Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA
Abstract
1. Introduction
2. Literature Review
3. Methodology
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Basic Statistics Analysis of Network DEA Factors
Factor (Unit) | Average | Standard Deviation | Median Value | MAX | MIN |
Number of routes | 12,467.63 | 24,784.65 | 5756 | 181,268 | 950 |
Number of airports | 35.07 | 49.25 | 16.5 | 230 | 1 |
Population | 99,646.91 | 254,176.8 | 32,271.72 | 1,386,395 | 343.40 |
GDP | 19,029.11 | 37,719.47 | 6687.38 | 198,870.3 | 190.80 |
Tourist attraction | 4.68 | 0.38 | 4.70 | 5.40 | 3.80 |
Inverse HHI index (airline) | 0.87 | 0.08 | 0.89 | 0.96 | 0.53 |
RPK | 121,937.1 | 243,302.5 | 34,863 | 1,551,965 | 1088 |
CTK | 19,645.45 | 37,644.45 | 5810.5 | 184,130 | 109 |
Inverse HHI index (route) | 0.90 | 0.07 | 0.92 | 0.97 | 0.56 |
Amount of added value | 41.59 | 105.42 | 14.60 | 778.40 | 0.12 |
Appendix B. IM Efficiency Evaluation Results. DMU, Decision-Making Unit
DMU (Country) | Evaluation Results (Scores) | |||||
(Front-Stage Efficiency) | (Behind-Stage Efficiency) | (Total Efficiency) | ||||
Evaluation Index Results | Rank | Evaluation Index Results | Rank | Evaluation Index Results | Rank | |
Argentina | 0.88 | 33 | 0.34 | 25 | - | - |
Australia | 0.85 | 45 | 0.52 | 16 | - | - |
Austria | 0.87 | 36 | 0.28 | 29 | - | - |
Belgium | 0.93 | 23 | 0.39 | 21 | - | - |
Brazil | 0.86 | 42 | 0.17 | 47 | - | - |
Canada | 0.68 | 55 | 0.36 | 24 | - | - |
Chile | 0.86 | 41 | 0.18 | 44 | - | - |
China | 1.00 | 1 | 0.21 | 37 | - | - |
Hong Kong | 1.00 | 1 | 0.25 | 30 | - | - |
Colombia | 0.87 | 39 | 0.20 | 40 | - | - |
Czech Republic | 0.88 | 32 | 0.19 | 42 | - | - |
Egypt | 0.82 | 50 | 0.24 | 33 | - | - |
Ethiopia | 1.00 | 1 | 0.11 | 53 | - | - |
Finland | 1.00 | 1 | 0.16 | 48 | - | - |
France | 0.80 | 52 | 0.71 | 9 | - | - |
Germany | 0.84 | 48 | 0.48 | 17 | - | - |
Greece | 0.84 | 49 | 1.00 | 1 | - | - |
Hungary | 0.99 | 20 | 0.07 | 56 | - | - |
Iceland | 1.00 | 1 | 0.16 | 49 | - | - |
India | 0.90 | 29 | 0.25 | 31 | - | - |
Indonesia | 0.88 | 35 | 0.23 | 35 | - | - |
Ireland | 1.00 | 1 | 0.15 | 50 | - | - |
Israel | 1.00 | 1 | 0.55 | 13 | - | - |
Italy | 0.84 | 47 | 1.00 | 1 | - | - |
Japan | 0.78 | 53 | 0.80 | 6 | - | - |
Jordan | 0.88 | 34 | 0.18 | 43 | - | - |
Kenya | 0.91 | 24 | 0.21 | 38 | - | - |
Latvia | 1.00 | 1 | 0.17 | 46 | - | - |
Lebanon | 1.00 | 1 | 0.77 | 8 | - | - |
Luxembourg | 1.00 | 1 | 0.38 | 22 | - | - |
