Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (161)

Search Parameters:
Keywords = aviation industry sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 565 KiB  
Review
Review of the Use of Waste Materials in Rigid Airport Pavements: Opportunities, Benefits and Implementation
by Loretta Newton-Hoare, Sean Jamieson and Greg White
Sustainability 2025, 17(15), 6959; https://doi.org/10.3390/su17156959 - 31 Jul 2025
Viewed by 171
Abstract
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies [...] Read more.
The aviation industry is under increasing pressure to reduce its environmental impact while maintaining safety and performance standards. One promising area for improvement lies in the use of sustainable materials in airport infrastructure. One of the issues preventing uptake of emerging sustainable technologies is the lack of guidance relating to the opportunities, potential benefits, associated risks and an implementation plan specific to airport pavements. This research reviewed opportunities to incorporate waste materials into rigid airport pavements, focusing on concrete base slabs. Commonly used supplementary cementitious materials (SCMs), such as fly ash and ground granulated blast furnace slag (GGBFS) were considered, as well as recycled aggregates, including recycled concrete aggregate (RCA), recycled crushed glass (RCG), and blast furnace slag (BFS). Environmental Product Declarations (EPDs) were also used to quantify the potential for environmental benefit associated with various concrete mixtures, with findings showing 23% to 50% reductions in embodied carbon are possible for selected theoretical concrete mixtures that incorporate waste materials. With considered evaluation and structured implementation, the integration of waste materials into rigid airport pavements offers a practical and effective route to improve environmental outcomes in aviation infrastructure. It was concluded that a Triple Bottom Line (TBL) framework—assessing financial, environmental, and social factors—guides material selection and can support sustainable decision-making, as does performance-based specifications that enable sustainable technologies to be incorporated into airport pavement. The study also proposed a consequence-based implementation hierarchy to facilitate responsible adoption of waste materials in airside pavements. The outcomes of this review will assist airport managers and pavement designers to implement practical changes to achieve more sustainable rigid airport pavements in the future. Full article
Show Figures

Figure 1

35 pages, 3537 KiB  
Review
Sustainable Aviation Fuels: A Comprehensive Review of Production Pathways, Environmental Impacts, Lifecycle Assessment, and Certification Frameworks
by Weronika Klimczyk, Remigiusz Jasiński, Jakub Niklas, Maciej Siedlecki and Andrzej Ziółkowski
Energies 2025, 18(14), 3705; https://doi.org/10.3390/en18143705 - 14 Jul 2025
Viewed by 1102
Abstract
Sustainable aviation fuels (SAFs) are currently considered a key element in the decarbonization of the aviation sector, offering a feasible solution to reduce life cycle greenhouse gas emissions without requiring fundamental changes in aircraft or infrastructure. This article provides a comprehensive overview of [...] Read more.
Sustainable aviation fuels (SAFs) are currently considered a key element in the decarbonization of the aviation sector, offering a feasible solution to reduce life cycle greenhouse gas emissions without requiring fundamental changes in aircraft or infrastructure. This article provides a comprehensive overview of the current state of SAFs, including their classification, production technologies, economic aspects, and environmental performance. The analysis covers both currently certified SAF pathways, such as HEFA and FT-SPK, and emerging technologies like alcohol-to-jet and power-to-liquid, assessing their technological maturity, feedstock availability, and scalability. Economic challenges related to high production costs, investment risks, and policy dependencies are discussed, alongside potential mechanisms to support market deployment. Furthermore, the article reviews SAFs’ emission performance, including CO2 and non-CO2 effects, based on existing life cycle assessment (LCA) studies, with an emphasis on variability caused by feedstock type and production method. The findings highlight that, while SAFs can significantly reduce aviation-related emissions compared to fossil jet fuels, the magnitude of benefits depends strongly on supply chain design and sustainability criteria. There are various certified pathways for SAF production, as well as new technologies that can further contribute to the development of the industry. Properly selected biomass sources and production technologies can reduce greenhouse gas emissions by more than 70% compared to conventional fuels. The implementation of SAFs faces obstacles related to cost, infrastructure, and regulations, which hinder its widespread adoption. The study concludes that although SAFs represent a promising pathway for aviation climate mitigation, substantial scaling efforts, regulatory support, and continued technological innovation are essential to achieve their full potential. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

