Calculating a Drop in Carbon Emissions in the Strait of Gibraltar (Spain) from Domestic Shipping Traffic Caused by the COVID-19 Crisis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory/Calculation
- : Total emissions in grams for the pollutant of interest.
- D (miles): Distance that the ship travels within the study area.
- (knots): Average speed of the ship.
- Activity time (hours): .
- ME (kW): Maximum continuous rating (MCR) of the main engine.
- Load factor of the main engine as a fraction of the MCR.
- SFOC: Specific fuel oil consumption in g/kWh.
- (kW): Maximum continuous rating (MCR) of the auxiliary engine.
- : Load factor of the auxiliary engine as a fraction of the MCR.
- (g/kWh): Emission factor for the main engine for the pollutant of interest (this varies by engine type and fuel consumed rather than by activity mode).
- (g/kWh): Emission factor for the auxiliary engine for the pollutant of interest.
2.1.1. ME Transient Power
- Speed loss due to wind and waves;
- Speed loss due to fouling;
- = Difference between speed on the surface and speed over the sea bottom;
- = Efficiency of the propulsion system.
2.1.2. AE Power
Ships at Sea
Ships at Berth
- DE: Daily emissions (g);
- BT: Berthing time (24 h);
- Pdelivered: Average power delivered by the AE for each ship (kW);
- EF: Emission factor for the pollutant studied (g/kWh).
2.2. Emission Factors
- y = emissions in g/kWh;
- a = coefficient;
- b = intercept;
- x = exponent (negative).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- BOE núm. 141, de 19 de mayo de 2020, Páginas 33496 a 33503. Ministerio de Transportes, Movilidad y Agenda Urbana. BOE-A-2020-5125. Available online: https://www.boe.es/eli/es/o/2020/05/18/tma419 (accessed on 30 April 2020).
- Teter, J.; The Covid-19 Crisis and Clean Energy Progress. Tracking Transport. Tracking Clean Energy Progress. 2020. Available online: https://www.iea.org/reports/the-covid-19-crisis-and-clean-energy-progress (accessed on 24 June 2020).
- Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Deniz, C.; Durmuşoğlu, Y. Estimating shipping emissions in the region of the Sea of Marmara, Turkey. Sci. Total. Environ. 2008, 390, 255–261. [Google Scholar] [CrossRef]
- World Health Organization. Health Indicators of Sustainable Energy in the Context of the Rio+20 UN Conference on Sustainable Development. Initial Findings from a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Penn, S.L.; Arunachalam, S.; Woody, M.C.; Heiger-Bernays, W.; Tripodis, Y.; Levy, J.I. Estimating State-Specific Contributions to PM2.5 - and O3 -Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States. Environ. Health Perspect. 2017, 125, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Matthias, V.; Bewersdorff, I.; Aulinger, A.; Quante, M. The contribution of ship emissions to air pollution in the North Sea regions. Environ. Pollut. 2010, 158, 2241–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, D.; Uibel, S.; Takemura, M.; Groneberg, D.A.; Groneberg, D.A. Ships, ports and particulate air pollution - an analysis of recent studies. J. Occup. Med. Toxicol. 2011, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- EPA-420-R-10-013. Proposal to Designate an Emission Control Area. 2010. Available online: http://www.epa.gov/otaq/regs/nonroad/marine/ci/420r10013.pdf (accessed on 15 April 2020).
- Jalkanen, J.P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T. Modelling System for the Exhaust Emissions of Marine Traffic and its Application in the Baltic Sea Area. Atmos. Chem. Phys. 2009, 9, 9209–9223. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.P.; Jalkanen, J.P.; Anderson, B.A.; Corbett, J.J.; Faber, J.; Hanayama, S.; O’Keeffe, E.; Parker, S.; Johansson, L.; Aldous, L.; et al. Third IMO GHG Study; International Maritime Organization (IMO): London, UK, June 2014. [Google Scholar]
- Moreno-Gutiérrez, J.; Durán-Grados, V. Calculating ships’ real emissions of pollutants and greenhouse gases: Towards zero uncertainties. Sci. Total Environ. 2021, 750, 141471. [Google Scholar] [CrossRef] [PubMed]
- Endresen, Ø.; Sørgård, E.; Behrens, H.L.; Brett, P.O.; Isaksen, I.S.A. A historical reconstruction of ships’ fuel consumption and emissions. J. Geophys. Res. Space Phys. 2007, 112, 301. [Google Scholar] [CrossRef] [Green Version]
- European Climate Pact. Energetic Strategy 2030. Available online: https://ec.europa.eu/clima/policies/eu-climate-action/pact.2020 (accessed on 25 May 2020).
