Soil Fertility, N2 Fixation and Yield of Chickpea as Influenced by Long-Term Biochar Application under Mung–Chickpea Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data on Crop (Chickpea)
2.1.1. Number and Mass of Nodules
2.1.2. N2 Fixation in Chickpea
2.1.3. Grain Yield (kg ha−1)
2.1.4. Total P and K Uptake
2.2. Data on Soil
2.2.1. SOM (Soil Organic Matter)
2.2.2. Total N
2.2.3. Mineral Nitrogen
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Number and Mass of Nodules
3.2. N2 Fixation in Chickpea
3.3. Grain Yield of Chickpea (kg ha−1)
3.4. P and K Uptake in Chickpea Plant (kg ha−1)
3.5. Soil Organic Matter (%)
3.6. Soil Total N (%)
3.7. Soil Mineral N (%)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food and Agriculture. World Review: The Ten Years since the World. Available online: http://www.fao.org/3/a-ap664e.pdf (accessed on 20 December 2016).
- Danish, S.; Kiran, S.; Fahad, S.; Ahmad, N.; Ali, M.A.; Tahir, F.A.; Rasheed, M.K.; Shahzad, K.; Li, X.; Wang, D.; et al. Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol. Environ. Saf. 2019, 185, 109706. [Google Scholar] [CrossRef] [PubMed]
- FAO. Production of Chickpea by Countries. 2014. Available online: http://www.fao.org/3/a-i3751e.pdf (accessed on 20 December 2016).
- Liu, L.P.; Gan, Y.T.; Bueckert, R.; van Rees, K.; Warkentin, T.D. Fine root distributions in oilseed and pulse crops. J. Crop Sci. 2010, 50, 222–226. [Google Scholar] [CrossRef]
- Madzivhandila, T.; Ogola, J.; Odhiambo, J. Growth and yield response of four chickpea cultivars to phosphorus fertilizer rates. J. Food Agri. Environ. 2012, 10, 451–455. [Google Scholar]
- Downie, A.; Crosky, A.; Munroe, P. Physical Properties of Biochar. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 13–32. [Google Scholar]
- van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrients status and yield. J. Agron. 2010, 102, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Kolb, S.E.; Fermanich, K.J.; Dornbush, M.E. Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Sci. Soc. Am. J. 2009, 73, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, S.; Verheijen, F.G.A.M.; Velde, V.D.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Singh, B.P.; Singh, B.J.B.; Cowiea, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Adnan, M.; Fahad, S.; Zamin, M.; Shah, S.; Mian, I.A.; Danish, S.; Zafar-ul-Hye, M.; Battaglia, M.L.; Naz, R.M.M.; Saeed, B.; et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 2020, 9, 900. [Google Scholar] [CrossRef]
- Major, J. Biochar Application to a Colombian Savanna Oxisol: Fate and Effect on Soil Fertility, Crop Production, Nutrient Leaching and Soil Hydrology. Doctoral Dissertation, Cornell University, Ithaca, NY, USA, 2009. [Google Scholar]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Malvina, P.L. Agronomy at a Glance; Agrotech Publishing Academy: Hiran Magri, Udaipur-rajasthan, India, 2001; pp. 78–80. [Google Scholar]
- Chen, J.H.; Edward, R.L.; Wasseburg, G.J. Arbitrage Pricing Theory. Available online: https://www.econstor.eu/handle/10419/60653 (accessed on 20 December 2016).
