Join Blockchain Partnership. Available online: https://ec.europa.eu/digital-single-market/en/news/european-countries-join-blockchain-partnership (accessed on 2 December 2020).
- Stoecker, C.; Basse Mama, H.; Mandaroux, R.; Thiermann, R.; (European Emissions Trading with Digital Twin Blockchain Technology, ESCP Europe Business School and Spherity Proposal, Paris, France). Personal communication, 2019.
- European Commission. Digital Single Market: How can Europe Benefit from Blockchain Technologies? Available online: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=49649 (accessed on 2 December 2020).
- Akerlof, G.A. The market for “lemons”: Quality uncertainty and the market mechanism. Uncertain. Econ. 1978, 235–251. [Google Scholar] [CrossRef]
- Dupont, Q.; Karpoff, J.M. The Trust Triangle: Laws, Reputation, and Culture in Empirical Finance Research. J. Bus. Ethics 2020, 163, 217–238. [Google Scholar] [CrossRef]
- Karpoff, J.M. The future of financial fraud. J. Corp. Financ. 2020, 101694, forthcoming. [Google Scholar] [CrossRef]
- Al Kawasmi, E.; Arnautovic, E.; Svetinovic, D. Bitcoin-Based Decentralized Carbon Emissions Trading Infrastructure Model. Syst. Eng. 2015, 18, 115–130. [Google Scholar] [CrossRef]
- Kim, S.-K.; Huh, J.-H. Blockchain of Carbon Trading for UN Sustainable Development Goals. Sustainability 2020, 12, 4021. [Google Scholar] [CrossRef]
- Kakarott, J.; Skwarek, V. An enhanced DLT-based CO2 Emission Trading System. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 435–442. [Google Scholar]
- Tang, Q.; Tang, L.M. Toward a Distributed Carbon Ledger for Carbon Emissions Trading and Accounting for Corporate Carbon Management. J. Emerg. Technol. Account. 2019, 16, 37–46. [Google Scholar] [CrossRef]
- Hua, W.; Jiang, J.; Sun, H.; Wu, J. A blockchain based peer-to-peer trading framework integrating energy and carbon markets. Appl. Energy 2020, 279, 115539. [Google Scholar] [CrossRef]
- Huh, J.-H.; Kim, S.-K. The Blockchain Consensus Algorithm for Viable Management of New and Renewable Energies. Sustainability 2019, 11, 3184. [Google Scholar] [CrossRef] [Green Version]
- Schletz, M.; Franke, L.A.; Salomo, S. Blockchain Application for the Paris Agreement Carbon Market Mechanism—A Decision Framework and Architecture. Sustainability 2020, 12, 5069. [Google Scholar] [CrossRef]
- Janssen, M.; Weerakkody, V.; Ismagilova, E.; Sivarajah, U.; Irani, Z. A framework for analysing blockchain technology adoption: Integrating institutional, market and technical factors. Int. J. Inf. Manag. 2020, 50, 302–309. [Google Scholar] [CrossRef]
- European Commission. EU Emissions Trading System (EU ETS). Available online: https://ec.europa.eu/clima/policies/ets_en#:~:text=The%20EU%20Emissions%20Trading%20System%20has%20proven%20to%20be%20an,35%25%20between%202005%20and%202019 (accessed on 3 February 2021).