23 pages, 3015 KiB  
Review
Sustainable Fuels for Gas Turbines—A Review
by István Péter Kondor
Sustainability 2025, 17(13), 6166; https://doi.org/10.3390/su17136166 - 4 Jul 2025
Viewed by 567
Abstract
The increasing global demand for sustainable energy solutions has intensified the need to replace fossil fuels in gas turbines, particularly in aviation and power generation where alternatives to gas turbines are currently limited. This review explores the feasibility of utilizing sustainable liquid and [...] Read more.
The increasing global demand for sustainable energy solutions has intensified the need to replace fossil fuels in gas turbines, particularly in aviation and power generation where alternatives to gas turbines are currently limited. This review explores the feasibility of utilizing sustainable liquid and gaseous fuels in gas turbines by evaluating their environmental impacts, performance characteristics, and technical integration potential. The study examines a broad range of alternatives, including biofuels, hydrogen, alcohols, ethers, synthetic fuels, and biogas, focusing on their production methods, combustion behavior, and compatibility with existing turbine technology. Key findings indicate that several bio-derived and synthetic fuels can serve as viable drop-in replacements for conventional jet fuels, especially under ASTM D7566 standards. Hydrogen and other gaseous alternatives show promise for industrial applications but require significant combustion system adaptations. The study concludes that a transition to sustainable fuels in gas turbines is achievable through coordinated advancements in combustion technology, fuel infrastructure, and regulatory support, thus enabling meaningful reductions in greenhouse gas emissions and advancing global decarbonization efforts. Full article
Show Figures

Figure 1

17 pages, 5158 KiB  
Article
Centrifugal Pumping Force in Oil Injection-Based TMS to Cool High-Power Aircraft Electric Motors
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Energies 2025, 18(13), 3390; https://doi.org/10.3390/en18133390 - 27 Jun 2025
Viewed by 325
Abstract
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas [...] Read more.
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas emissions in several sectors, including the aviation industry, which has been requested to mitigate its environmental impact. Conventional aircraft propulsion systems depend on fossil fuels, significantly contributing to global carbon emissions. For this reason, innovative propulsion technologies are needed to reduce aviation’s impact on the environment. Electric propulsion has emerged as a promising solution among the several innovative technologies introduced to face climate change challenges. It offers, in fact, a pathway to more sustainable air travel by eliminating direct greenhouse gas emissions, enhancing energy efficiency. Unfortunately, integrating electric motors into aircraft is currently a big challenge, primarily due to thermal management-related issues. Efficient heat dissipation is crucial to maintain optimal performance, reliability, and safety of the electric motor, but aeronautic applications are highly demanding in terms of power, so ad hoc Thermal Management Systems (TMSs) must be developed. The present paper explores the design and optimization of a TMS tailored for a megawatt electric motor in aviation, suitable for regional aircraft (~80 pax). The proposed system relies on coolant oil injected through a hollow shaft and radial tubes to directly reach hot spots and ensure effective heat distribution inside the permanent magnet cavity. The goal of this paper is to demonstrate how advanced TMS strategies can enhance operational efficiency and extend the lifespan of electric motors for aeronautic applications. The effectiveness of the radial tube configuration is assessed by means of advanced Computational Fluid Dynamics (CFD) analysis with the aim of verifying that the proposed design is able to maintain system thermal stability and prevent its overheating. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