Malaysia | 0.85 | 43 | 0.10 | 54 | - | - |
Malta | 1.00 | 1 | 0.78 | 7 | - | - |
Korea | 0.87 | 37 | 0.37 | 23 | - | - |
Mexico | 0.53 | 56 | 1.00 | 1 | - | - |
Morocco | 0.84 | 46 | 0.40 | 20 | - | - |
Netherlands | 0.89 | 30 | 0.21 | 39 | - | - |
New Zealand | 0.75 | 54 | 0.55 | 14 | - | - |
Nigeria | 1.00 | 1 | 0.47 | 19 | - | - |
Panama | 1.00 | 1 | 0.23 | 36 | - | - |
Peru | 0.87 | 38 | 0.17 | 45 | - | - |
Philippines | 0.90 | 27 | 0.15 | 51 | - | - |
Poland | 0.90 | 26 | 0.24 | 34 | - | - |
Portugal | 0.85 | 44 | 0.33 | 26 | - | - |
Romania | 0.89 | 31 | 0.28 | 28 | - | - |
Russia | 0.99 | 21 | 0.14 | 52 | - | - |
Rwanda | 1.00 | 1 | 0.08 | 55 | - | - |
Saudi Arabia | 0.98 | 22 | 0.54 | 15 | - | - |
Singapore | 1.00 | 1 | 0.30 | 27 | - | - |
South Africa | 1.00 | 1 | 0.25 | 32 | - | - |
Spain | 0.82 | 51 | 1.00 | 1 | - | - |
Switzerland | 0.91 | 25 | 0.48 | 18 | - | - |
Thailand | 0.86 | 40 | 0.57 | 12 | - | - |
Turkey | 1.00 | 1 | 0.68 | 10 | - | - |
UAE | 1.00 | 1 | 0.19 | 41 | - | - |
United Kingdom | 0.90 | 28 | 0.58 | 11 | - | - |
United States | 1.00 | 1 | 1.00 | 1 | - | - |
Appendix C. RPM: Efficiency Evaluation Results for Different Weights
DMU (Country) | Evaluation Results (Scores) | |||||
(Front-Stage Efficiency) | (Behind-Stage Efficiency) | (Total Efficiency) | ||||
Evaluation Index Results | Rank | Evaluation Index Results | Rank | Evaluation Index Results | Rank | |
Argentina | 0.88 | 31 | 0.02 | 35 | 0.48 | 39 |
Australia | 0.82 | 46 | 0.15 | 18 | 0.52 | 20 |
Austria | 0.87 | 34 | 0.01 | 45 | 0.47 | 43 |
Belgium | 0.93 | 23 | 0.02 | 36 | 0.49 | 35 |
Brazil | 0.86 | 38 | 0.03 | 33 | 0.48 | 40 |
Canada | 0.66 | 50 | 0.17 | 14 | 0.47 | 52 |
Chile | 0.86 | 37 | 0.02 | 44 | 0.47 | 48 |
China | 1.00 | 1 | 0.21 | 11 | 0.61 | 5 |
Hong Kong | 1.00 | 1 | 0.25 | 10 | 0.63 | 4 |
Colombia | 0.86 | 36 | 0.02 | 42 | 0.47 | 46 |
Czech Republic | 0.88 | 30 | 0.00 | 55 | 0.47 | 45 |
Egypt | 0.82 | 47 | 0.01 | 46 | 0.46 | 55 |
Ethiopia | 1.00 | 1 | 0.02 | 39 | 0.51 | 24 |
Finland | 1.00 | 1 | 0.02 | 43 | 0.51 | 26 |
France | 0.48 | 53 | 0.71 | 4 | 0.55 | 14 |
Germany | 0.58 | 51 | 0.48 | 6 | 0.54 | 16 |
Greece | 0.83 | 44 | 0.04 | 32 | 0.47 | 47 |
Hungary | 0.99 | 20 | 0.01 | 53 | 0.50 | 32 |
Iceland | 1.00 | 1 | 0.16 | 16 | 0.58 | 9 |
India | 0.90 | 26 | 0.06 | 26 | 0.50 | 29 |
Indonesia | 0.88 | 33 | 0.05 | 29 | 0.49 | 36 |
Ireland | 1.00 | 1 | 0.14 | 19 | 0.57 | 10 |
Israel | 1.00 | 1 | 0.06 | 27 | 0.53 | 17 |
Italy | 0.83 | 45 | 0.09 | 23 | 0.49 | 34 |