- Calel, R.; Dechezleprêtre, A. Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market. Rev. Econ. Stat. 2016, 98, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Medina, V.; Pardo, Á.; Pascual, R. The timeline of trading frictions in the European carbon market. Energy Econ. 2014, 42, 378–394. [Google Scholar] [CrossRef]
- Karpf, A.; Mandel, A.; Battiston, S. Price and network dynamics in the European carbon market. J. Econ. Behav. Organ. 2018, 153, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Frunza, M.-C. Aftermath of the VAT fraud on carbon emissions markets. J. Financ. Crime 2013, 20, 222–236. [Google Scholar] [CrossRef]
- Schütz, T.; Andre, Y.; Vukovic, M. Transaction Analysis-A mechanism to detect and prevent VAT-fraud in the European Emissions Trading System (EU ETS). In EnviroInfo & ICT4S, Adjunct Proceedings; Johannsen, V.K., Jensen, S., Wohlgemuth, V., Preist, C., Eriksson, E., Eds.; University of Copenhagen: Copenhagen, Denmark, 2015. [Google Scholar]
- Ainsworth, R.T.; Shact, A. Blockchain (Distributed Ledger Technology) Solves VAT Fraud; Law and Economics Research Paper; Boston University School of Law: Boston, MA, USA, 2016; pp. 16–41. [Google Scholar]
- Soto, E.A.; Bosman, L.B.; Wollega, E.; Leon-Salas, W.D. Peer-to-peer energy trading: A review of the literature. Appl. Energy 2020, 283, 116268. [Google Scholar] [CrossRef]
- Golosova, J.; Romanovs, A.; Kunicina, N. Review of the Blockchain Technology in the Energy Sector. In Proceedings of the 2019 IEEE 7th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Liepaja, Latvia, 15–16 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Petri, I.; Barati, M.; Rezgui, Y.; Rana, O.F. Blockchain for energy sharing and trading in distributed prosumer communities. Comput. Ind. 2020, 123, 103282. [Google Scholar] [CrossRef]
- Spreng, C.P.; Spreng, D. Paris is not enough: Toward an Information Technology (IT) enabled transnational climate policy. Energy Res. Soc. Sci. 2019, 50, 66–72. [Google Scholar] [CrossRef]
- Zhao, F.; Chan, W.K.V. When Is Blockchain Worth It? A Case Study of Carbon Trading. Energies 2020, 13, 1980. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Shu, Z.; Liu, X. Blockchain Enhanced Emission Trading Framework in Fashion Apparel Manufacturing Industry. Sustainability 2018, 10, 1105. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Zhang, X.; Wang, Y.; Yan, J.; Zhou, S.; Li, G.; Bao, J. Application of Blockchain in Carbon Trading. Energy Procedia 2019, 158, 4286–4291. [Google Scholar] [CrossRef]
- Woo, J.; Kibert, C.J.; Newman, R.; Kachi, A.S.K. A New Blockchain Digital MRV (Measurement, Reporting, and Verification) Architecture for Existing Building Energy Performance. In Proceedings of the 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS), Paris, France, 28–30 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 222–226. [Google Scholar]
- Eckert, J.; López, D.; Azevedo, C.L.; Farooq, B. A blockchain-based user-centric emission monitoring and trading system for multi-modal mobility. In Proceedings of the 2020 Forum on Integrated and Sustainable Transportation Systems (FISTS), Delft, The Netherlands, 3–5 November 2020; IEEE: Piscataway, NJ, USA; pp. 328–334. [Google Scholar]
- Patel, D.; Sharma, S.; Dusing, Y.; Britto, B.; Gaikwad, K.; Gupta, M. Carbon Credits on Blockchain. In Proceedings of the 2020 International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, 13–14 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Khaqqi, K.N.; Sikorski, J.J.; Hadinoto, K.; Kraft, M. Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application. Appl. Energy 2018, 209, 8–19. [Google Scholar] [CrossRef]
- Liang, X.; Wang, X.; Yuhao, D.; Yuliang, Z. Design of a Double-blockchain Structured Carbon Emission Trading Scheme with Reputation. In Proceedings of the 2019 34rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Jinzhou, China, 6–8 June 2019; IEEE: Piscataway, NJ, USA; pp. 464–467. [Google Scholar]
- Hu, Z.; Du, Y.; Rao, C.; Goh, M. Delegated Proof of Reputation Consensus Mechanism for Blockchain-Enabled Distributed Carbon Emission Trading System. IEEE Access 2020, 8, 214932–214944. [Google Scholar] [CrossRef]
- Hartmann, S.; Thomas, S. Applying Blockchain to the Australian Carbon Market. Econ. Pap. J. Appl. Econ. Policy 2020, 39, 133–151. [Google Scholar] [CrossRef]
- Joltreau, E.; Sommerfeld, K. Why does emissions trading under the EU Emissions Trading System (ETS) not affect firms’ competitiveness? Empirical findings from the literature. Clim. Policy 2019, 19, 453–471. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Reducing Emissions from Aviation. Available online: https://ec.europa.eu/clima/policies/transport/aviation_en (accessed on 31 January 2021).
- Efthymiou, M.; Papatheodorou, A. EU Emissions Trading scheme in aviation: Policy analysis and suggestions. J. Clean. Prod. 2019, 237, 117734. [Google Scholar] [CrossRef]
- Ricke, K.; Drouet, L.; Caldeira, K.; Tavoni, M. Country-level social cost of carbon. Nat. Clim. Chang. 2018, 8, 895–900. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Revisiting the social cost of carbon. Proc. Natl. Acad. Sci. USA 2017, 114, 1518–1523. [Google Scholar] [CrossRef] [Green Version]
- Boemare, C.; Quirion, P.; Sorrell, S. The evolution of emissions trading in the EU: Tensions between national trading schemes and the proposed EU directive. Clim. Policy 2003, 3, S105–S124. [Google Scholar] [CrossRef]
- Kautto, N.; Arasto, A.; Sijm, J.; Peck, P. Interaction of the EU ETS and national climate policy instruments—Impact on biomass use. Biomass Bioenergy 2012, 38, 117–127. [Google Scholar] [CrossRef]
- International Emissions Trading Association. Overlapping Policies with the EU ETS. Available online: https://www.ieta.org/resources/EU/IETA_overlapping_policies_with_the_EU_ETA.pdf (accessed on 31 January 2021).