36 pages, 4389 KiB  
Article
EffRes-DrowsyNet: A Novel Hybrid Deep Learning Model Combining EfficientNetB0 and ResNet50 for Driver Drowsiness Detection
by Sama Hussein Al-Gburi, Kanar Alaa Al-Sammak, Ion Marghescu, Claudia Cristina Oprea, Ana-Maria Claudia Drăgulinescu, Nayef A. M. Alduais, Khattab M. Ali Alheeti and Nawar Alaa Hussein Al-Sammak
Sensors 2025, 25(12), 3711; https://doi.org/10.3390/s25123711 - 13 Jun 2025
Viewed by 995
Abstract
Driver drowsiness is a major contributor to road accidents, often resulting from delayed reaction times and impaired cognitive performance. This study introduces EffRes-DrowsyNet, a hybrid deep learning model that integrates the architectural efficiencies of EfficientNetB0 with the deep representational capabilities of ResNet50. The [...] Read more.
Driver drowsiness is a major contributor to road accidents, often resulting from delayed reaction times and impaired cognitive performance. This study introduces EffRes-DrowsyNet, a hybrid deep learning model that integrates the architectural efficiencies of EfficientNetB0 with the deep representational capabilities of ResNet50. The model is designed to detect early signs of driver fatigue through advanced video-based analytics by leveraging both computational scalability and deep feature learning. Extensive experiments were conducted on three benchmark datasets—SUST-DDD, YawDD, and NTHU-DDD—to validate the model’s performance across a range of environmental and demographic variations. EffRes-DrowsyNet achieved 97.71% accuracy, 98.07% precision, and 97.33% recall on the SUST-DDD dataset. On the YawDD dataset, it sustained a high accuracy of 92.73%, while on the NTHU-DDD dataset, it reached 95.14% accuracy, 94.09% precision, and 95.39% recall. These results affirm the model’s superior generalization and classification performance in both controlled and real-world-like settings. The findings underscore the effectiveness of hybrid deep learning models in real-time, safety-critical applications, particularly for automotive driver monitoring systems. Furthermore, EffRes-DrowsyNet’s architecture provides a scalable and adaptable solution that could extend to other attention-critical domains such as industrial machinery operation, aviation, and public safety systems. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

43 pages, 15235 KiB  
Review
The Present and Future of Production of Green Hydrogen, Green Ammonia, and Green E-Fuels for the Decarbonization of the Planet from the Magallanes Region, Chile
by Carlos Cacciuttolo, Ariana Huertas, Bryan Montoya and Deyvis Cano
Appl. Sci. 2025, 15(11), 6228; https://doi.org/10.3390/app15116228 - 1 Jun 2025
Viewed by 1336
Abstract
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these [...] Read more.
The Magallanes region, in southern Chile, is positioned as a strategic hub for the production of green hydrogen (GH2), green ammonia, and synthetic fuels, thanks to its exceptional wind potential and commitment to sustainability. This article analyzes the opportunities and challenges of these energy vectors in the context of global decarbonization, highlighting the key role of the Magallanes region in the energy transition. Green hydrogen production, through wind-powered electrolysis, takes advantage of the region’s constant, high-speed winds, enabling competitive, low-emission generation. In turn, green ammonia, derived from GH2, emerges as a sustainable alternative for the agricultural industry and maritime transport, while synthetic fuels (e-fuels) offer a solution for sectors that are difficult to electrify, such as aviation. The sustainability approach addresses not only emissions reduction but also the responsible use of water resources, the protection of biodiversity, and integration with local communities. The article presents the following structure: (i) introduction, (ii) wind resource potential, (iii) water resource potential, (iv) different forms of hydrogen and its derivatives production (green hydrogen, green ammonia, and synthetic fuels), (v) pilot-scale demonstration plant for Haru Oni GH2 production, (vi) future industrial-scale GH2 production projects, (vii) discussion, and (viii) conclusions. In addition, the article discusses public policies, economic incentives, and international collaborations that promote these projects, positioning Magallanes as a clean energy export hub. Finally, the article concludes that the region can lead the production of green fuels, contributing to global energy security and the fulfillment of the Sustainable Development Goals (SDGs). However, advances in infrastructure, regulation, and social acceptance are required to guarantee a balanced development between technological innovation and environmental conservation. Full article
(This article belongs to the Special Issue Advancements and Innovations in Hydrogen Energy)
Show Figures