- Lehmann, J.; Pereira, D.S.J.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Huq, M.E.; Fahad, S.; Shao, Z.; Sarven, M.S.; Khan, I.A.; Alam, M.; Saeed, M.; Ullah, H.; Adnan, M.; Saud, S.; et al. Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization. J. Environ. Manag. 2020, 262, 110318. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramirez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil-concepts and mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Saleem, M.H.; Fahad, S.; Adnan, M.; Ali, M.; Rana, M.S.; Kamran, M.; Ali, Q.; Hashem, I.A.; Bhantana, P.; Ali, M.; et al. Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Environ. Sci. Pollut. Res. 2020, 27, 37121–37133. [Google Scholar] [CrossRef] [PubMed]
- Thies, J.E.; Rillig, M.C.; Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Characteristics of Biochar: Biological Properties; Earthscan: London, UK, 2009; pp. 85–102. [Google Scholar]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota: A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar]
- Wahid, F.; Fahad, S.; Danish, S.; Adnan, M.; Yue, Z.; Saud, S.; Siddiqui, M.H.; Brtnicky, M.; Hammerschmiedt, T.; Datta, R. Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils. Agriculture 2020, 10, 334. [Google Scholar] [CrossRef]
- Izhar Shafi, M.; Adnan, M.; Fahad, S.; Wahid, F.; Khan, A.; Yue, Z.; Danish, S.; Zafar-ul-Hye, M.; Brtnicky, M.; Datta, R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy 2020, 10, 1224. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; Vries, W.D.; De Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. J. Sci. 2015, 347–736. [Google Scholar] [CrossRef] [Green Version]
- Hall-Spencer, J.M. Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecol. Soc. 2017, 22, 11. [Google Scholar]
- Peoples, M.B.; Faizah, A.W.; Rerkasem, B.; Herridge, D.F. Methods for Evaluating Nitrogen Fixation by Nodulated Legumes in the Field; Australian Centre for International Agricultural Research: Canberra, Austraila, 1989; pp. 1–76.
- Nelson, D.W.; Sommers, L.E. Methods of Soil Analysis Part 3; SSSA Book Series No.5; America Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis, Part III. Chemical Methods; SSSA Book Series No. 5; Sparks, D.L., Ed.; America Society of Agronomy: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Mulvaney, R.L. Nitrogen—inorganic Forms. In Methods of Soil Analysis, Part 3, Chemical Methods; Bigham, J.M., Ed.; SSSA Book, Series No 5; Soil Science Society of America and American Society of Agronomy: Madison WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Steel, R.G.D.; Torrie, J. Principles and Procedures of Statistics. A Biometric Approach, 2nd ed.; Mc Gras Hill International Book Co.: Singapore, 1981. [Google Scholar]
- Ma, H.; Dilfuza, E.; Stephan, W.; Sonoko, D.B.K. Effect of biochar and irrigation on soybean-rhizobium symbiotic performance and soil enzymatic activity in field rhizosphere. Agronomy 2019, 9, 626. [Google Scholar] [CrossRef] [Green Version]
- Hiama, P.D.; Mensah, N.E.; Logah, V. Nutrient uptake and biological nitrogen fixation in cowpea under biochar-phosphorous interaction. J. Anim. Plant Sci. 2019, 29, 1654–1663. [Google Scholar]
- Mete, F.Z.; Mia, S.; Dijkstra, F.A.; Yusuf, M.A.; Hossain, A.S.M.I. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. J. Pedosphere 2015, 25, 713–719. [Google Scholar] [CrossRef]
- Campo, R.J.; Lantmann, A.F. Effects of micronutrients on biological nitrogen fixation and soybean productivity. Pesqui. Agropecu. Bras. 1998, 33, 1245–1253. [Google Scholar]