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 6 January 2021).
- Swan, M. Blockchain: Blueprint for a New Economy; O′Reilly Media, Inc.: Newton, MA, USA, 2015; ISBN 1491920475. [Google Scholar]
- Underwood, S. Blockchain beyond bitcoin. Commun. ACM 2016, 59, 15–17. [Google Scholar] [CrossRef]
- Efanov, D.; Roschin, P. The All-Pervasiveness of the Blockchain Technology. Procedia Comput. Sci. 2018, 123, 116–121. [Google Scholar] [CrossRef]
- Matsumura, E.M.; Tucker, R.R. Fraud Detection: A Theoretical Foundation. Account. Rev. 1992, 67, 753–782. [Google Scholar]
- Mason, J.R. Financial regulation and fraud in CO2 markets. In Research Handbook of Investing in the Triple Bottom Line; Edward Elgar Publishing: Cheltenham, UK, 2018. [Google Scholar]
- Braynov, S.; Sandholm, T. Contracting with Uncertain Level of Trust. Comput. Intell. 2002, 18, 501–514. [Google Scholar] [CrossRef]
- Bel, G.; Joseph, S. Emission abatement: Untangling the impacts of the EU ETS and the economic crisis. Energy Econ. 2015, 49, 531–539. [Google Scholar] [CrossRef]
- Healy, S.; Graichen, V.; Gores, S. Trends and Projections in the EU ETS in 2016: The EU Emissions Trading System in Numbers; Publications Office of the European Union: Luxembourg, 2016; ISBN 9292138170. [Google Scholar]
- Hasbrouck, J. Assessing the Quality of a Security Market: A New Approach to Transaction-Cost Measurement. Rev. Financ. Stud. 1993, 6, 191–212. [Google Scholar] [CrossRef]
- Klein, B.; Leffler, K.B. The Role of Market Forces in Assuring Contractual Performance. J. Political Econ. 1981, 89, 615–641. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Improving market performance in the digital economy. China Econ. Rev. 2020, 62, 101482. [Google Scholar] [CrossRef]
- Becker, G.S. Crime and Punishment: An Economic Approach. In The Economic Dimensions of Crime; Springer: New York, NY, USA, 1968; pp. 13–68. [Google Scholar]
- Europol. Carbon Credit Fraud Causes More Than 5 Billion Euros Damage for European Taxpayer. Available online: https://www.europol.europa.eu/newsroom/news/carbon-credit-fraud-causes-more-5-billion-euros-damage-for-european-taxpayer (accessed on 5 December 2020).
- Nield, K.; Pereira, R. Financial crimes in the European carbon markets. In Research Handbook on Emissions Trading; Edward Elgar Publishing: Cheltenham, UK, 2016. [Google Scholar]
- Gibbs, C.; Cassidy, M.B.; Rivers, L., III. A Routine Activities Analysis of White-Collar Crime in Carbon Markets. Law Policy 2013, 35, 341–374. [Google Scholar] [CrossRef]
- German Environment Agency. Registry Architecture. Available online: https://www.dehst.de/EN/service/union-registry/registry-architecture/registry-architecture_node.html (accessed on 1 February 2021).