- Moreno-Gutiérrez, J.; Calderay, F.; Saborido, N.; Boile, M.; Valero, R.R.; Durán-Grados, V. Methodologies for estimating shipping emissions and energy consumption: A comparative analysis of current methods. Energy 2015, 86, 603–616. [Google Scholar] [CrossRef]
- Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Calderay-Cayetano, F.; Durán-Grados, V.; Moreno-Gutiérrez, J.; Jalkanen, J.-P.; Hannuniemi, H.; Sousa, S. Shipping emissions in the Iberian Peninsula and the impacts on air quality. Atmos. Chem. Phys. Discuss. 2020, 20, 9473–9489. [Google Scholar] [CrossRef]
- Defra. UK Ship Emissions Inventory; Final Report November; Defra: Marsham Street, London, UK, 2010. [Google Scholar]
- U.S. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2012; U.S. EPA: Washington, DC, USA, 2014.
- Trozzi, C.; Lauretis, R. Air Pollutant Emission Inventory Guidebook; European Environment Agency: Copenhagen, Denmark, 2013. [Google Scholar]
- Eyring, V.; Köhler, H.W.; Van Aardenne, J.; Lauer, A. Emissions from international shipping: 1. The last 50 years. J. Geophys. Res. Space Phys. 2005, 110, 110. [Google Scholar] [CrossRef]
- MAN Diesel & Turbo, Coppenhagen, Denmark. Basic Principles of Ship Propulsion. December 2011. Available online: https://spain.mandieselturbo.com/docs/librariesprovider10/sistemas-propulsivos-marinos/basic-principles-of-ship-propulsion.pdf?sfvrsn=2 (accessed on 1 April 2020).
- Durán-Grados, V.; Mejías, J.; Musina, L.; Moreno-Gutiérrez, J. The influence of the waterjet propulsion system on the ships’ energy consumption and emissions inventories. Sci. Total Environ. 2018, 496–509. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Ma, N.; Hirakawa, Y. Evaluation of resistance increase and speed loss of a ship in wind and waves. J. Ocean Eng. Sci. 2016, 1, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Starcrest Consulting Group, LLC. Port-Wide Baseline Air Emissions Inventory; Starcrest Consulting Group, LLC: Port of Los Angeles, CA, USA, 2005. [Google Scholar]
- Goldsworthy, L.C.; Renilson, M.R. Ship Engine Exhaust Emission Estimates for Port of Brisbane. Air Qual. Clim. Chang. 2013, 47, 26–36. [Google Scholar]
- ENTEC 2002 and IVL 2004 Auxiliary Engine Emission Factors. IVL. Methodology for Calculating Emissions from Ships: Update on Emission Factors 2004. Available online: https://www.researchgate.net/publication/237764562_Methodology_for_calculating_emissions_from_ships_1_Update_of_emission_factors (accessed on 10 December 2020).
- EMSA. COVID-19—Impact on Shipping; European Maritime Safety Agency. Available online: http://www.emsa.europa.eu (accessed on 10 December 2020).