Figure 1

22 pages, 4862 KiB  
Article
Exploring the Impact of Strut Geometry on Strut-Braced Wing Configurations
by Mihai-Vlăduț Hothazie, Daniel-Eugeniu Crunțeanu, Mihai-Victor Pricop and Ionuț Bunescu
Aerospace 2025, 12(6), 473; https://doi.org/10.3390/aerospace12060473 - 27 May 2025
Viewed by 363
Abstract
The anticipated growth of the aviation industry has driven regulators to establish stringent targets for achieving net-zero greenhouse gas emissions, which are challenging to meet with conventional aircraft configurations. The strut-braced wing configuration has emerged as a promising alternative for improving aerodynamic efficiency. [...] Read more.
The anticipated growth of the aviation industry has driven regulators to establish stringent targets for achieving net-zero greenhouse gas emissions, which are challenging to meet with conventional aircraft configurations. The strut-braced wing configuration has emerged as a promising alternative for improving aerodynamic efficiency. This study investigates the aerodynamic performance of such a configuration using a high-fidelity computational fluid dynamics analysis, conducted in two phases. The first phase involves a parametric study examining the effects of two key parameters: the length and the tilt angle of the strut’s elbow. The reference configuration is based on the strut braced wing configuration from the Platform for Aircraft Drag Reduction Innovation workshop. Building on the insights from the parametric study, the second phase involves an optimization of the strut’s geometry, focusing on minimizing aerodynamic drag. The results demonstrate an 11.5% reduction in the drag coefficient while maintaining the same lift coefficient, primarily attributed to a decrease in shockwave interactions within the strut–wing gap. These findings, combined with the parametric study, provide valuable insights into the influence of strut geometric parameters on drag minimization, highlighting their potential role in advancing sustainable aircraft design. Full article
Show Figures

Figure 1

19 pages, 289 KiB  
Article
CSR-Mediating CO2 Policy Effects on Environmental Kuznets Curve in Brazil: Case Study of an Airline Company
by Juliana Lovatte, Sarah da Silva Everton, Joshua Onome Imoniana and Funmi Alakija
Adm. Sci. 2025, 15(6), 207; https://doi.org/10.3390/admsci15060207 - 27 May 2025
Viewed by 506
Abstract
This study employs a critical perspective: aiming to provide a subjective and socially constructed view on the impact of corporate governance and the corporate social responsibility (CSR) choices on the environmental Kuznets curve (EKC) in terms of CO2 emissions in Brazil. This [...] Read more.
This study employs a critical perspective: aiming to provide a subjective and socially constructed view on the impact of corporate governance and the corporate social responsibility (CSR) choices on the environmental Kuznets curve (EKC) in terms of CO2 emissions in Brazil. This research paper bridges the gap in the literature on the EKC by toeing a qualitative approach to what has been presented using quantitative methods, and offers insights on how the trends shape organisational policies. Furthermore, it enumerates the relationship between CSR, CO2 choices, and EKC in the Brazilian aviation industry using one particular airline as a case study. It aims to provoke further conversation on decarbonisation. It seeks to show how EKC has been treated and to contextualise the impact of the airline sector’s CSR and corporate governance on EKC. A combination of a content analysis of the narratives of sustainability reports and a semi-structured interview with a sustainability expert from the aviation sector was used in data gathering, while critical discourse analysis (CDA) was employed in demonstrating the ideological and social contexts that shape organisational narratives and decisions in practices and governance structures that are driving CO2 reduction strategies. The findings not only confirmed the crucial role that corporate governance plays in the implementation and monitoring of CSR practices within the sector but also shows the impact of integrating sustainability goals into corporate strategies. The policies nurtured by CSR are supported by the company’s ESG and Social Responsibility Committees. In the context of the case study, the corporate decision to transit to biofuels is contributing not only to the reduction in CO2 emissions but is also seen as an economically viable strategy with public policies and regulatory frameworks. This paper further explains the impact of geopolitical factors and the need for international cooperation because the traditional U-shaped EKC is not supported in the context of the Brazilian aviation sector. Finally, this spurs the need for collaboration among various stakeholder companies, policymakers, and nations in the global context for sustainable development to have a lasting impact. Full article
39 pages, 3887 KiB  
Review
A Comprehensive Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenolics to Aromatics
by Sitong Dong and Gang Feng
Molecules 2025, 30(10), 2225; https://doi.org/10.3390/molecules30102225 - 20 May 2025
Viewed by 817
Abstract
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual [...] Read more.
Single-ring aromatic compounds including BTX (benzene, toluene, xylene) serve as essential building blocks for high-performance fuels and specialty chemicals, with extensive applications spanning polymer synthesis, pharmaceutical manufacturing, and aviation fuel formulation. Current industrial production predominantly relies on non-renewable petrochemical feedstocks, posing the dual challenges of resource depletion and environmental sustainability. The catalytic hydrodeoxygenation (HDO) of lignin-derived phenolic substrates emerges as a technologically viable pathway for sustainable aromatic hydrocarbon synthesis, offering critical opportunities for lignin valorization and biorefinery advancement. This article reviews the relevant research on the conversion of lignin-derived phenolic compounds’ HDO to benzene and aromatic hydrocarbons, systematically categorizing and summarizing the different types of catalysts and their reaction mechanisms. Furthermore, we propose a strategic framework addressing current technical bottlenecks, highlighting the necessity for the synergistic development of robust heterogeneous catalysts with tailored active sites and energy-efficient process engineering to achieve scalable biomass conversion systems. Full article
(This article belongs to the Special Issue Renewable Energy, Fuels and Chemicals from Biomass, 2nd Edition)
Show Figures

