Hierarchical Fusion Process of Destination Image Formation: Targeting on Urban Tourism Destination
Abstract
:1. Introduction
2. Theoretical Background
2.1. The Conception of Destination Image
2.2. The Formation of Destination Image
2.3. Destination Image from Parts to a Whole
2.4. Destination Image from Cognitive to Affective
2.5. Destination Image from Organic to Complex
2.6. Conceptual Framework Development
3. Methodology
3.1. Interview Survey
3.1.1. Interview Implementation
3.1.2. Interview Results
3.1.3. Hierarchical Fusion Process Hypothesis
3.2. Questionnaire Survey
3.2.1. Questionnaire Design
3.2.2. Questionnaire Collection
3.3. Data Analysis
4. Results
4.1. Phase 1: Effects from Ld to Lo
4.1.1. Feature Ranking of Ld
4.1.2. Identifying Hygiene vs. Motivator Factors
4.2. Phase 2: Effects from Lc to Ld
4.2.1. Feature Selection of Lc
4.2.2. Feature Extraction of Lc
4.2.3. Feature Ranking of Lc
4.3. Phase 3: Effects from Li to Lc
4.3.1. Feature Selection of Li
4.3.2. Feature Extraction of Li
4.3.3. Feature Ranking of Li
5. Discussion
6. Conclusions
6.1. Theoretical Contribution
6.2. Management Significance
6.3. Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearce, P.L. Perceived changes in holiday destinations. Ann. Tour. Res. 1982, 9, 145–164. [Google Scholar] [CrossRef]
- Kock, F.; Josiassen, A.; Assaf, A.J. Advancing destination image: The destination content model. Ann. Tour. Res. 2016, 61, 28–44. [Google Scholar] [CrossRef]
- Lai, K.; Li, Y. Core-periphery structure of destination image: Concept, evidence and implication. Ann. Tour. Res. 2012, 39, 1359–1379. [Google Scholar] [CrossRef]
- Lee, R.; Lockshin, L.; Cohen, J.; Corsi, A. A latent growth model of destination image’s halo effect. Ann. Tour. Res. 2019, 79, 102767. [Google Scholar] [CrossRef]
- Hunt, J.D. Image as a factor in tourism development. J. Travel Res. 1975, 13, 1–7. [Google Scholar] [CrossRef]
- Afshardoost, M.; Eshaghi, M.S. Destination image and tourist behavioural intentions: A meta-analysis. Tour. Manag. 2020, 81, 104–154. [Google Scholar] [CrossRef]
- Baloglu, S.; McCleary, K.W. A model of destination image formation. Ann. Tour. Res. 1999, 26, 868–897. [Google Scholar] [CrossRef]
- Martín-Santana, J.D.; Beerli, A.; Nazzareno, P.A. Antecedents and consequences of destination image gap. Ann. Tour. Res. 2017, 62, 13–25. [Google Scholar] [CrossRef]
- Manfredo, M.J. Who Cares about Wildlife? Social Science Concepts for Exploring Human-Wildlife Relationships and Conservation Issues; Spring Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Teel, T.L.; Dietsch, A.M.; Manfredo, M.J. A (social) psychology approach in conservation. In The Conservation Social Sciences: What? How? and Why? Bennett, N.J., Roth, R., Eds.; University of British Columbia: Vancouver, BC, Canada, 2015; Volume 12, pp. 21–25. [Google Scholar]
- Martins, M.J.; Fischmeister, F.P.; Waldmüller, E.P.; Oh, J.; Geißler, A.; Robinson, S.; Fitch, W.T.; Beisteiner, R. Fractal image perception provides novel insights into hierarchical cognition. NeuroImage 2014, 96, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Hauser, M.D.; Chomsky, N.; Fitch, W.T. The faculty of language: What is it, who has it, and how did it evolve? Science 2002, 298, 1569–1579. [Google Scholar] [CrossRef]
