Eco-Factors for International Company Environmental Management Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Ecological Scarcity Method
2.2. Approach for Calculation of Country Specific Eco-Factors
3. Systematic Procedure for Derivation of Eco-Factors
3.1. Overview
- Step 1: Identification of data sources for current flows.
- Step 2: Selection of policy targets for critical flows.
- Step 3: Elaboration of the specific calculation approach for each EF.
- Step 4: Assignment of the calculated EF to sets.
3.2. Step 1: Identification of Data Sources for Current Flows
3.2.1. Selection of Data Sources
3.2.2. Evaluation of Data Quality
3.3. Step 2: Selection of Policy Targets for Critical Flow
3.3.1. Criteria for Selection of Policy Targets
Set “National Legally Binding” (NLB)
Set “(National) Intended/International Consensus” (NIIC)
Set “Expert Recommendation” (ER)
3.3.2. Research and Data Sources of Policy Targets
3.4. Step 3: Elaboration of the Specific Calculation Approach for Each EF
3.5. Step 4: Assignment of the Calculated EF to Sets
4. Results and Discussion
4.1. Environmental Issues and Indicators
4.1.1. Emissions to Air
4.1.2. Climate Change
4.1.3. Emissions to Surface Water
4.1.4. Scarcity of Freshwater Resources
4.1.5. Scarcity of Energy Resources
4.1.6. Waste Generation
4.2. EF for Eight Countries: Analysis of Differences
4.3. Case Study
4.4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission (EC). Regulation (EC) No 761/2001 of the European Parliament and of the Council of 19 March 2001 Allowing Voluntary Participation by Organisations in a Community Eco-Management and Audit Scheme (EMAS). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32001R0761 (accessed on 8 December 2021).
- European Commission (EC). Environment Eco-Management and Audit Scheme. EMAS & ISO 14001. Available online: https://ec.europa.eu/environment/emas/join_emas/emas_iso_14001_en.htm (accessed on 23 December 2019).
- Lewandowska, A. Environmental life cycle assessment as a tool for identification and assessment of environmental aspects in environmental management systems (EMS) part 1: Methodology. Int. J. Life Cycle Assess. 2011, 16, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Zobel, T.; Almroth, C.; Bresky, J.; Burman, J.-O. Identification and assessment of environmental aspects in EMS context. An approach to a new reproducible method based on LCA methodology. J. Clean. Prod. 2002, 10, 381–396. [Google Scholar] [CrossRef]
- Zobel, T.; Burman, J.-O. Factors of importance in identification and assessment of environmental aspects in EMS context. Experiences in Swedish organizations. J. Clean. Prod. 2004, 12, 13–27. [Google Scholar] [CrossRef]
- Lundberg, K.; Balfors, B.; Folkeson, L. Identification of environmental aspect in an EMS context. A methodological framework for the Swedish National Rail Administration. J. Clean. Prod. 2007, 15, 385–394. [Google Scholar] [CrossRef]
- Seiffert, M. Environmental impact evaluation using a cooperative model for implementing EMS (ISO 14001) in small and medium-sized enterprises. J. Clean. Prod. 2008, 16, 1447–1461. [Google Scholar] [CrossRef]
- Liu, K.; Ko, C.; Fan, C.; Chen, C. Combining risk assessment, life cycle assessment, and multi-criteria decision analysis to estimate environmental aspects in environmental management system. Int. J. Life Cycle Assess. 2012, 17, 845–862. [Google Scholar] [CrossRef]
- Gernuks, M.; Buchgeister, J.; Schebek, L. Assessment of environmental aspects and determination of environmental targets within environmental management systems (EMS)—Development of a procedure for Volkswagen. J. Clean. Prod. 2007, 15, 1063–1075. [Google Scholar] [CrossRef]
- Frischknecht, R.; Steiner, R.; Braunschweig, A.; Egli, N.; Hildesheimer, G. The Ecological Scarcity Method Eco-Factors 2006: A Method for Impact Assessment in LCA; Environmental Studies no. 0906; Swiss Federal Office for the Environment (FOEN): Bern, Switzerland, 2009. [Google Scholar]
- Frischknecht, R.; Büsser Knöpfel, S. Swiss Eco-Factors 2013 According to the Ecological Scarcity Method: Methodological Fundamentals and Their Application in Switzerland; Environmental Studies no. 1330; Federal Office for the Environment (FOEN): Bern, Switzerland, 2013; Available online: https://www.bafu.admin.ch/bafu/en/home/topics/economy-consumption/economy-and-consumption-publications/publications-economy-and-consumption/eco-factors-2015-scarcity.html (accessed on 10 November 2016).