Figure 1

34 pages, 2105 KiB  
Systematic Review
Sustainable Airport Development: A Literature Review Based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses Methodology, Using OpenAlex Database
by João Couto and Maria Emilia Baltazar
Sustainability 2025, 17(9), 4184; https://doi.org/10.3390/su17094184 - 6 May 2025
Viewed by 1523
Abstract
Airport sustainability has gained increasing attention as the aviation industry faces the challenge of balancing economic growth, environmental responsibility, and social standards. This study conducts a systematic literature review (SLR) using the OpenAlex database. The PRISMA 2020 (Preferred Reporting Items for Systematic Reviews [...] Read more.
Airport sustainability has gained increasing attention as the aviation industry faces the challenge of balancing economic growth, environmental responsibility, and social standards. This study conducts a systematic literature review (SLR) using the OpenAlex database. The PRISMA 2020 (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology was applied to refine the selection process, resulting in 66 relevant studies. Then, a bibliometric–systematic literature review (B-SLR) approach was employed to analyze trends and identify research gaps. The findings indicate that most studies often focus on two sustainability pillars at a time, while neglecting a fully integrated perspective. Not many research works simultaneously address all three dimensions of sustainability (economic, environmental, and social), leading to fragmented insights into sustainable airport management. Notably, some industry-driven reports are starting to suggest emerging holistic approaches, but the majority of the academic literature remains segmented. Hence, this study highlights the need for a more comprehensive research framework that considers environmental, economic, and social factors concurrently. Future research should integrate these dimensions to develop practical and well-balanced sustainability strategies; while methodological limitations may exist in this work, such as language constraints and dataset selection criteria, this review provides valuable insights into airport sustainability and lays the groundwork for further scientific studies. Full article
(This article belongs to the Special Issue Sustainable Air Transport Management and Sustainable Mobility)
Show Figures

Figure 1

17 pages, 2142 KiB  
Article
Public Perception and Awareness of Sustainable Aviation Fuel in South Central United States
by Brooke E. Rogachuk, Sadie M. Prigmore, Chukwuma C. Ogbaga and Jude A. Okolie
Sustainability 2025, 17(9), 4019; https://doi.org/10.3390/su17094019 - 29 Apr 2025
Cited by 1 | Viewed by 742
Abstract
The aviation sector is a significant contributor to greenhouse gas emissions, and with the increasing demand for air travel these emissions are projected to continue rising in the coming years. Sustainable Aviation Fuel (SAF) could greatly help reduce these emissions and make the [...] Read more.
The aviation sector is a significant contributor to greenhouse gas emissions, and with the increasing demand for air travel these emissions are projected to continue rising in the coming years. Sustainable Aviation Fuel (SAF) could greatly help reduce these emissions and make the aviation industry more eco-friendly. SAF is a renewable, low-carbon alternative to conventional jet fuel produced from sustainable resources. A key step to bringing the fuel into regular use is studying how people view it. Understanding what the public think and feel about biofuels, including aviation fuel, is very important. This is because public opinion can shape consumer interest, demand for products, and the willingness of governments to back green energy policies and invest in clean technologies. The study systematically evaluates the public opinion, perception and awareness of SAF in the South Central United States and its utilization to decarbonize the aviation industry. This is performed through a series of multiple-choice survey questions and interviews. The study results show that while there is some recognition of the environmental impact of aviation and the potential role of biofuels in reducing this impact, there is still a need for greater public education and awareness regarding alternative fuels and their benefits for sustainable aviation. The findings of the study underscore a pivotal challenge in addressing aviation-related carbon emissions: the gap in public knowledge about potential solutions like biofuels and SAF. This gap not only reflects a lack of awareness but also hints at the possible skepticism or uncertainty among the public regarding the effectiveness and viability of these alternatives. Full article
Show Figures