- Nardini, M.; Jones, P.; Bedford, R.; Braddick, O. Development of cue integration in human navigation. Curr. Biol. 2008, 18, 689–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unterrainer, J.M.; Owen, A.M. Planning and problem solving: From neuropsychology to functional neuroimaging. J. Physiol. Paris 2006, 99, 308–317. [Google Scholar] [CrossRef]
- Myers, J.G. Consumer Image and Attitude; Institute of Business and Economic Research: Dhaka, Bangladesh, 1968. [Google Scholar]
- Crompton, J.L. An assessment of the image of Mexico as a vacation destination and the influence of geographical location upon the image. J. Travel Res. 1979, 18, 18–23. [Google Scholar] [CrossRef]
- Echtner, C.M.; Ritchie, J.B. The meaning and measurement of tourism destination image. J. Tour. Stud. 1991, 2, 2–12. [Google Scholar]
- Gunn, C.A. Vacationscape: Designing Tourist Regions; Taylor and Francis University of Texas: Washington, DC, USA, 1972. [Google Scholar]
- Stylidis, D.; Shani, A.; Belhassen, Y. Testing an integrated destination image model across residents and tourists. Tour. Manag. 2017, 58, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Um, S.; Crompton, J.L. Attitude determinants in tourism destination choice. Ann. Tour. Res. 1990, 17, 432–448. [Google Scholar] [CrossRef]
- Smith, S.L. The tourism product. Ann. Tour. Res. 1994, 21, 582–595. [Google Scholar] [CrossRef]
- Chen, C.; Phou, S. A closer look at destination: Image, personality, relationship and loyalty. Tour. Manag. 2013, 36, 269–278. [Google Scholar] [CrossRef]
- Li, F.; Wen, J.; Ying, T. The influence of crisis on tourists’ perceived destination image and revisit intention: An exploratory study of Chinese tourists to North Korea. J. Destin. Mark. Manag. 2018, 9, 104–111. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Z.; Cao, F.; Chen, X. Recognise me from outside to inside: Learning the influence chain of urban destination personalities. Tour. Manag. 2019, 70, 390–403. [Google Scholar] [CrossRef]
- Gallarza, M.G.; Saura, I.G.; García, H.C. Destination image: Towards a conceptual framework. Ann. Tour. Res. 2002, 29, 56–78. [Google Scholar] [CrossRef]
- Papadimitriou, D.; Apostolopoulou, A.; Kaplanidou, K. Destination personality, affective image, and behavioral intentions in domestic urban tourism. J. Travel Res. 2015, 54, 302–315. [Google Scholar] [CrossRef]
- Russel, J.A.; Snodgrass, J. Emotion and environment. In Handbook of Environmental Psychology; Stockols, D., Altman, I., Eds.; Wiley-Interscience: New York, NY, USA, 1987; pp. 245–280. [Google Scholar]
- Reynolds, W.H. The role of the consumer in image building. Calif. Manag. Rev. 1965, 7, 69–76. [Google Scholar] [CrossRef]
- Xu, H.; Ye, T. Dynamic destination image formation and change under the effect of various agents: The case of Lijiang, ‘The Capital of Yanyu’. J. Destin. Mark. Manag. 2018, 7, 131–139. [Google Scholar] [CrossRef]