- Miyazaki, N.; Siegenthaler, C.; Schoenbaum, T.; Azuma, K. Japan Environmental Policy Priorities Index (JEPIX)—Calculation of Ecofactors for Japan: Method for Environmental Accounting Based on the EcoScarcity Principle; International Christian University Social Science Research Institute: Tokyo, Japan, 1994. [Google Scholar]
- Büsser, S.; Frischknecht, R.; Kono, J.; Hayashi, K. Ecological Scarcity Japan; ESU-Services: Uster, Germany, 2012; Available online: http://treeze.ch/fileadmin/user_upload/downloads/Publications/Methodology/Life_Cycle_Impact_Assessment/Ecological_scarcity_Japan-v2.0.pdf (accessed on 23 December 2019).
- Lindfors, L.; Christiansen, K.; Hoffmann, L.; Virtanen, Y.; Juntilla, V.; Hanssen, O.; Ronning, A.; Ekvall, T.; Finnveden, G. Nordic Guidelines on Life-Cycle Assessment; Nordic Council of Ministers: Copenhagen, Denmark, 1995. [Google Scholar]
- Lecksiwilai, N.; Gheewala, S.H.; Silalertruksa, T.; Mungkalasiri, J. LCA of biofuels in Thailand using Thai Ecological Scarcity method. J. Clean. Prod. 2017, 142, 1183–1191. [Google Scholar] [CrossRef]
- Ahbe, S.; Schebek, L.; Jansky, N.; Wellge, S.; Weihofen, S. Methode der ökologischen Knappheit für Deutschland—Eine Initiative der Volkswagen AG, 2nd ed.; AutoUni-Schriftenreihe 68; Logos Verlag Berlin GmbH: Berlin, Germany, 2014. [Google Scholar]
- Grinberg, M. Development of the Ecological Scarcity Method: Application to Russia and Germany. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2015. Available online: https://d-nb.info/1073584097/34 (accessed on 19 December 2019).
- Ahbe, S.; Weihofen, S.; Wellge, S. The Ecological Scarcity Method for the European Union: A Volkswagen Research Initiative: Environmental Assessments; AutoUni-Schriftenreihe 105; Springer: Wiesbaden, Germany, 2018; Available online: https://link.springer.com/content/pdf/10.1007/978-3-658-19506-9.pdf (accessed on 12 November 2017).
- Muhl, M.; Berger, M.; Finkbeiner, M. Development of Eco-factors for the European Union based on the Ecological Scarcity Method. Int. J. Life Cycle Assess. 2019, 24, 1701–1714. [Google Scholar] [CrossRef]
- Muhl, M.; Berger, M.; Finkbeiner, M. Distance-to-target weighting in LCA—A matter of perspective. Int. J. Life Cycle Assess. 2021, 26, 114–126. [Google Scholar] [CrossRef]
- Mueller-Wenk, R. Die ökologische Buchhaltung: Ein Informations—und Steuerungsinstrument für Umweltkonforme Unternehmenspolitik; Campus-Verlag: Frankfurt, Germany, 1978. [Google Scholar]
- Ahbe, S.; Braunschweig, A.; Mueller-Wenk, R. Methodik für Ökobilanzen auf der Basis ökologischer Optimierung: Ein Bericht der Arbeitsgruppe Öko-Bilanz; Schriftenreihe Umwelt 133; BUWAL: Bern, Switzerland, 1990. [Google Scholar]
- Volkswagen. Available online: https://www.volkswagenag.com/en/sustainability/environment/environmental-compliance.html (accessed on 22 September 2021).