Figure 1

26 pages, 8244 KiB  
Article
Fuel Consumption Prediction for Full Flight Phases Toward Sustainable Aviation: A DMPSO-LSTM Model Using Quick Access Recorder (QAR) Data
by Jing Xiong, Chunling Zou, Yongbing Wan, Youchao Sun and Gang Yu
Sustainability 2025, 17(8), 3358; https://doi.org/10.3390/su17083358 - 9 Apr 2025
Viewed by 607
Abstract
Reducing emissions in the aviation industry remains a critical challenge for global low-carbon transition. Accurate fuel consumption prediction is essential to achieving emission reduction targets and advancing sustainable development in aviation. Aircraft fuel consumption is influenced by numerous complex factors during flight, resulting [...] Read more.
Reducing emissions in the aviation industry remains a critical challenge for global low-carbon transition. Accurate fuel consumption prediction is essential to achieving emission reduction targets and advancing sustainable development in aviation. Aircraft fuel consumption is influenced by numerous complex factors during flight, resulting in significant nonlinear relationships between segment-specific variables and fuel usage. Traditional statistical and econometric models struggle to capture these relationships effectively. This article first focuses on the different characteristics of QAR data and uses the Adaptive Noise Ensemble Empirical Mode Decomposition (CEEMDAN) method to obtain more significant potential features of QAR data, solving the problems of mode aliasing and uneven mode gaps that may occur in traditional decomposition methods when processing non-stationary signals. Secondly, a dynamic multidimensional particle swarm optimization algorithm (DMPSO) was constructed using an adaptive adjustment dynamic change method of inertia weight and learning factor, which solved the problem of local extremum and low search accuracy in the solution space that PSO algorithm is prone to during the optimization process. Then, a DMPSO-LSTM aircraft fuel consumption model was established to achieve fuel consumption prediction for three flight segments: climb, cruise, and descent. The final proposed model was validated on real-world datasets, and the results showed that it outperformed other baseline models such as BP, RNN, PSO-LSTM, etc. Among the results, the climbing segment MAE index decreased by more than 40%, the RMSE index decreased by more than 38%, and the R2 index increased by more than 6%, respectively. The MAE index of the cruise segment decreased by more than 40%, the RMSE index decreased by more than 40%, and the R2 index increased by more than 5%, respectively. The MAE index of the descending segment decreased by more than 20%, the RMSE index decreased by more than 30%, and the R2 index increased by more than 5%, respectively. The improved prediction accuracy can be used to implement multi-criteria optimization in flight operations: (1) by quantifying weight–fuel relationships, it supports payload–fuel tradeoff decisions; (2) enhanced phase-specific predictions allow optimized climb/cruise profile selections, balancing time and fuel use; and (3) precise consumption estimates facilitate optimal fuel-loading decisions, minimizing safety margins. The high-precision fuel consumption prediction framework proposed in this study provides actionable insights for airlines to optimize flight operations and design low-carbon route strategies, thereby accelerating the aviation industry’s transition toward net-zero emissions. Full article
Show Figures

Figure 1

30 pages, 10226 KiB  
Article
Environmentally Friendly Solutions as Potential Alternatives to Chromium-Based Anodization and Chromate Sealing for Aeronautic Applications
by Norica Godja and Florentina-Daniela Munteanu
Coatings 2025, 15(4), 439; https://doi.org/10.3390/coatings15040439 - 8 Apr 2025
Viewed by 754
Abstract
The adoption of chrome-free anodizing and sealing systems for aluminum alloys, particularly AA2024, is gaining prominence due to environmental and health concerns associated with traditional Cr(VI)-based processes. This study evaluates the environmental and economic impacts of sulfuric acid anodizing (SAA) combined with sealing [...] Read more.
The adoption of chrome-free anodizing and sealing systems for aluminum alloys, particularly AA2024, is gaining prominence due to environmental and health concerns associated with traditional Cr(VI)-based processes. This study evaluates the environmental and economic impacts of sulfuric acid anodizing (SAA) combined with sealing based on fluorozirconate, molybdate, and cerate. Comparative analyses were conducted against conventional Cr(VI) systems and SAA with Cr(III) sealing, focusing on corrosion resistance, energy consumption, washing steps and material flows. The entire anodizing process was examined, including pretreatment, anodization, and sealing. Electrochemical analyses and surface characterization through SEM/EDS, FIB, and XPS were conducted. The results demonstrate that the chromium-free system offers competitive corrosion resistance while significantly reducing environmental and economic costs. Furthermore, fluorozirconate, molybdate, and cerate-based post-treatments broaden its application spectrum in corrosion science and warrant further exploration. However, adopting new sealing technologies in aerospace requires extensive certification involving corrosion resistance, durability assessments, and stringent environmental simulations. Compliance with regulatory standards set by the FAA (Federal Aviation Administration) and EASA (European Union Aviation Safety Agency) necessitates thorough documentation, third-party validation, and testing to ensure safety and performance before industrial implementation. These challenges underscore the complexity of transitioning to more sustainable anodizing and sealing technologies in the aerospace industry. Full article
(This article belongs to the Special Issue Corrosion Protection of Metals and Alloys in Extreme Environments)
Show Figures