Japan | 0.45 | 55 | 0.80 | 3 | 0.56 | 12 |
Jordan | 0.88 | 32 | 0.01 | 50 | 0.47 | 44 |
Kenya | 0.91 | 24 | 0.01 | 52 | 0.48 | 38 |
Latvia | 1.00 | 1 | 0.01 | 47 | 0.51 | 28 |
Lebanon | 1.00 | 1 | 0.04 | 30 | 0.52 | 19 |
Luxembourg | 1.00 | 1 | 0.09 | 24 | 0.54 | 15 |
Malaysia | 0.85 | 41 | 0.02 | 40 | 0.47 | 50 |
Malta | 1.00 | 1 | 0.20 | 12 | 0.60 | 6 |
Korea | 0.86 | 39 | 0.10 | 22 | 0.51 | 27 |
Mexico | 0.46 | 54 | 0.26 | 9 | 0.39 | 56 |
Morocco | 0.84 | 43 | 0.02 | 37 | 0.46 | 53 |
Netherlands | 0.81 | 48 | 0.15 | 17 | 0.52 | 23 |
New Zealand | 0.55 | 52 | 0.31 | 7 | 0.46 | 54 |
Nigeria | 1.00 | 1 | 0.00 | 56 | 0.50 | 31 |
Panama | 1.00 | 1 | 0.11 | 21 | 0.56 | 13 |
Peru | 0.87 | 35 | 0.01 | 48 | 0.47 | 51 |
Philippines | 0.90 | 28 | 0.02 | 38 | 0.48 | 37 |
Poland | 0.90 | 27 | 0.01 | 49 | 0.48 | 41 |
Portugal | 0.85 | 42 | 0.02 | 34 | 0.47 | 49 |
Romania | 0.89 | 29 | 0.00 | 54 | 0.47 | 42 |
Russia | 0.99 | 21 | 0.04 | 31 | 0.52 | 22 |
Rwanda | 1.00 | 1 | 0.01 | 51 | 0.50 | 30 |
Saudi Arabia | 0.97 | 22 | 0.07 | 25 | 0.53 | 18 |
Singapore | 1.00 | 1 | 0.30 | 8 | 0.65 | 2 |
South Africa | 1.00 | 1 | 0.02 | 41 | 0.51 | 25 |
Spain | 0.39 | 56 | 1.00 | 1 | 0.56 | 11 |
Switzerland | 0.91 | 25 | 0.05 | 28 | 0.50 | 33 |
Thailand | 0.86 | 40 | 0.12 | 20 | 0.52 | 21 |
Turkey | 1.00 | 1 | 0.16 | 15 | 0.58 | 8 |
UAE | 1.00 | 1 | 0.19 | 13 | 0.59 | 7 |
United Kingdom | 0.68 | 49 | 0.57 | 5 | 0.64 | 3 |
United States | 1.00 | 1 | 1.00 | 1 | 1.00 | 1 |
Appendix D. RPM: Efficiency Evaluation Results for the Same Weight
DMU (Country) | Evaluation Results (Scores) | |||||
(Front-Stage Efficiency) | (Behind-Stage Efficiency) | (Total Efficiency) | ||||
Evaluation Index Results | Rank | Evaluation Index Results | Rank | Evaluation Index Results | Rank | |
Argentina | 0.88 | 30 | 0.02 | 35 | 0.48 | 39 |
Australia | 0.82 | 46 | 0.15 | 18 | 0.52 | 20 |
Austria | 0.87 | 33 | 0.01 | 45 | 0.47 | 43 |
Belgium | 0.93 | 23 | 0.02 | 36 | 0.49 | 35 |
Brazil | 0.86 | 39 | 0.03 | 33 | 0.48 | 40 |
Canada | 0.66 | 50 | 0.17 | 14 | 0.47 | 52 |
Chile | 0.86 | 36 | 0.02 | 44 | 0.47 | 48 |
China | 1.00 | 1 | 0.21 | 11 | 0.61 | 5 |
Hong Kong | 1.00 | 1 | 0.25 | 10 | 0.63 | 4 |
Colombia | 0.86 | 37 | 0.02 | 42 | 0.47 | 46 |
Czech Republic | 0.88 | 29 | 0.00 | 55 | 0.47 | 45 |
Egypt | 0.82 | 47 | 0.01 | 46 | 0.46 | 55 |
Ethiopia | 1.00 | 1 | 0.02 | 39 | 0.51 | 24 |
Finland | 1.00 | 1 | 0.02 | 43 | 0.51 | 26 |
France | 0.48 | 53 | 0.71 | 4 | 0.55 | 14 |