- United Nations Fundamental Principles of Official Statistics: Implementation Guidelines; United Nations (UN): New York, NY, USA, 2015; Available online: https://unstats.un.org/unsd/dnss/gp/Implementation_Guidelines_FINAL_without_edit.pdf (accessed on 19 December 2019).
- Framework for the Development of Environment Statistics (FDES 2013); United Nations (UN): New York, NY, USA, 2017; Available online: https://unstats.un.org/unsd/environment/FDES/FDES-2015-supporting-tools/FDES.pdf (accessed on 19 December 2019).
- United Nations (UN). System of Environmental Economic Accounting. Available online: https://seea.un.org/ (accessed on 19 December 2019).
- Problems with Waste Statistics and Action Taken; UNECE Working Paper Series on Statistics 3; United Nations Economic Commission for Europe (UNECE) and Statistics Netherlands: Geneva, Switzerland, 2017; Available online: https://www.unece.org/fileadmin/DAM/stats/publications/2017/Issue3_Waste.pdf (accessed on 19 December 2019).
- What Do National Statistical Offices (NSOs) Need to Know about Greenhouse Gas (GHG) Inventories? United Nations Economic Commission for Europe (UNECE): Geneva, Switzerland, 2018; Available online: http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.33/2018/mtg7/What_NSOs_need_to_know_about__inventories_FORUM_Rfinal.pdf (accessed on 19 December 2019).
- Macknick, J. Energy and CO2 emission data uncertainties. Carbon Manag. 2011, 2, 189–205. [Google Scholar] [CrossRef]
- Water Accounts and Statistics for Sustainable Development Goal 6; United Nations Statistics Division (UNSTATS): New York, NY, USA, 2015; Available online: https://sustainabledevelopment.un.org/content/documents/130885.2%20UNSD%20presentation_v1.pdf (accessed on 19 December 2019).
- Campitelli, A.; Schebek, L. How is the performance of waste management systems assessed globally? A systematic review. J. Clean. Prod. 2020, 272, 122986. [Google Scholar] [CrossRef]
- Castellani, V.; Benini, L.; Sala, S.; Pant, R. A distance-to-target weighting method for Europe 2020. Int. J. Life Cycle Assess. 2016, 21, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- General Assembly Resolution 217A. International Bill of Human Rights of 10 December 1948. A/RES/3/217A. Available online: https://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/217(III) (accessed on 23 December 2019).
- Friedrich, J. International Environmental “Soft Law”. The Functions and Limits of Nonbinding Instruments in International Environmental Governance and Law: Part 2 The Functions and Limits of Nonbinding Instruments; Beiträge zum ausländischen öffentlichen Recht und Völkerrecht 247; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mitchell, R. International Environmental Agreements Database Project (Version 2020.1). Available online: http://iea.uoregon.edu/ (accessed on 19 December 2019).
- Climate Change Laws of the World database, Grantham Research Institute on Climate Change and the Environment and Sabin Center for Climate Change Law. Available online: https://climate-laws.org (accessed on 19 December 2019).
- European Commission (EC)—Joint Research Centre; Netherlands Environmental Assessment Agency. Emissions Database for Global Atmospheric Research (EDGAR) Global Emissions v4.3.1. Available online: http://edgar.jrc.ec.europa.eu/overview.php?v=431 (accessed on 10 November 2016).
- United Nations Economic Commission for Europe (UNECE). Protocol to Abate Acidification, Eutrophication and Ground-Level Ozone. Available online: http://www.unece.org/env/lrtap/multi_h1.html (accessed on 7 April 2020).
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.; Haywood, J.; Lean, J.; Lowe, D.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In IPCC 2007: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Climate Action Tracker (CAT). Available online: http://climateactiontracker.org (accessed on 5 August 2021).