- Stepchenkova, S.; Li, X. Destination image: Do top-of-mind associations say it all? Ann. Tour. Res. 2014, 45, 46–62. [Google Scholar] [CrossRef]
- Herzberg, F.; Mausner, B.; Snyderman, B. The Motivation to Work; Wiley: New York, NY, USA, 1959. [Google Scholar]
- Aaker, J.L. Components of brand personality. J. Mark. Res. 1997, 34, 347–356. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J. Analysing Chinese citizens’ intentions of outbound travel: A machine learning approach. Curr. Issues Tour. 2014, 17, 592–609. [Google Scholar] [CrossRef]
- Mitchell, T. Machine Learning; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Schaffer, J.D.; Whitley, D.; Eshelman, L.J. Combinations of genetic algorithms and neural networks: A survey of the state of the art. In Proceedings of the International Workshop on Combinations of Genetic Algorithms & Neural Networks, Baltimore, MD, USA, 6 June 1992; IEEE: Manhattan, NY, USA, 1992. [Google Scholar]
- Park, S.C.; Ryoo, S.Y. An empirical investigation of end-users’ switching toward cloud computing: A two factor theory perspective. Comput. Hum. Behav. 2013, 29, 160–170. [Google Scholar] [CrossRef]
- Matei, M.C.; Abrudan, M.M. Adapting Herzberg’s two factor theory to the cultural context of Romania. Procedia Soc. Behav. Sci. 2015, 221, 95–104. [Google Scholar] [CrossRef] [Green Version]
Adjectives Traits (N = 119) | Named Entities (N = 110) |
---|---|
active, amusing, agreeable, attractive*, appealing, attractive, amazing*, alive, beautiful*, brilliant, busy*, charming, calm*, clear, creative*, confident, comfortable*, conventional, classical*, cultural*, compatible*, diligent*, dynamic, depressing, diverse, dull, delicate, energetic, emotional, efficient*, easygoing, elegant*, egocentric, enthusiastic, fancy, fashionable*, funny, fantastic, feminine, friendly, fresh, gentle, generous’, good-taste, glamorous*, gorgeous, good-looking, graceful, honest, hard-working, holy, hospitable, idealist, incredible, international, intelligent*, imaginative, important, kind, knowledgeable*, leader, lovely, masculine*, magnificent, mature, mysterious, mannered, natural, native*, neat, original, organized, old*, open-minded*, optimistic, passionate, polite, positive, peaceful, pleasant, promising*, profound, potential, popular, pretty, quiet, relaxed, romantic*, restless, reliable*, religious, responsible, rich*, scholarly, stylish, simple*, stubborn, sincere*, spiritual, showy*, sensible*, sentimental, solemn, successful*, secure, sociable*, traditional, tough*, tolerant, tidy, technical, trendy, unique, up-to-date, vibrant*, virtuous, warm*, welcoming, young | alley, activity, animal, airport, avenue, architecture, bridge*, bar, broadcast media, building, bus, book, beach, celebrity*, cafe shop, campus*, cinema, CBD*, city park*, commodity, communication, city wall*, city hall, driver, dweller, event*, express delivery, food*, folk art, forest, flower*, fast food, festival*, film, famous people*, gate, garden, greenway, gallery, highway, handicrafts*, hotel*, library*, literature*, lake, legend*, museum*, memorial*, mountain*, music, mausoleum*, media*, novel, plant*, policeman, poet, poem, performance, price*, school, street*, pedestrians*, RBD*, resident*, residential area, river*, restaurant*, shopping mall, squire*, seller, stadium, symbol, sea, snack, sky, skyscraper, sculpture*, store, subway, souvenir, tree*, service*, temperature*, temple*, tourist, theme park*, theater, traffic*, tourist guide, transport station*, temperature*, venue, waiter/waitress*, weather*, water*, zoo* |