Graphical abstract

14 pages, 1689 KiB  
Article
Comparative Life Cycle Assessment (LCA) in the Aerospace Industry Regarding Aviation Seat Frame Options
by Yusra Hasan, Ishak Hasan, Amir A. Aliabadi and Bahram Gharabaghi
Sustainability 2025, 17(7), 3188; https://doi.org/10.3390/su17073188 - 3 Apr 2025
Cited by 1 | Viewed by 1067
Abstract
The aerospace industry is actively seeking sustainable solutions within the aviation sector to mitigate greenhouse gas (GHG) emissions driven by increasing population demands. This study presents the first environmental life cycle assessment (LCA) of economy-class seating frames, comparing conventional alloy steel with lightweight [...] Read more.
The aerospace industry is actively seeking sustainable solutions within the aviation sector to mitigate greenhouse gas (GHG) emissions driven by increasing population demands. This study presents the first environmental life cycle assessment (LCA) of economy-class seating frames, comparing conventional alloy steel with lightweight alternative materials, including magnesium alloy, aluminum alloy, and titanium. Seat frames account for an aircraft’s total weight, making them a critical component for innovation toward more sustainable solutions. Using SolidWorks V3.1, economy-class seat frames were designed and evaluated through a cradle-to-grave assessment of a functional unit (FU) representing the interior of a single aircraft. The analysis was conducted using SimaPro V8.4.0 with the Ecoinvent V3.10 database. The total GHG emissions associated with seat frames composed of alloy steel, titanium, aluminum alloy, and magnesium alloy were 208 kt CO2 equivalent (eq.), 120 kt CO2 eq, 71.1 kt CO2 eq, and 44.9 kt CO2 eq per FU, respectively. This study identifies alloy steel and titanium to be the most sustainable seat frame materials relative to other considered materials for commercial aircrafts. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

12 pages, 699 KiB  
Communication
Potentials of Sustainable Aviation Fuel Production from Biomass and Waste: How Australia’s Sugar Industry Can Become a Successful Global Example
by Marcel Dossow, Vahid Shadravan, Weiss Naim, Sebastian Fendt, David Harris and Hartmut Spliethoff
Biomass 2025, 5(2), 21; https://doi.org/10.3390/biomass5020021 - 2 Apr 2025
Viewed by 1994
Abstract
This study assesses Queensland’s sugar industry potential for sustainable aviation fuel (SAF) production via biomass-to-liquids (BtL) processes. Using surplus sugarcane bagasse, preliminary estimates suggest that individual mills could support 60–130 MWth gasifiers, while clustered approaches enable larger capacities. Annual BtL syncrude production [...] Read more.
This study assesses Queensland’s sugar industry potential for sustainable aviation fuel (SAF) production via biomass-to-liquids (BtL) processes. Using surplus sugarcane bagasse, preliminary estimates suggest that individual mills could support 60–130 MWth gasifiers, while clustered approaches enable larger capacities. Annual BtL syncrude production could reach 440 mL, increasing to ~1000 mL with additional feedstocks. These findings highlight both the industrial-scale viability of SAF production and the logistical and engineering challenges that must be addressed to align with Australia’s renewable energy and fuel security goals. Full article
Show Figures

Figure 1

Back to TopTop