- The Food and Agriculture Organization of the United Nations (FAO). AQUASTAT Main Database. Available online: http://www.fao.org/nr/water/aquastat/data/query/results.html (accessed on 29 September 2017).
- OECD Key Environmental Indicators; OECD Environment Directorate: Paris, France, 2008.
- World Resources Institute (WRI). AQUEDUCT Water Risk Atlas. Available online: http://www.wri.org/our-work/project/aqueduct/about (accessed on 26 October 2017).
- IEA. World Energy Outlook. 2015. Available online: https://www.iea.org/reports/world-energy-outlook-2015 (accessed on 19 March 2020).
- Renewable Energy Target Setting; International Renewable Energy Agency (IRENA): Masdar City, United Arab Emirates, 2015; Available online: http://www.irena.org/publications/2015/Jun/Renewable-Energy-Target-Setting (accessed on 4 April 2018).
- World Resources Institute. Water Stress by Country. Available online: https://www.wri.org/resources/charts-graphs/water-stress-country (accessed on 19 December 2019).
- Sustainability Report 2018; Volkswagen AG: Wolfsburg, Germany, 2019; Available online: https://www.volkswagenag.com/presence/nachhaltigkeit/documents/sustainability-report/2018/Nonfinancial_Report_2018_e.pdf (accessed on 11 March 2020).
- United Nations (UN). UN Treaty Collection, Chapter XXVII Environment, 7. D Paris Agreement. Available online: https://treaties.un.org/Pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-7-d&chapter=27&clang=_en (accessed on 4 February 2020).
- In H.R.2454—111th Congress (2009–2010); American Clean Energy and Security Act of 2009, H.R.2454, 111th Cong. 7 July 2009. Available online: https://www.congress.gov/bill/111th-congress/house-bill/2454 (accessed on 4 February 2020).
- Weihofen, S.; Wellge, S. Anwendung der Methode der ökologischen Knappheit bei der Volkswagen AG. In Betriebliche Nachhaltigkeitsleistung Messen und Steuern: Grundlagen und Praxisbeispiele; Baumast, A., Pape, J., Weihofen, S., Wellge, S., Eds.; Verlag Eugen Ulmer: Stuttgart, Germany, 1999; pp. 170–186. [Google Scholar]
- Volkswagen AG. CO2—Getting to Zero. Available online: https://www.volkswagenag.com/en/news/stories/2019/07/co2-getting-to-zero.html (accessed on 10 November 2021).
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.; Lambin, E.; Lenton, T.; Scheffer, M.; Folke, C.; Schellnhuber, H.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. Available online: http://www.ecologyandsociety.org/vol14/iss2/art32/ (accessed on 8 December 2021). [CrossRef]
Environmental Issue | Eco-Factor (EF) for Indicator | Unit | Argentina | Brazil | China | India | Mexico | Rusia | South Africa | United States |
---|---|---|---|---|---|---|---|---|---|---|
Emissions to Air | SOx 1 | EP/g | 9.876 | 4.919 | 0.067 | 1.419 | 1.386 | 1.062 | 3.126 | 0.231 |
NOx 2 | EP/g | 6.976 | 0.616 | 0.068 | 0.676 | 0.706 | 0.784 | 2.248 | 0.157 | |
PM2.5 3 | EP/g | 5.897 | 1.185 | 0.115 | 0.334 | 2.659 | 3.265 | 4.830 | 1.350 | |
NMVOC 4 | EP/g | 2.074 | 0.567 | 0.057 | 0.180 | 0.087 | 0.464 | 0.772 | 0.109 | |
Climate Change | CO2 5 | EP/kg | 1.887 | 1.170 | 0.067 | 0.092 | 1.135 | 0.446 | 3.424 | 0.490 |