- Brodrick, S.J.; Sakala, M.K.; Giller, K.E. Molybdenum reserves of seed, and growth and N 2 fixation by Phaseolus vulgaris L. Biol. Fertil. Soils 1992, 13, 39–44. [Google Scholar] [CrossRef]
- Qian, Z.H.U.; Kong, L.J.; Shan, Y.Z.; Yao, X.D.; Zhang, H.J.; Xie, F.T.; Ao, X. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. J. Integr. Agric. 2019, 10, 2242–2254. [Google Scholar]
- Azeem, M.; Hayat, R.; Hussain, Q.; Ahmed, M.; Pand, G.; Tahir, M.I.; Imran, M.; Irfan, M.; Hassan, M. Biochar improves soil quality N2 fixation and reduces net ecosystem CO2 exchange in a dry land legume-cereal cropping system. Soil Tillage Res. 2019, 186, 172–182. [Google Scholar] [CrossRef]
- YAO, C.; Stephen, J.; Lianqing, L.; Genxing, P.A.N.; Yun, L.; Paul, M.; Ben, P.; Sa, A.; Taher, Y.; Lukas, V.; et al. Developing More Effective Enhanced Biochar Fertilisers for Improvement of Pepper Yield and Quality. J. Pedosphere 2015, 25, 703–712. [Google Scholar] [CrossRef]
- Usman, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nihihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2016, 27, 205–212. [Google Scholar]
- Oram, N.J.; Voorde, T.J.V.D.; Ouwehand, G.J.; Bezemer, T.M.; Mommer, L.; Jeffery, S.; Groenigen, J.W.V. Soil amendment with biochar increases the competitive ability of legumes via increases potassium availability. Agric. Ecosyst. Environ. 2014, 2, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.; Moyer, B. Phosphorus forms in manure and compost and their release during simulated rainfall. J. Environ. Qual. 2000, 29, 1462–1469. [Google Scholar] [CrossRef]
- Nigussie, A.; Kissi, E.; Misganaw, M.; Ambaw, G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am.-Eurasian J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Six, J.; Elliot, E.T.; Paustian, K. Soil macro aggregates turnover and micro aggregates formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Zhang, Q.; Worsnop, D.R.; Canagaratha, M.R.; Jimenez, J.L. Hydrocarbon-like and oxygenated organic aerosoils in Pittsburgh: Insights into sources and processes of organic aerosols. Atmos. Chem Phys. 2005, 5, 3289–3311. [Google Scholar] [CrossRef] [Green Version]
- Visco, G.; Campanella, L.; Nobili, V. Organic carbons and TOC in waters: An overview of the international norm for its measurements. Microchem. J. 2005, 79, 185–191. [Google Scholar] [CrossRef]
- Juriga, M.; Šimanský, V.; Horák, J.; Kondrlová, E.; Igaz, D.; Polláková, N.; Buchkina, N.; Balashov, E. The effect of different rates of biochar and biochar in combination with N fertilizer on the parameters of soil organic matter and soil structure. J. Ecol. Eng. 2018, 19, 153–161. [Google Scholar] [CrossRef]
- Mavi, M.S.; Singh, G.; Singh, B.P.; Serhon, B.S.; Choudrary, O.P.; Sagi, S.; Berry, R. Interactive effects of rice-residue biochar and N-fertilizer on soil structure functions and crop biomass in contrasting soils. J. Soil Sci. Plant Nutr. 2018, 107, 718–729. [Google Scholar]
- Ali, K.; Arif, M.; Jan, M.T.; Khan, M.J.; Jones, G.L. Integrated use of biochar: A tool for improving soil and wheat quality of degraded soil under wheat-maize cropping pattern. Pak. J. Bot. 2015, 47, 233–240. [Google Scholar]
- Debosz, K.; Kristensen, K. Spatial Covariability of N Mineralization and Textural Fractions in Two Agricultural Fields. Available online: https://www.forskningsdatabasen.dk/en/catalog/2389233677 (accessed on 20 December 2016).
- Dessureault-Rompré, J.; Zebarth, B.J.; Burton, D.L.; Georgallas, A. Predicting soil nitrogen supply from soil properties. Can. J. Soil Sci. 2015, 95, 63–75. [Google Scholar] [CrossRef] [Green Version]