Germany | 0.58 | 51 | 0.48 | 6 | 0.54 | 16 |
Greece | 0.83 | 44 | 0.04 | 32 | 0.47 | 47 |
Hungary | 0.99 | 20 | 0.01 | 53 | 0.50 | 31 |
Iceland | 1.00 | 1 | 0.16 | 16 | 0.58 | 9 |
India | 0.88 | 32 | 0.07 | 26 | 0.50 | 32 |
Indonesia | 0.87 | 34 | 0.05 | 28 | 0.49 | 36 |
Ireland | 1.00 | 1 | 0.14 | 19 | 0.57 | 10 |
Israel | 1.00 | 1 | 0.06 | 27 | 0.53 | 17 |
Italy | 0.83 | 45 | 0.09 | 23 | 0.49 | 34 |
Japan | 0.45 | 55 | 0.80 | 3 | 0.56 | 12 |
Jordan | 0.88 | 31 | 0.01 | 50 | 0.47 | 44 |
Kenya | 0.91 | 24 | 0.01 | 52 | 0.48 | 38 |
Latvia | 1.00 | 1 | 0.01 | 47 | 0.51 | 28 |
Lebanon | 1.00 | 1 | 0.04 | 30 | 0.52 | 19 |
Luxembourg | 1.00 | 1 | 0.09 | 24 | 0.54 | 15 |
Malaysia | 0.85 | 41 | 0.02 | 40 | 0.47 | 50 |
Malta | 1.00 | 1 | 0.20 | 12 | 0.60 | 6 |
Korea | 0.86 | 38 | 0.10 | 22 | 0.51 | 27 |
Mexico | 0.46 | 54 | 0.26 | 9 | 0.39 | 56 |
Morocco | 0.84 | 43 | 0.02 | 37 | 0.46 | 53 |
Netherlands | 0.81 | 48 | 0.15 | 17 | 0.52 | 23 |
New Zealand | 0.55 | 52 | 0.31 | 7 | 0.46 | 54 |
Nigeria | 1.00 | 1 | 0.00 | 56 | 0.50 | 30 |
Panama | 1.00 | 1 | 0.11 | 21 | 0.56 | 13 |
Peru | 0.87 | 35 | 0.01 | 48 | 0.47 | 51 |
Philippines | 0.90 | 27 | 0.02 | 38 | 0.48 | 37 |
Poland | 0.90 | 26 | 0.01 | 49 | 0.48 | 41 |
Portugal | 0.85 | 42 | 0.02 | 34 | 0.47 | 49 |
Romania | 0.89 | 28 | 0.00 | 54 | 0.47 | 42 |
Russia | 0.99 | 21 | 0.04 | 31 | 0.52 | 22 |
Rwanda | 1.00 | 1 | 0.01 | 51 | 0.50 | 29 |
Saudi Arabia | 0.97 | 22 | 0.07 | 25 | 0.53 | 18 |
Singapore | 1.00 | 1 | 0.30 | 8 | 0.65 | 2 |
South Africa | 1.00 | 1 | 0.02 | 41 | 0.51 | 25 |
Spain | 0.39 | 56 | 1.00 | 1 | 0.56 | 11 |
Switzerland | 0.91 | 25 | 0.05 | 29 | 0.50 | 33 |
Thailand | 0.86 | 40 | 0.12 | 20 | 0.52 | 21 |
Turkey | 1.00 | 1 | 0.16 | 15 | 0.58 | 8 |
UAE | 1.00 | 1 | 0.19 | 13 | 0.59 | 7 |
United Kingdom | 0.68 | 49 | 0.57 | 5 | 0.64 | 3 |
United States | 1.00 | 1 | 1.00 | 1 | 1.00 | 1 |
Appendix E. RSM Efficiency Evaluation Results
DMU (Country) | Evaluation Results (Scores) | |||||
(Front-Stage Efficiency) | (Behind-Stage Efficiency) | (Total Efficiency) | ||||
Evaluation Index Results | Rank | Evaluation Index Results | Rank | Evaluation Index Results | Rank | |
Argentina | 0.29 | 49 | 0.16 | 30 | 0.05 | 37 |
Australia | 0.48 | 25 | 0.52 | 11 | 0.25 | 9 |
Austria | 0.35 | 43 | 0.11 | 39 | 0.04 | 42 |
Belgium | 0.52 | 21 | 0.17 | 29 | 0.09 | 31 |
Brazil | 0.38 | 41 | 0.16 | 31 | 0.06 | 36 |
Canada | 0.53 | 20 | 0.34 | 15 | 0.18 | 15 |
Chile | 0.39 | 36 | 0.09 | 45 | 0.04 | 45 |