Ship Type/Rounds | Total AE (kW) | Speed (knots) 3 | Length (m) | Breadth (m) | Draug. (m) 4 | ||||
---|---|---|---|---|---|---|---|---|---|
Installed | Crui. 2 | Manv. 2 | Hot. 2 | ||||||
A/270 | 28,800 | 4800 | 720 | 2160 | 1440 | 37 | 101 | 26.6 | 4.2 |
B/450 | 28,800 | 4800 | 720 | 2160 | 1440 | 42 | 92 | 26 | 4.26 |
C/540 | 14,800 | 3600 | 540 | 1620 | 1080 | 37 | 83 | 13 | 3.2 |
D/450 | 28,304 | 4600 | 690 | 2070 | 1380 | 35 | 86 | 26 | 3.8 |
E/540 | 17,600 | 4000 | 600 | 1800 | 1200 | 35 | 77.5 | 26 | 2.72 |
F/450 | 20,240 | 4200 | 630 | 1890 | 1260 | 35 | 96 | 14.6 | 2.19 |
Ship Type | Power (kW) | CO2 | CH4 | N2O | NMVOC | CO | SOX | NOX | PM |
---|---|---|---|---|---|---|---|---|---|
A | 190 1 | 2959 | 0.036 | 0.132 | 0.042 | 0.061 | 10.48 | 47.65 | 1.6 |
1440 2 | 22,429 | 0.272 | 1 | 0.318 | 0.46 | 79.43 | 342.13 | 11.48 | |
B | 40 1 | 623 | 0.0075 | 0.027 | 0.009 | 0.0129 | 2.2 | 10 | 0.33 |
1440 2 | 22,428 | 0.27 | 0.972 | 0.324 | 0.46 | 79.2 | 360 | 11.88 | |
C | 42 1 | 654 | 0.008 | 0.029 | 0.0099 | 0.013 | 2.3 | 10.5 | 0.35 |
1080 2 | 16,808 | 0.2 | 0.745 | 0.254 | 0.33 | 59.11 | 269.8 | 9 | |
D | 45 1 | 701 | 0.0085 | 0.031 | 0.01 | 0.014 | 2.48 | 11.28 | 0.37 |
1380 2 | 21,493 | 0.26 | 0.95 | 0.30 | 0.429 | 76 | 346 | 11.34 | |
E | 42 1 | 654 | 0.008 | 0.029 | 0.0099 | 0.013 | 2.3 | 10.5 | 0.35 |
1200 2 | 18,704 | 0.228 | 0.83 | 0.283 | 0.37 | 65.8 | 300 | 10 | |
F | 40 1 | 623 | 0.0075 | 0.027 | 0.009 | 0.0129 | 2.2 | 10 | 0.33 |
1260 2 | 19,624 | 0.236 | 0.85 | 0.283 | 0.4 | 69.3 | 315 | 10.4 | |
TOTAL Daily1 | 6214 | 0.0755 | 0.275 | 1.84 | 2.52 | 21.96 | 99.93 | 3.33 | |
TOTAL Daily2 | 121,486 | 1.466 | 5.34 | 15 | 20.6 | 428.8 | 1932.9 | 64.1 | |
TOTAL1 | 559,260 | 6.80 | 24.75 | 166.30 | 227.32 | 1976.4 | 8993.70 | 299.7 | |
TOTAL2 | 10,933,740 | 131.9 | 480.6 | 1350 | 1854 | 38,592 | 173,961 | 5769 |
Engine Type | Fuel Type | EMISSION FACTORS (g/kWh) | |||||
---|---|---|---|---|---|---|---|
CO2 | CO | SOx | NOx | PM10 | PM2.5 | ||
MSD Main | HFO | 659.3 | 1.1 | 11.5 | 14 | 1.5 | 1.46 |
MSD AUX | HFO | 702.6 | 1.1 | 12.3 | 14.7 | 1.5 | 1.46 |
MSD AUX | MDO | 661.4 | 1.1 | 2.2 | 13.9 | 0.38 | 0.35 |
Pollutant | Exponent | Intercept (b) | Coefficient (a) |
---|---|---|---|
PM | 1.5 | 0.25 | 0.0059 |
NOx | 1.5 | 10.45 | 0.1255 |
CO | 1.0 | 0.15 | 0.8378 |
HC | 1.5 | 0.39 | 0.0667 |
CO2 | CH4 | N2O | NMVOC | CO | SOX | NOX | PM |
---|---|---|---|---|---|---|---|
649 | 0.008 | 0.029 | 0.4 | 0.54 | 2.3 | 10.5 | 0.35 |
TYPE | Fuel Type | CO2 | CO | SOX | NOX | PM10 | PM2.5 |
---|---|---|---|---|---|---|---|
A | ME (HFO) | 2492.5 | 4.2 | 43.5 | 52.9 | 5.7 | 5.5 |
AE (HFO) | 200.78 | 0.3 | 3.5 | 4.2 | 0.4 | 0.4 | |
AE (MDO) | 128.9 | 0.2 | 0.4 | 2.7 | 0.1 | 0.1 | |
B | ME (HFO) | 4118.9 | 6.9 | 71.8 | 87.5 | 9.4 | 9.1 |
AE (HFO) | 352.8 | 0.6 | 6.2 | 7.4 | 0.8 | 0.7 | |
AE (MDO) | 192.9 | 0.3 | 0.6 | 4.1 | 0.1 | 0.1 | |
C | ME (HFO) | 3416 | 5.7 | 59.6 | 72.5 | 7.8 | 7.6 |