Variables | Samples (%) | Variables | Samples (%) | ||
---|---|---|---|---|---|
Sex | Age | ||||
Male | 314 | 46.8 | 20 and below | 50 | 7.4 |
Female | 357 | 53.2 | 21 to 34 | 223 | 33.2 |
Profession | 35 to 44 | 151 | 22.5 | ||
Government staff | 36 | 5.3 | 45 to 60 | 151 | 22.5 |
Manager | 55 | 8.2 | 60 or above | 35 | 5.2 |
Professional/Technical personnel | 45 | 6.6 | Education | ||
Businessman | 29 | 4.3 | Primary school and below | 29 | 4.3 |
Staff/Worker | 108 | 16.1 | Middle school | 64 | 9.5 |
Servicer/Salesman | 115 | 17.2 | High school | 143 | 21.3 |
Farmer | 15 | 2.3 | Technical college | 127 | 18.9 |
Student | 193 | 28.7 | Undergraduate | 272 | 40.6 |
Retired | 52 | 7.8 | Graduate | 36 | 5.4 |
Other | 23 | 3.5 | Monthly Income | ||
Visiting Time | ¥3000 or below | 171 | 25.5 | ||
First time | 317 | 47.3 | ¥3001 to ¥5000 | 313 | 46.6 |
Second time | 238 | 35.5 | ¥5001 to ¥9999 | 101 | 15.1 |
Third lime or above | 116 | 17.2 | ¥10,000 or above | 86 | 12.8 |
Features | Tcf | Tar | Features | Tcf | Tar | Features | Tcf | Tar | Features | Tcf | Tar |
---|---|---|---|---|---|---|---|---|---|---|---|
Aggressive | Diligent | √ | Knowledgeable | Self-confident | |||||||
Artistic | √ | Down-to-earth | Masculine | √ | Simple | √ | |||||
Beautiful | √ | √ | Efficient | √ | Mysterious | Sociable | |||||
Busy | √ | Excited | Native | √ | Sincere | √ | |||||
Courteous | Elegant | √ | √ | Old | √ | Showy | |||||
Calm | √ | √ | Fashionable | √ | √ | Open-minded | √ | Sensible | |||
Classical | √ | Glamorous | √ | Outdoorsy | Successful | ||||||
Cultural | √ | √ | Generous | √ | √ | Promising | √ | Tough | √ | ||
Cheerful | √ | Home-oriented | Rich | Tolerant | √ | ||||||
Compatible | √ | Intelligent | √ | Romantic | √ | Vibrant | √ | ||||
Creative | √ | Independent | Reliable | √ | Warm | √ | √ | ||||
Highest Fitness: Y = 0.0697 |
Factors/Features | Factor Loading | Eigenvalue | Cumulative Explained Variance | |||
---|---|---|---|---|---|---|
Fuq | Fkd | Fai | Fcp | |||
Fuq: Uniqueness | 8.31 | 26.4% | ||||
Fuq_1: Classical | 0.832 | 0.272 | 0.216 | 0.121 | ||
Fuq_2: Cultural | 0.807 | 0.325 | 0.191 | 0.031 | ||
Fuq_3: Native | 0.747 | 0.218 | 0.063 | 0.297 | ||
Fuq_4: Glamorous | 0.623 | 0.403 | 0.223 | 0.213 | ||
Fuq_5: Beautiful | 0.533 | 0.123 | 0.071 | 0.037 | ||
Fuq_6: Artistic | 0.509 | 0.280 | 0.040 | 0.283 | ||
Fuq_7: Elegant | 0.431 | 0.131 | 0.193 | 0.162 | ||
Fuq_8: Romantic | 0.402 | 0.052 | 0.040 | 0.073 | ||
Fkd: Kindness | 7.22 | 49.3% | ||||
Fkd_1: Warm | 0.320 | 0.819 | 0.206 | 0.216 | ||
Fkd_2: Simple | 0.287 | 0.783 | 0.305 | 0.200 | ||
Fkd_3: Generous | 0.039 | 0.701 | 0.127 | 0.313 | ||