China | 1.00 | 1 | 0.21 | 24 | 0.21 | 11 |
Hong Kong | 1.00 | 1 | 0.25 | 20 | 0.25 | 8 |
Colombia | 0.32 | 46 | 0.10 | 43 | 0.03 | 46 |
Czech Republic | 0.47 | 26 | 0.04 | 54 | 0.02 | 53 |
Egypt | 0.26 | 55 | 0.10 | 41 | 0.03 | 49 |
Ethiopia | 0.61 | 16 | 0.07 | 50 | 0.04 | 41 |
Finland | 0.58 | 17 | 0.08 | 47 | 0.05 | 38 |
France | 0.48 | 24 | 0.71 | 5 | 0.34 | 5 |
Germany | 0.58 | 18 | 0.48 | 12 | 0.28 | 7 |
Greece | 0.42 | 34 | 0.30 | 17 | 0.12 | 25 |
Hungary | 0.56 | 19 | 0.05 | 52 | 0.03 | 47 |
Iceland | 1.00 | 1 | 0.16 | 33 | 0.16 | 19 |
India | 0.43 | 31 | 0.24 | 21 | 0.10 | 29 |
Indonesia | 0.41 | 35 | 0.22 | 22 | 0.09 | 30 |
Ireland | 1.00 | 1 | 0.14 | 36 | 0.14 | 23 |
Israel | 0.63 | 15 | 0.22 | 23 | 0.14 | 24 |
Italy | 0.27 | 51 | 0.61 | 7 | 0.17 | 18 |
Japan | 0.45 | 29 | 0.80 | 4 | 0.36 | 4 |
Jordan | 0.31 | 48 | 0.12 | 37 | 0.04 | 44 |
Kenya | 0.26 | 54 | 0.10 | 42 | 0.03 | 50 |
Latvia | 0.45 | 30 | 0.06 | 51 | 0.03 | 51 |
Lebanon | 0.63 | 14 | 0.18 | 27 | 0.11 | 28 |
Luxembourg | 0.90 | 8 | 0.10 | 44 | 0.09 | 32 |
Malaysia | 0.43 | 32 | 0.09 | 46 | 0.04 | 43 |
Malta | 0.78 | 11 | 0.26 | 19 | 0.20 | 12 |
Korea | 0.49 | 23 | 0.37 | 14 | 0.18 | 14 |
Mexico | 0.13 | 56 | 0.90 | 3 | 0.12 | 26 |
Morocco | 0.47 | 27 | 0.15 | 34 | 0.07 | 35 |
Netherlands | 0.73 | 12 | 0.21 | 25 | 0.15 | 20 |
New Zealand | 0.33 | 45 | 0.52 | 10 | 0.17 | 16 |
Nigeria | 0.32 | 47 | 0.03 | 55 | 0.01 | 55 |
Panama | 0.88 | 9 | 0.16 | 32 | 0.14 | 22 |
Peru | 0.39 | 37 | 0.07 | 48 | 0.03 | 48 |
Philippines | 0.36 | 42 | 0.11 | 40 | 0.04 | 39 |
Poland | 0.27 | 53 | 0.07 | 49 | 0.02 | 52 |
Portugal | 0.46 | 28 | 0.18 | 28 | 0.08 | 33 |
Romania | 0.29 | 50 | 0.04 | 53 | 0.01 | 54 |
Russia | 0.52 | 22 | 0.14 | 35 | 0.07 | 34 |
Rwanda | 0.83 | 10 | 0.01 | 56 | 0.01 | 56 |
Saudi Arabia | 0.39 | 39 | 0.40 | 13 | 0.15 | 21 |
Singapore | 1.00 | 1 | 0.30 | 18 | 0.30 | 6 |
South Africa | 0.34 | 44 | 0.12 | 38 | 0.04 | 40 |
Spain | 0.39 | 38 | 1.00 | 1 | 0.39 | 2 |
Switzerland | 0.38 | 40 | 0.31 | 16 | 0.12 | 27 |
Thailand | 0.42 | 33 | 0.56 | 9 | 0.23 | 10 |
Turkey | 0.27 | 52 | 0.62 | 6 | 0.17 | 17 |
UAE | 1.00 | 1 | 0.19 | 26 | 0.19 | 13 |
United Kingdom | 0.68 | 13 | 0.57 | 8 | 0.39 | 3 |
United States | 1.00 | 1 | 1.00 | 1 | 1.00 | 1 |
References
- Aviation Benefits Beyond Borders; Air Transport Action Group: Geneva, Switzerland, September 2020; Available online: https://aviationbenefits.org/media/167186/abbb2020_full.pdf (accessed on 26 October 2020).
