Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context
Abstract
1. Introduction
2. State of the Art
2.1. Building Phases in Switzerland (SIA) and Level of Development (LOD)
2.2. LCA Databases for Buildings in Switzerland
2.3. Cost-Planning Structure in Switzerland (eBKP-H)
3. Methodology
3.1. Relationship between the Building Phases in Switzerland (SIA) and the Level of Development (LOD)
3.2. Relationship between the LCA Databases in Switzerland and the Swiss Cost-Planning Structure (eBKP-H)
3.3. New Process-Structured LCA Database
3.4. Developing a Link between the New Process-Structured LCA Database and BIM—Dynamic Tool for LCA
3.4.1. Step 1: LCA Parameter Creation
3.4.2. Step 2: Calculation and Check
3.4.3. Step 3: Report
3.5. Case Study Description and Dynamic Tool for LCA Test and Calibration
4. Results
4.1. Process-Structured LCA Database
4.2. Dynamic Tool for LCA
5. Discussion
5.1. Limitations
5.1.1. Information Modeling
Incompleteness of BIModels
BIModels’ LOD
BIModeling Techniques
5.1.2. LCA Databases
New Process-Structured LCA Database
Existing LCA Databases
5.2. Future Potential
5.2.1. Information Modeling
BIModel Structure
openBIM
- BIM library requirements, a BIM guideline and a Model View Definition (MVD);
- An IFC file model checker to ensure that the IFC file contains all the relevant information;
- An IFC Viewer Plugin or a newly developed software tool that performs the LCA Evaluation.
5.2.2. LCA Databases
5.2.3. Dynamic tool for LCA and New Process-Structured LCA Database
5.2.4. Decision-Making
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UN Environment; IEA. Global Status Report: towards a zero-emission, efficient and resilient buildings and construction sector; International Energy Agency: Paris, France; United Nations Environment Programme: Nairobi, Kenya, 2018; p. 325. [Google Scholar]
- IRP. The Weight of Cities: Resource requirements of future urbanization, A Report by the International Resource Panel; Swilling, M., Hajer, M., Baynes, T., Bergesen, J., Labbé, F., Musango, J.K., Ramaswami, A., Robinson, B., Salat, S., Suh, S., et al., Eds.; United Nations Environment Programme: Nairobi, Kenya, 2018. [Google Scholar]
- World Green Building Council. Available online: https://www.worldgbc.org/ (accessed on 10 November 2019).
- Russell-Smith, S.; Lepech, M.D.; Fruchter, R.; Meyer, Y. Sustainable Target Value Design: Integrating Life Cycle Assessment and Target Value Design to Improve Building Energy and Environmental Performance. J. Clean. Prod. 2015, 88, 43–51. [Google Scholar] [CrossRef]
- Braet, J. The environmental impact of container pipeline transport compared to road transport. Case study in the Antwerp Harbor region and some general extrapolations. Int. J. Life Cycle Assess. 2011, 169, 886–896. [Google Scholar] [CrossRef]
- Ortiz, O.; Castells, F.; Sonnemann, G. Sustainability in the construction industry: A review of recent developments based on LCA. Construct. Build. Mater. 2009, 23, 28–39. [Google Scholar] [CrossRef]
- Meex, E.; Hollberg, A.; Knapen, E.; Hildebrand, L.; Verbeeck, G. Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Build. Environ. 2018, 133, 228–236. [Google Scholar] [CrossRef]
- Röck, M.; Passer, A.; Ramon, D.; Allacker, K. The coupling of BIM and LCA—challenges identified through case study implementation. In Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision; Taylor & Francis Group: London, UK, 2019; pp. 841–846. [Google Scholar]
- Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical review of BIM-based LCA method to buildings. Energy Build. 2017, 136, 110–120. [Google Scholar] [CrossRef]
- Eadie, R.; Browne, M.; Odeyinka, H.; McKeown, C.; McNiff, S. BIM implementation throughout the UK construction project lifecycle: An analysis. Autom. Constr. 2013, 36, 145–151. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Zhou, J. Enhancing environmental sustainability over building life cycles through green BIM: A review. Automat. Constr. 2015, 57, 156–165. [Google Scholar] [CrossRef]
- Eleftheriadis, S.; Mumovic, D.; Greening, P. Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renew. Sustain. Energy Rev. 2017, 67, 811–825. [Google Scholar] [CrossRef]
- Cavalliere, C.; Habert, G.; Dell’Osso, G.R.; Hollberg, A. Continuous BIM-based assessment of embodied environmental impacts throughout the design process. J. Clean. Production 2019, 211, 941–952. [Google Scholar] [CrossRef]
- Seyis, S. Mixed method review for integrating building information modelling and life cycle assessments. Build. Environ. 2020, 173, 106–703. [Google Scholar] [CrossRef]
- Najjar, M.; Figueiredo, K.; Palumbo, M.; Haddad, A. Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. J. Build. Engin. 2017, 14, 115–126. [Google Scholar] [CrossRef]
- Röck, M.; Hollberg, A.; Habert, G.; Passer, A. LCA and BIM: Integrated Assessment and Visualization of Building Elements’ Embodied Impacts for Design Guidance in Early Stages. Procedia CIRP 2018, 69, 218–223. [Google Scholar] [CrossRef]