Treatments | Biochar t ha−1 | P2O5 kg ha−1 | K2O kg ha−1 |
---|---|---|---|
BC1 | 0 | 90 | 60 |
BC1 | 45 | 30 | |
BC2 | 95 | 90 | 60 |
BC2 | 45 | 30 | |
BC3 | 130 | 90 | 60 |
BC3 | 45 | 30 | |
BC4 | 60 | 90 | 60 |
BC4 | 45 | 30 |
PK Treatments | No. of Nodules | Fresh Weight (g) | Dry Weight (g) |
---|---|---|---|
Half PK | 103 b | 8.87 a | 1.6 a |
Full PK | 112 a | 8.35 a | 1.57 a |
Significance | ** | NS | NS |
Biochar Treatments | |||
BC1 (0 t ha−1) | 89 c | 6.29 b | 1.10 c |
BC2 (95 t ha−1) | 122 a | 9.62 a | 1.77 ab |
BC3 (130 t ha−1) | 115 a | 9.82 a | 1.90 a |
BC4 (60 t ha−1) | 103 b | 8.72 a | 1.60 b |
Significance | *** | *** | ** |
Interaction | |||
Biochar*PK | *** | *** | NS |
PK Treatments | N2 Fixed kg ha−1 |
---|---|
Half PK | 42.25 a |
Full PK | 46.25 a |
Significance | NS |
Biochar Treatments | |
BC1 (0 t ha−1) | 17.75 d |
BC2 (95 t ha−1) | 56.75 b |
BC3 (130 t ha−1) | 72.50 a |
BC4 (60 t ha−1) | 35.50 b |
Significance | ** |
Interaction | |
Biochar*PK | NS |
PK Treatments | Grain Yield (kg ha−1) |
---|---|
Half PK | 1703 a |
Full PK | 1642 b |
Significance | *** |
Biochar Treatments | |
BC1 (0 t ha−1) | 1442 c |
BC2 (95 t ha−1) | 1704 b |
BC3 (130 t ha−1) | 1876 a |
BC4 (60 t ha−1) | 1668 b |
Significance | *** |
Interaction | |
Biochar*PK | NS |
PK Treatments | P Uptake (kg ha−1) | K Uptake (kg ha−1) |
---|---|---|
Half PK | 13.87 a | 111.3 a |
Full PK | 14.77 a | 120.7 a |
Significance | NS | NS |
Biochar Treatments | ||
BC1 (0 t ha−1) | 9.86 c | 83.6 b |
BC2 (95 t ha−1) | 16.27 b | 134.0 a |
BC3 (130 t ha−1) | 20.75 a | 155.4 a |
BC4 (60 t ha−1) | 10.39 c | 91.1 b |
Significance | *** | ** |
Interaction | ||
Biochar*PK | NS | NS |
PK Treatments | Organic Matter % | Total N % | Mineral N mg kg−1 |
---|---|---|---|
Half PK | 2.19 b | 0.063 a | 63 a |
Full PK | 2.27 a | 0.066 a | 65 a |
Significance | ** | NS | NS |
Biochar Treatments | |||
BC1 (0 t ha−1) | 1.67 c | 0.049 c | 54 c |
BC2 (95 t ha−1) | 2.42 ab | 0.066 b | 66 b |
BC3 (130 t ha−1) | 2.59 a | 0.082 a | 73 a |
BC4 (60 t ha−1) | 2.24 b | 0.0693 b | 62 b |
Significance | *** | *** | *** |
Interaction | |||
Biochar*PK | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Shah, Z.; Mian, I.A.; Dawar, K.; Tariq, M.; Khan, B.; Mussarat, M.; Amin, H.; Ismail, M.; Ali, S.; et al. Soil Fertility, N2 Fixation and Yield of Chickpea as Influenced by Long-Term Biochar Application under Mung–Chickpea Cropping System. Sustainability 2020, 12, 9008. https://doi.org/10.3390/su12219008
Khan S, Shah Z, Mian IA, Dawar K, Tariq M, Khan B, Mussarat M, Amin H, Ismail M, Ali S, et al. Soil Fertility, N2 Fixation and Yield of Chickpea as Influenced by Long-Term Biochar Application under Mung–Chickpea Cropping System. Sustainability. 2020; 12(21):9008. https://doi.org/10.3390/su12219008
Chicago/Turabian StyleKhan, Shadman, Zahir Shah, Ishaq Ahmad Mian, Khadim Dawar, Muhammad Tariq, Bushra Khan, Maria Mussarat, Hazrat Amin, Muhammad Ismail, Shamsher Ali, and et al. 2020. "Soil Fertility, N2 Fixation and Yield of Chickpea as Influenced by Long-Term Biochar Application under Mung–Chickpea Cropping System" Sustainability 12, no. 21: 9008. https://doi.org/10.3390/su12219008
APA StyleKhan, S., Shah, Z., Mian, I. A., Dawar, K., Tariq, M., Khan, B., Mussarat, M., Amin, H., Ismail, M., Ali, S., Shah, T., Alamri, S., Siddiqui, M. H., Adnan, M., Romman, M., Fahad, S., Nouman, A., & Kamal, A. (2020). Soil Fertility, N2 Fixation and Yield of Chickpea as Influenced by Long-Term Biochar Application under Mung–Chickpea Cropping System. Sustainability, 12(21), 9008. https://doi.org/10.3390/su12219008