Fkd_4: Compatible | 0.035 | 0.687 | 0.388 | 0.273 | ||
Fkd_5: Tolerant | 0.082 | 0.635 | 0.193 | 0.071 | ||
Fkd_6: Reliable | 0.289 | 0.577 | 0.390 | 0.129 | ||
Fkd_7: Sincere | 0.271 | 0.516 | 0.283 | 0.206 | ||
Fai: Activeness | 6.40 | 65.2% | ||||
Fai_1: Old | 0.105 | 0.367 | 0.818 | 0.201 | ||
Fai_2: Masculine | 0.308 | 0.136 | 0.760 | 0.397 | ||
Fai_3: Fashionable | 0.299 | 0.280 | 0.729 | 0.057 | ||
Fai_4: Open-minded | 0.170 | 0.223 | 0.646 | 0.309 | ||
Fai_5: Calm | 0.283 | 0.077 | 0.529 | 0.133 | ||
Fai_6: Cheerful | 0.019 | 0.103 | 0.437 | 0.237 | ||
Fai_7: Vibrant | 0.249 | 0.276 | 0.408 | 0.006 | ||
Fcp: Competence | 5.01 | 78.6% | ||||
Fcp_1: Intelligent | 0.234 | 0.293 | 0.134 | 0.809 | ||
Fcp_2: Tough | 0.187 | 0.201 | 0.059 | 0.753 | ||
Fcp_3: Promising | 0.237 | 0.234 | 0.032 | 0.667 | ||
Fcp_4: Creative | 0.107 | 0.070 | 0.280 | 0.621 | ||
Fcp_5: Diligent | 0.255 | 0.135 | 0.196 | 0.552 | ||
Fcp_6: Efficient | 0.208 | 0.193 | 0.200 | 0.478 | ||
Fcp_7: Busy | 0.310 | 0.079 | 0.156 | 0.434 |
Features | Tuq | Tkd | Tai | Tcp | Features | Tuq | Tkd | Tai | Tcp |
---|---|---|---|---|---|---|---|---|---|
Avenue/Alley | √ | √ | Mountain scenery | ||||||
Animal | Municipal building | ||||||||
Architectural style | Plant | √ | √ | ||||||
Bridge | √ | √ | Price level | √ | √ | ||||
Bar street | Public historical event | √ | |||||||
City wall | √ | √ | Pedestrian street | √ | √ | √ | |||
Campus | √ | √ | √ | Public service | √ | √ | |||
City squire/park | √ | √ | √ | Resident | √ | √ | √ | ||
CBD& RBD | √ | √ | Restaurant and hotel | √ | √ | √ | √ | ||
Cultural venue | √ | √ | √ | Residential area | |||||
Commodity and souvenir | √ | √ | Skyscraper | √ | √ | ||||
Communication | √ | Stadium | |||||||
Express delivery | Street sculpture | √ | √ | ||||||
Famous building | √ | √ | √ | Sanitary | √ | √ | |||
Film and television work | Security | √ | √ | ||||||
Festival and celebration | √ | √ | Shopping mall | ||||||
Folk art and handicraft | √ | √ | Snack Shop | √ | √ | ||||
Famous public people | √ | √ | Temple/tower/mausoleum | √ | √ | √ | |||
Historical garden | Theme park/Zoo | ||||||||
Industrial area | Traffic | √ | √ | ||||||
Local legend/story/music | √ | √ | Tourism related service | √ | √ | ||||
Local Food | √ | √ | Transport station | √ | √ | √ | |||
Literature work | √ | √ | √ | Traditional street and area | √ | √ | |||
Local media | Water (front) scenery | √ | √ | √ | |||||
Museum/Memorial | √ | √ | Weather and temperature | ||||||
Main road | |||||||||
Highest Fitness: Y = 0.0732 |
Factors/Features | Factor Loading | Eigenvalue | Cumulative Explained Variance | ||||
---|---|---|---|---|---|---|---|
Fld | Fri | Fme | Fli | Fsv | |||
Fld: Landmark | 9.54 | 27.9% | |||||
Fld_1: Temple/tower/mausoleum | 0.294 | 0.135 | 0.223 | ||||
Fld_2: City wall | 0.137 | 0.332 | 0.003 | ||||
Fld_3: Bridge | 0.302 | 0.141 | 0.172 | ||||
Fld_4: Famous building | 0.234 | 0.367 | 0.312 | ||||
Fld_5: Museum and memorial | 0.085 | 0.285 | 0.183 | ||||
Fld_6: Public historical event | 0.093 | 0.123 | 0.192 | ||||