- Acharya, V.; Yerrapati, A.E.; Prakash, N. Oracle Blockchain Quick Start Guide: A Practical Approach to Implementing Blockchain in Your Enterprise; Packt Publishing Ltd.: Birmingham, UK, 2019; ISBN 1789801303. [Google Scholar]
- Prusty, N. Building Blockchain Projects; Packt Publishing Ltd.: Birmingham, UK, 2017; ISBN 1787125335. [Google Scholar]
- Mattila, J. The Blockchain Phenomenon–The Disruptive Potential of Distributed Consensus Architectures; Working Paper; ETLA: Singapore, 2016. [Google Scholar]
- Esmat, A.; de Vos, M.; Ghiassi-Farrokhfal, Y.; Palensky, P.; Epema, D. A novel decentralized platform for peer-to-peer energy trading market with blockchain technology. Appl. Energy 2020, 282, 116123. [Google Scholar] [CrossRef]
- Yahaya, A.S.; Javaid, N.; Alzahrani, F.A.; Rehman, A.; Ullah, I.; Shahid, A.; Shafiq, M. Blockchain Based Sustainable Local Energy Trading Considering Home Energy Management and Demurrage Mechanism. Sustainability 2020, 12, 3385. [Google Scholar] [CrossRef] [Green Version]
- Lamport, L.; Shostak, R.; Pease, M. The Byzantine generals problem. In Concurrency: The Works of Leslie Lamport; ACM Books: New York, NY, USA, 2019; pp. 203–226. [Google Scholar]
- Tara, A.; Ivkushkin, K.; Butean, A.; Turesson, H. The Evolution of Blockchain Virtual Machine Architecture Towards an Enterprise Usage Perspective. In Proceedings of the Computer Science Online Conference 2019, Praha, Czech Republic, 24–27 April 2019; Springer: Cham, Switzerland, 2019; pp. 370–379. [Google Scholar]
- Reed, D.; Sporny, M.; Longley, D.; Allen, C.; Grant, R.; Sabadello, M.; Holt, J. Decentralized Identifiers (Dids) V1.0: Core Architecture, Data Model, and Representations; World Wide Web Consortium: Cambridge, MA, USA, 2020. [Google Scholar]
- World Wide Web Consortium. Verifiable Credentials Data Model 1.0: Expressing Verifiable Information on the Web. Available online: https://www.w3.org/TR/vc-data-model/?#core-data-model (accessed on 10 January 2021).
- Hristova, T.; Hristov, P. Assessment of Conditions for the Applications of DLT for Smart Metering in Bulgaria According to the European Requirements. In Proceedings of the 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, 6–8 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification and open issues. Telemat. Inform. 2019, 36, 55–81. [Google Scholar] [CrossRef]
- Jhawar, R.; Piuri, V. Fault Tolerance and Resilience in Cloud Computing Environments. In Computer and Information Security Handbook 2017; Morgan Kaufmann Publishers: Burlington, MA, USA, 2017; pp. 165–181. [Google Scholar]
- Bracha, G.; Toueg, S. Asynchronous consensus and broadcast protocols. J. ACM 1985, 32, 824–840. [Google Scholar] [CrossRef]
- Koppenjan, J.; Groenewegen, J. Institutional design for complex technological systems. Int. J. Technol. Policy Manag. 2005, 5, 240–257. [Google Scholar] [CrossRef]
- Sander, F.; Semeijn, J.; Mahr, D. The acceptance of blockchain technology in meat traceability and transparency. Br. Food J. 2018, 120, 2066–2079. [Google Scholar] [CrossRef] [Green Version]
- Lian, J.-W.; Chen, C.-T.; Shen, L.-F.; Chen, H.-M. Understanding user acceptance of blockchain-based smart locker. Electron. Libr. 2020, 38, 353–366. [Google Scholar] [CrossRef]
- Feng, Q.; He, D.; Zeadally, S.; Khan, M.K.; Kumar, N. A survey on privacy protection in blockchain system. J. Netw. Comput. Appl. 2019, 126, 45–58. [Google Scholar] [CrossRef]
- Risius, M.; Spohrer, K. A blockchain research framework–What we (don’t) know, where we go from here, and how we will get there. Bus. Inf. Syst. Eng. 2017, 59, 385–409. [Google Scholar] [CrossRef]
- Wu, B.; Chen, X. Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Comput. Hum. Behav. 2017, 67, 221–232. [Google Scholar] [CrossRef]
- Al-Saqaf, W.; Seidler, N. Blockchain technology for social impact: Opportunities and challenges ahead. J. Cyber Policy 2017, 2, 338–354. [Google Scholar] [CrossRef]
- European Securities and Markets Authority. Report: The Distributed Ledger Technology Applied to Securities Markets. Available online: https://www.esma.europa.eu/sites/default/files/library/dlt_report_-_esma50-1121423017-285.pdf (accessed on 12 December 2020).
- European Commission. Proposal for a Regulation of the European Parliament and of the Council: On a Pilot Regime for Market Infrastructures Based on Distributed Ledger Technology. Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2020/EN/COM-2020-594-F1-EN-MAIN-PART-1.PDF (accessed on 12 December 2020).