- Annual Review 2019; IATA: Montreal, QC, Canada, 2019; Available online: https://www.iata.org/en/publications/annual-review/ (accessed on 26 October 2020).
- Biosafety for Air Transport: A Roadmap for Restarting Aviation v.3; IATA: Montreal, QC, Canada, 2020; Available online: https://www.iata.org/contentassets/5c8786230ff34e2da406c72a52030e95/roadmap-safely-restarting-aviation.pdf (accessed on 26 October 2020).
- Humphreys, B.; Morrell, P. The potential impacts of the EU/US Open Sky Agreement: What will happen at Heathrow after spring 2008. J. Air Transp. Manag. 2009, 15, 72–77. [Google Scholar] [CrossRef]
- Martín, J.C.; Roman, C. An application of DEA to measure the efficiency of Spanish airports prior to privatization. J. Air Transp. Manag. 2001, 7, 149–157. [Google Scholar] [CrossRef]
- Melecký, L.; Staníčková, M. National efficiency evaluation of Visegrad countries in comparison with Austria and Germany by selected DEA models. Proc. 30th Int. Conf. Math. Methods Econ. 2012, 575–580. [Google Scholar]
- Barros, C.P.; Dieke, P.U. Performance evaluation of Italian airports: A data envelopment analysis. J. Air Transp. Manag. 2007, 13, 184–191. [Google Scholar] [CrossRef]
- Gillen, D.; Lall, A. Developing measures of airport productivity and performance: An application of data envelopment analysis. Transp. Res. Part E Logist. Transp. Rev. 1997, 33, 261–273. [Google Scholar] [CrossRef]
- Good, D.H.; Röller, L.H.; Sickles, R.C. Airline efficiency differences between Europe and the US: Implications for the pace of EC integration and domestic regulation. Eur. J. Oper. Res. 1995, 80, 508–518. [Google Scholar] [CrossRef]
- Martín, J.C.; Mendoza, C.; Román, C. A DEA travel–tourism competitiveness index. Soc. Indic. Res. 2017, 130, 937–957. [Google Scholar] [CrossRef]
- Merkert, R.; Hensher, D.A. The impact of strategic management and fleet planning on airline efficiency—A random effects Tobit model based on DEA efficiency scores. Transp. Res. Part A Policy Pract. 2011, 45, 686–695. [Google Scholar] [CrossRef]
- Porter, M.E. The Competitive Advantage of Nations: With a New Introduction; Free Press: New York, NY, USA, 1990. [Google Scholar]
- Smith, A. An Inquiry into the Nature and Causes of the Wealth of Nations; Campbell, R.H., Skinner, A.S., Eds.; Liberty Fund, Inc.: Indianapolis, IN, USA, 1981. [Google Scholar]
- Ricardo, D. The Works and Correspondence of David Ricardo; Liberty Fund: Indianapolis, IN, USA, 1951; Volume 11. [Google Scholar]
- Cho, D.S. A dynamic approach to international competitiveness: The case of Korea. Asia Pac. Bus. Rev. 1994, 1, 17–36. [Google Scholar] [CrossRef]
- Moon, H.C.; Rugman, A.M.; Verbeke, A. A generalized double diamond approach to the global competitiveness of Korea and Singapore. Int. Bus. Rev. 1998, 7, 135–150. [Google Scholar] [CrossRef]
- Cho, D.S.; Moon, H.C.; Kim, M.Y. Does one size fit all? A dual double diamond approach to country-specific advantages. Asian Bus. Manag. 2009, 8, 83–102. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis; Springer Nature Switzerland AG: Cham, Switzerland, 2000; pp. 1–40. [Google Scholar]
- Aviation Benefits Beyond Borders; Air Transport Action Group: Geneva, Switzerland, October 2018; Available online: https://aviationbenefits.org/media/166711/abbb18_full-report_web.pdf (accessed on 26 October 2020).