Fld_7: Avenue/alley | 0.075 | 0.292 | 0.234 | ||||
Fld_8: Street sculpture | 0.188 | 0.233 | 0.008 | ||||
Fri: Relic | 8.39 | 47.1% | |||||
Fri_1: Traditional street and area | 0.123 | 0.300 | 0.083 | ||||
Fri_2: Famous public people | 0.273 | 0.256 | 0.193 | ||||
Fri_3: Campus | 0.028 | 0.283 | 0.128 | ||||
Fri_4: Folk art and handicraft | 0.311 | 0.276 | 0.103 | ||||
Fri_5: Literature work | 0.192 | 0.321 | 0.135 | ||||
Fri_6: Local legend/story/music | 0.225 | 0.006 | 0.106 | ||||
Fri_7: Water (front) scenery | 0.302 | 0.175 | 0.272 | ||||
Fme: Modernity | 6.27 | 62.8% | |||||
Fme_1: CBD&RBD | 0.713 | 0.103 | 0.209 | ||||
Fme_2: Transport station | 0.629 | 0.115 | 0.004 | ||||
Fme_3: Restaurant and hotel | 0.600 | 0.304 | 0.183 | ||||
Fme_4: Skyscraper | 0.573 | 0.231 | 0.222 | ||||
Fme_5: Commodity and souvenir | 0.551 | 0.093 | 0.179 | ||||
Fme_6: Pedestrian street | 0.523 | 0.173 | 0.271 | ||||
Fme_7: City park and squire | 0.432 | 0.055 | 0.338 | ||||
Fli: Living | 5.53 | 71.9% | |||||
Fli_1: Resident | 0.191 | 0.747 | 0.091 | ||||
Fli_2: Traffic | 0.258 | 0.639 | 0.033 | ||||
Fli_3: Local food | 0.199 | 0.561 | 0.382 | ||||
Fli_4: Cultural venue | 0.205 | 0.532 | 0.245 | ||||
Fli_5: Festival and celebration | 0.316 | 0.513 | 0.234 | ||||
Fli_6: Snack shop | 0.352 | 0.477 | 0.178 | ||||
Fli_7: Plant | 0.067 | 0.420 | 0.101 | ||||
Fsv: Service | 4.90 | 79.5% | |||||
Fsv_1: Tourism related service | 0.134 | 0.008 | 0.802 | ||||
Fsv_2: Sanitary | 0.372 | 0.171 | 0.633 | ||||
Fsv_3: Public service | 0.251 | 0.041 | 0.610 | ||||
Fsv_4: Security | 0.299 | 0.124 | 0.581 | ||||
Fsv_5: Price level | 0.005 | 0.233 | 0.502 | ||||
Fsv_6: Communication | 0.348 | 0.376 | 0.433 |
Phase1 | Phase2 | Phase3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
To_h | To_m | Tcf | Tar | Tuq | Tkd | Tai | Tcp | |||
Fcf | 0.853 | 0.321 | Fuq | 0.306 | 0.892 | Fld | 0.852 | 0.372 | 0.658 | 0.639 |
Far | 0.259 | 0.772 | Fkd | 0.836 | 0.737 | Fri | 0.771 | 0.236 | 0.792 | 0.380 |
Fai | 0.669 | 0.601 | Fme | 0.503 | 0.523 | 0.453 | 0.788 | |||
Fcp | 0.721 | 0.219 | Fli | 0.435 | 0.780 | 0.227 | 0.465 | |||
Fsv | 0.321 | 0.807 | 0.313 | 0.667 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, C.; Li, Y.; Xu, Z.; Huang, Z. Hierarchical Fusion Process of Destination Image Formation: Targeting on Urban Tourism Destination. Sustainability 2021, 13, 11805. https://doi.org/10.3390/su132111805
Zhang X, Zhang C, Li Y, Xu Z, Huang Z. Hierarchical Fusion Process of Destination Image Formation: Targeting on Urban Tourism Destination. Sustainability. 2021; 13(21):11805. https://doi.org/10.3390/su132111805
Chicago/Turabian StyleZhang, Xuhui, Chen Zhang, Yanan Li, Ziyu Xu, and Zhenfang Huang. 2021. "Hierarchical Fusion Process of Destination Image Formation: Targeting on Urban Tourism Destination" Sustainability 13, no. 21: 11805. https://doi.org/10.3390/su132111805
APA StyleZhang, X., Zhang, C., Li, Y., Xu, Z., & Huang, Z. (2021). Hierarchical Fusion Process of Destination Image Formation: Targeting on Urban Tourism Destination. Sustainability, 13(21), 11805. https://doi.org/10.3390/su132111805