- Abanda, F.H.; Oti, A.H.; Tah, J.H.M. Integrating BIM and new rules of measurement for embodied energy and CO2 assessment. J. of Build. Eng. 2017, 12, 288–305. [Google Scholar] [CrossRef]
- Shadram, F.; Johansson, T.D.; Schade, W.; Lu, J.; Olofsson, T. An integrated BIM-based framework for minimizing embodied energy during building design. Energy Build. 2016, 128, 592–604. [Google Scholar] [CrossRef]
- Lee, S.; Tae, S.; Roh, S.; Kim, T. Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact. Sustainability 2015, 7, 16498–16512. [Google Scholar] [CrossRef]
- Hollberg, A.; Genova, G.; Habert, G. Evaluation of BIM-Based LCA Results for Building Design. Autom. Constr. 2020, 109, 102972. [Google Scholar] [CrossRef]
- Sharma, A.; Saxena, A.; Sethi, M.; Shree, V.; Varun, G. Life cycle assessment of buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 871–875. [Google Scholar] [CrossRef]
- Chang, Y.; Qi, S.; Ji, Y.; Qi, K. BIM-based incremental cost analysis method of prefabricated buildings in China. Sustainability 2018, 10, 4293. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Integration of LCA and LCC analysis within a BIM-based environment. Autom. Constr. 2019, 127–149. [Google Scholar] [CrossRef]
- Bueno, C.; Fabricio, M.M. Application of building information modelling (BIM) to perform life cycle assessment of buildings. J. Grad. Progr. Architect. Urb. FAUUSP 2016, 23, 96–121. [Google Scholar] [CrossRef][Green Version]
- Curschellas, P.; Dohmen, P.; Ferraro, E.; Gubler, D.; Maurer, C.; Rukat, R.; Schmidt, T.; Wondrusch, R. Swiss BIM LOIN-Definition (LOD) Verständigung; Bauen digital Schweiz / buildingSMART: Zurich, Switzerland, 2018; pp. 1–60. [Google Scholar]
- Maier, C.; Huber, U.; Drobnik, M.; Dohmen, P.; Buchler, D.; Randjelovic, S. BIM Workbook Verständigung; Bauen digital Schweiz / buildingSMART: Zurich, Switzerland, 2018; pp. 1–64. [Google Scholar]
- SIA112: Leistungsmodell; SIA: Zurich, Switzerland, 2014; pp. 1–28.
- Lasvaux, S.; Gantner, J. Towards a new generation of building LCA tools adapted to the building design process and to the user needs. Sustain. Build. 2013, 712, 406–417. [Google Scholar]
- SIA2032: Graue Energie—Ökobilanzierung für die Erstellung von Gebäuden; SIA: Zurich, Switzerland, 2019; pp. 1–34.
- Frischknecht, R.; Büsser, K.S. Swiss Eco-Factors 2013 according to the Ecological Scarcity Method; Federal Office for the Environment FOEN: Bern, Switzerland, 2013; p. 256. [Google Scholar]
- Ecoinvent ver. 2.2. Available online: www.ecoinvent.org (accessed on 16 April 2020).
- SIA2040: Effizienzpfad Energie; SIA: Zurich, Switzerland, 2017; pp. 1–44.
- Bauteilkatalog. Available online: www.bauteilkatalog.ch (accessed on 5 May 2016).
- 34 BFE (Bundesamt für Energie). Available online: www.bfe.admin.ch (accessed on 7 April 2019).
- Hollinger Consult GmbH. Available online: www.holligerconsult.ch (accessed on 7 April 2019).
- KBOB (Koordinationskonferenz der Bau- und Liegenschaftsorgane der öffentlichen Bauherren). Available online: www.kbob.admin.ch (accessed on 7 April 2019).
- eco-bau. Available online: www.eco-bau.ch (accessed on 7 April 2019).
- IPB (Interessengemeinschaft privater professioneller Bauherren). Available online: www.ipb-online.ch (accessed on 7 April 2019).
- crb. eBKP-H Baukostenplan SN 506 511 Hochbau; crb: Zurich, Switzerland, 2012; pp. 1–313. [Google Scholar]
- crb. Genauere Kostenermittlung mit dem neuen CRB-Standard eBKP gate; crb: Zurich, Switzerland, 2017; pp. 1–24. [Google Scholar]
- Hollberg, A.; Lützkendorf, T.; Habert, G. Top-down or bottom-up?—How environmental benchmarks can support the design process. Build. Environ. 2019, 153, 148–157. [Google Scholar] [CrossRef]
- MINERGIE. Berechnung der Grauen Energie bei MINERGIE—A®, MINERGIE—ECO®, MINERGIE—P —ECO ® UND MINERGIE—A—ECO ® BAUTEN; Minergie: St. Gallen, Switzerland, 2014; pp. 1–11. [Google Scholar]
- Implenia. Available online: www.implenia.com (accessed on 7 April 2019).
- On the way to the 2000-watt society; City of Zurich: Zurich, Switzerland, 2011; pp. 1–32.
- Azari, R.; Abbasabadi, N. Embodied energy of buildings: A review of data, methods, challenges, and research trends. Energy Build 2018, 168, 225–235. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naneva, A.; Bonanomi, M.; Hollberg, A.; Habert, G.; Hall, D. Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context. Sustainability 2020, 12, 3748. https://doi.org/10.3390/su12093748
Naneva A, Bonanomi M, Hollberg A, Habert G, Hall D. Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context. Sustainability. 2020; 12(9):3748. https://doi.org/10.3390/su12093748
Chicago/Turabian StyleNaneva, Anita, Marcella Bonanomi, Alexander Hollberg, Guillaume Habert, and Daniel Hall. 2020. "Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context" Sustainability 12, no. 9: 3748. https://doi.org/10.3390/su12093748
APA StyleNaneva, A., Bonanomi, M., Hollberg, A., Habert, G., & Hall, D. (2020). Integrated BIM-Based LCA for the Entire Building Process Using an Existing Structure for Cost Estimation in the Swiss Context. Sustainability, 12(9), 3748. https://doi.org/10.3390/su12093748