- Chiang, K. Network data envelopment analysis: A review. Eur. J. Oper. Res. 2014, 239, 1–16. [Google Scholar]
- ICAO Annual Report 2018. Available online: https://www.icao.int/annual-report-2018/Pages/default.aspx (accessed on 26 October 2020).
- FAA STRATEGIC PLAN FY 2019–2022; Federal Aviation Administration: Washington, DC, USA, February 2018. Available online: https://www.faa.gov/about/plans_reports/media/FAA_Strategic_Plan_Final_FY2019-2022.pdf (accessed on 26 October 2020).
- GCAA Strategic Plan 2017–2021; UAE General Civil Aviation Authority: Abu Dhabi, UAE, 2020. Available online: https://www.academia.edu/33034924/GCAA_STRATEGY_PLAN (accessed on 26 October 2020).
Model | Equation | |
---|---|---|
IM_Front | Program | |
Productivity | ||
IM_Behind | Program | |
Productivity | ||
RSM | Program | |
Productivity | ||
RPM_Same Weights | Program | |
Productivity | ||
RPM_Different Weights | Program | |
Productivity |
Type | Factor | Unit | Definition |
---|---|---|---|
Inputs | Number of routes | - | Number of routes between airports by country (international + domestic) |
Number of airports | - | Number of airports by country | |
Population | Thousand | Population by country | |
GDP | USD 100 million | PPP-based GDP by country | |
Tourist attraction | - | Travel and tourism competitiveness index (World Economic Forum) | |
Inverse HHI index (airline) | - | Inverse market concentration of airlines by country | |
Intermediates | RPK | - | Revenue per kilometers |
CTK | - | Cargo tonne-kilometers | |
Inverse HHI index (route) | - | Inverse market concentration of routes by country | |
Outputs | Amount of added value | - | Aggregate aviation added value (Air Transport Action Group) |
Category | Front-Stage Productivity | Behind-Stage Productivity | Total Productivity |
---|---|---|---|
IM-Model | 0.9064 | 0.3886 | - |
RSM-Model | 0.5274 | 0.2720 | 0.1404 |
RPM-Model (Same weight) | 0.8702 | 0.1508 | 0.5226 |
RPM-Model (Different weight) | 0.8710 | 0.1507 | 0.5228 |
Model | p-Value | |
---|---|---|
RPM (With different weight) | = | <2.2 × 10−16 |
= | 3.141 × 10−14 | |
= | 8.08 × 10−14 | |
RSM | = | 1.362 × 10−8 |
= | <2.2 × 10−16 | |
= | 0.000571 |
Category | Pearson Correlation Coefficient | |||
---|---|---|---|---|
Front-Stage Productivity | Behind-Stage Productivity | Total Productivity | ||
IM-Model | RPM-Model (DW) | 0.8369 | 0.5952 | - |
IM-Model | RSM-Model | 0.5675 | 0.8188 | - |
RPM-Model (DW) | RSM-Model | 0.3903 | 0.8318 | 0.8680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.H.; Choi, S.; Han, I.H. Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA. Sustainability 2020, 12, 10323. https://doi.org/10.3390/su122410323
Song KH, Choi S, Han IH. Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA. Sustainability. 2020; 12(24):10323. https://doi.org/10.3390/su122410323
Chicago/Turabian StyleSong, Ki Han, Solsaem Choi, and Ik Hyun Han. 2020. "Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA" Sustainability 12, no. 24: 10323. https://doi.org/10.3390/su122410323
APA StyleSong, K. H., Choi, S., & Han, I. H. (2020). Competitiveness Evaluation Methodology for Aviation Industry Sustainability Using Network DEA. Sustainability, 12(24), 10323. https://doi.org/10.3390/su122410323