- Crosby, M.; Pattanayak, P.; Verma, S.; Kalyanaraman, V. BlockChain Technology: Beyond Bitcoin. Appl. Innov. 2016, 2, 71. [Google Scholar]
- Finck, M. Blockchain Regulation and Governance in Europe; Cambridge University Press: Cambridge, UK, 2018; ISBN 1108616569. [Google Scholar]
- Depository Trust and Clearing Corporation. Security of DLT Networks: A Distributed Ledger Technology Security Framework for the Financial Services Industry. Available online: https://www.dtcc.com/-/media/Files/Downloads/White-Papers/Security-of-DLT-Networks-Paper.pdf (accessed on 9 December 2020).
- Azouvi, S.; Hicks, A.; Murdoch, S.J. Incentives in Security Protocols. In Proceedings of the Cambridge International Workshop on Security Protocols, Cambridge, UK, 19–21 March 2018; Springer: Cham, Switzerland, 2018; pp. 132–141. Available online: http://www0.cs.ucl.ac.uk/staff/S.Azouvi/papers/spw18.pdf (accessed on 6 January 2021).
- Osmani, M.; El-Haddadeh, R.; Hindi, N.; Janssen, M.; Weerakkody, V. Blockchain for next generation services in banking and finance: Cost, benefit, risk and opportunity analysis. J. Enterp. Inf. Manag. 2020. [Google Scholar] [CrossRef]
- Viswanathan, S.; Shah, A. The Scalability Trilemma in Blockchain. Available online: https://medium.com/@aakash_13214/the-scalability-trilemma-in-blockchain-75fb57f646df (accessed on 4 January 2021).
- Zhou, Q.; Huang, H.; Zheng, Z.; Bian, J. Solutions to scalability of blockchain: A survey. IEEE Access 2020, 8, 16440–16455. [Google Scholar] [CrossRef]
- Truby, J. Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain technologies and digital currencies. Energy Res. Soc. Sci. 2018, 44, 399–410. [Google Scholar] [CrossRef]
- Nair, R.; Gupta, S.; Soni, M.; Shukla, P.K.; Dhiman, G. An approach to minimize the energy consumption during blockchain transaction. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Andes, L.; Lützkendorf, T.; Kopfmüller, J.; Rösch, C. Methodensammlung zur Nachhaltigkeitsbewertung: Grundlagen, Indikatoren, Hilfsmittel. Available online: http://www.oew.kit.edu/downloads/Methodensammlung%20zur%20Nachhaltigkeitsbewertung.pdf (accessed on 10 August 2020).
- Giungato, P.; Rana, R.; Tarabella, A.; Tricase, C. Current Trends in Sustainability of Bitcoins and Related Blockchain Technology. Sustainability 2017, 9, 2214. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.; Liskov, B. Practical byzantine fault tolerance. In Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, LA, USA, 22–25 February 1999. [Google Scholar]
Factors | Challenges for the EU ETS | |
---|---|---|
Institutional and Social Factors | Norms and Culture | User Acceptance |
Role of Intermediaries | ||
Social Impact | ||
Regulation | Decarbonization Incentives | |
Monitoring and Auditing | ||
Legislation | Fraud Detection | |
Legal Framework | ||
Validity of Certificates | ||
Data Security | ||
Governance | User Rights and Liabilities | |
Privacy Rules | ||
Market | Market Structure | Bandwidth across Europe |
Factors | Storage Capacities | |
Processing Power | ||
Contracts and Agreements | Certification Transfer | |
Business Process | Cost–Benefit Analysis | |
Technical Factors | Information Exchange andTransactions | Processing Time |
Scalability | ||
Distributed Ledger | Security Risks | |
Sustainability | ||
Shared Infrastructure | Standardization |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandaroux, R.; Dong, C.; Li, G. A European Emissions Trading System Powered by Distributed Ledger Technology: An Evaluation Framework. Sustainability 2021, 13, 2106. https://doi.org/10.3390/su13042106
Mandaroux R, Dong C, Li G. A European Emissions Trading System Powered by Distributed Ledger Technology: An Evaluation Framework. Sustainability. 2021; 13(4):2106. https://doi.org/10.3390/su13042106
Chicago/Turabian StyleMandaroux, Rahel, Chuanwen Dong, and Guodong Li. 2021. "A European Emissions Trading System Powered by Distributed Ledger Technology: An Evaluation Framework" Sustainability 13, no. 4: 2106. https://doi.org/10.3390/su13042106
APA StyleMandaroux, R., Dong, C., & Li, G. (2021). A European Emissions Trading System Powered by Distributed Ledger Technology: An Evaluation Framework. Sustainability, 13(4), 2106. https://doi.org/10.3390/su13042106