Emissions to Suface Water | COD 6 | EP/g | 0.022 | 0.007 | 0.0009 | 0.031 | 0.000005 | 0.178 | ||
TN 7 | EP/g | 0.257 | 0.034 | 0.616 | 0.722 | 3.315 | 0.000093 | 6.345 | 0.264 | |
TP 8 | EP/g | 0.843 | 3.826 | 1.824 | 2.540 | 35.712 | 0.058021 | 0.107 | 2.058 | |
Scarcity of Freshwater Resources | low | EP/m3 | 1.658 | 0.836 | 0.105 | 0.096 | 0.730 | 1.025 | 4.032 | 0.149 |
low to medium | EP/m3 | 14.920 | 7.522 | 0.947 | 0.868 | 6.567 | 9.221 | 36.290 | 1.343 | |
medium to high | EP/m3 | 59.682 | 30.088 | 3.787 | 3.472 | 26.267 | 36.885 | 145.161 | 5.374 | |
high | EP/m3 | 238.727 | 120.353 | 15.146 | 13.889 | 105.067 | 147.541 | 580.645 | 21.495 | |
extremely high | EP/m3 | 537.135 | 270.794 | 34.079 | 31.250 | 236.400 | 331.967 | 1306.452 | 48.364 | |
Scarcity of Energy Resources | non-renewable energy | EP/MJ | 0.148 | 0.055 | 0.007 | 0.008 | 0.147 | 0.036 | 0.184 | 0.019 |
renewable energy resources | EP/MJ | 0.142 | 0.040 | 0.006 | 0.007 | 0.130 | 0.036 | 0.162 | 0.016 | |
Waste Generation | hazardous waste | EP/g | 3.392 | 0.264 | 0.051 | 0.128 | 0.440 | 0.113 | 0.085 | 0.030 |
non-hazardous waste | EP/g | 0.162 | 0.006 | 0.001 | 0.019 | 0.023 | 0.003 | 0.023 | 0.004 |
Environmental Issue | Indicator | Value | Unit | Comment |
---|---|---|---|---|
Emissions to air | SOx | 1 | g/vehicle | |
NOx | 173 | g/vehicle | ||
PM2.5 | 68 | g/vehicle | Value for total particle emission, no value given for PM2.5 | |
NMVOC | 1.93 | kg/vehicle | Value for VOC, no value given for NMVOC | |
Climate change | CO2-eq | 720 | kg/vehicle | |
Emissions to surface water | COD | 449 | g/vehicle | |
TN | 21.3 | g/vehicle | Internal approximation of the Volkswagen Group (average) | |
TP | 4 | g/vehicle | Internal approximation of the Volkswagen Group (average) | |
Scarcity of freshwater resources | Freshwater | 3.86 | m3/vehicle | |
Scarcity of energy resources | Non-renewable energy resources | 1684 | kWh/vehicle | Calculation includes primary energy factor according to EnEV |
Renewable energy resources | 400 | kWh/vehicle | Share of renewable energy resources as a mean of Volkswagen Group | |
Waste generation | Non-hazardous waste | 52.37 | kg/vehicle | Sum of waste amount for recycling (46.91 kg/vehicle) and waste amount for disposal (5.46 kg/vehicle) |
Hazardous waste | 20.8 | kg/vehicle | Sum of waste amount for recycling (14.06 kg/vehicle) and waste amount for disposal (6.74 kg/vehicle) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schebek, L.; Gassmann, A.; Nunweiler, E.; Wellge, S.; Werthen, M. Eco-Factors for International Company Environmental Management Systems. Sustainability 2021, 13, 13897. https://doi.org/10.3390/su132413897
Schebek L, Gassmann A, Nunweiler E, Wellge S, Werthen M. Eco-Factors for International Company Environmental Management Systems. Sustainability. 2021; 13(24):13897. https://doi.org/10.3390/su132413897
Chicago/Turabian StyleSchebek, Liselotte, Andrea Gassmann, Elisabeth Nunweiler, Steffen Wellge, and Moritz Werthen. 2021. "Eco-Factors for International Company Environmental Management Systems" Sustainability 13, no. 24: 13897. https://doi.org/10.3390/su132413897