AE (HFO) | 317.6 | 0.5 | 5.6 | 6.6 | 0.7 | 0.7 | |
AE (MDO) | 212.2 | 0.4 | 0.7 | 4.5 | 0.1 | 0.1 | |
D | ME (HFO) | 3792.2 | 6.3 | 66.1 | 80.5 | 8.6 | 8.4 |
AE (HFO) | 288 | 0.5 | 5 | 6 | 0.6 | 0.6 | |
AE (MDO) | 205.4 | 0.3 | 0.7 | 4.3 | 0.1 | 0.1 | |
E | ME (HFO) | 4236.7 | 7.1 | 73.9 | 90 | 9.6 | 9.4 |
AE (HFO) | 375.6 | 0.6 | 6.6 | 7.9 | 0.8 | 0.8 | |
AE (MDO) | 235.7 | 0.4 | 0.8 | 5 | 0.1 | 0.1 | |
F | ME (HFO) | 4085.4 | 6.8 | 71.3 | 86.8 | 9.3 | 9 |
AE (HFO) | 284.8 | 0.4 | 5 | 6 | 0.6 | 0.6 | |
AE (MDO) | 187.5 | 0.4 | 0.6 | 3.9 | 0.1 | 0.1 | |
TOTAL ME TOTAL AE TOTAL | 18,349.5 6773.9 25,123.4 | 37 4.9 41.9 | 386.2 35.7 421.9 | 470.2 62.5 532.7 | 50.4 4.5 54.9 | 49 4.4 53.4 |
TYPE | CO2 | CO | SOX | NOX | PM10 | PM2.5 |
---|---|---|---|---|---|---|
TOTAL ME | 23,227.2 | 46.83 | 488.86 | 595.1 | 63.79 | 62 |
TOTAL AE | 6773.9 | 4.9 | 35.7 | 62.5 | 4.5 | 4.4 |
TOTAL | 30,001 | 51.73 | 524.56 | 657.6 | 68.29 | 66.4 |
Publications | CO2 | CO | SOX | NOX | PM10 |
---|---|---|---|---|---|
Moreno 90 days | 237,786 | 325.25 | 2456.5 | 6231.5 | 2010.25 |
Nunes 90 days | 285,950 | 81.31 | 614.12 | 1557.87 | 502.56 |
COVID-19 | 30,001 | 51.73 | 524.56 | 657.6 | 68.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Grados, V.; Amado-Sánchez, Y.; Calderay-Cayetano, F.; Rodríguez-Moreno, R.; Pájaro-Velázquez, E.; Ramírez-Sánchez, A.; Sousa, S.I.V.; Nunes, R.A.O.; Alvim-Ferraz, M.C.M.; Moreno-Gutiérrez, J. Calculating a Drop in Carbon Emissions in the Strait of Gibraltar (Spain) from Domestic Shipping Traffic Caused by the COVID-19 Crisis. Sustainability 2020, 12, 10368. https://doi.org/10.3390/su122410368
Durán-Grados V, Amado-Sánchez Y, Calderay-Cayetano F, Rodríguez-Moreno R, Pájaro-Velázquez E, Ramírez-Sánchez A, Sousa SIV, Nunes RAO, Alvim-Ferraz MCM, Moreno-Gutiérrez J. Calculating a Drop in Carbon Emissions in the Strait of Gibraltar (Spain) from Domestic Shipping Traffic Caused by the COVID-19 Crisis. Sustainability. 2020; 12(24):10368. https://doi.org/10.3390/su122410368
Chicago/Turabian StyleDurán-Grados, Vanessa, Yolanda Amado-Sánchez, Fátima Calderay-Cayetano, Rubén Rodríguez-Moreno, Emilio Pájaro-Velázquez, Antonio Ramírez-Sánchez, Sofia I. V. Sousa, Rafael A. O. Nunes, Maria C. M. Alvim-Ferraz, and Juan Moreno-Gutiérrez. 2020. "Calculating a Drop in Carbon Emissions in the Strait of Gibraltar (Spain) from Domestic Shipping Traffic Caused by the COVID-19 Crisis" Sustainability 12, no. 24: 10368. https://doi.org/10.3390/su122410368
APA StyleDurán-Grados, V., Amado-Sánchez, Y., Calderay-Cayetano, F., Rodríguez-Moreno, R., Pájaro-Velázquez, E., Ramírez-Sánchez, A., Sousa, S. I. V., Nunes, R. A. O., Alvim-Ferraz, M. C. M., & Moreno-Gutiérrez, J. (2020). Calculating a Drop in Carbon Emissions in the Strait of Gibraltar (Spain) from Domestic Shipping Traffic Caused by the COVID-19 Crisis. Sustainability, 12(24), 10368. https://doi.org/10.3390/su122410368