Conceptualising Design Fixation and Design Limitation and Quantifying Their Impacts on Resource Use and Carbon Emissions
Abstract
:1. Introduction
How Could the Understanding of Design Fixation Help to Achieve Higher Resource Efficiency of an STS?
2. Background
2.1. STS—Sociotechnical System
2.2. Design Thinking and Its Application to Sustainability
2.3. Design Fixation
3. Conceptual Framework for Design Fixation in the Sustainability Context
3.1. Design Thinking to Overcome Design Fixation
3.2. Distinction between Limitations and Fixations
3.3. Individual Level
3.4. Organisational Level
3.4.1. Need to Combine Domain Expertise and Design Thinking
3.4.2. Organisational Structures Favouring Design Fixations
3.4.3. Organisational-Level Design Limitations
3.5. Institutional Level
3.5.1. Institutions and Institutional Designers
3.5.2. Policy Design and Design Thinking in Policy
3.5.3. Institutional Design Fixations
3.5.4. Institutional Design Limitations
4. Case Study: Design Fixation in the Sociotechnical Laundry System
4.1. Method
4.2. Design Fixations and Limitations in the SLTS
4.3. Design Limitations of the STLS
4.4. Scenarios Representing Sociotechnical Design Fixations
4.5. Simulation Results
5. Discussion
5.1. Contribution to Research on Design for Sustainability
5.2. Conceptualisation of Design Fixation on Higher Levels
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramani, K.; Ramanujan, D.; Bernstein, W.Z.; Zhao, F.; Sutherland, J.; Handwerker, C.; Choi, J.K.; Kim, H.; Thurston, D. Integrated Sustainable Life Cycle Design: A Review. J. Mech. Des. 2010, 132. [Google Scholar] [CrossRef] [Green Version]
- Umeda, Y.; Takata, S.; Kimura, F.; Tomiyama, T.; Sutherland, J.W.; Kara, S.; Herrmann, C.; Duflou, J.R. Toward integrated product and process life cycle planning—An environmental perspective. Cirp Ann. 2012, 61, 681–702. [Google Scholar] [CrossRef]
- Abdoli, S.; Kara, S.; Hauschild, M. System interaction, System of Systems, and environmental impact of products. Cirp Ann. Manuf. Technol. 2019, 68, 17–20. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Tukker, A. Product services for a resource-efficient and circular economy—A review. J. Clean. Prod. 2015, 97, 76–91. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Bocken, N.M.P.; Hultink, E.J. Design thinking to enhance the sustainable business modelling process—A workshop based on a value mapping process. J. Clean. Prod. 2016, 135, 1218–1232. [Google Scholar] [CrossRef] [Green Version]
- Olsson, L. Sociotechnical System Studies of the Reduction of Greenhouse Gas Emissions from Energy and Transport Systems; Linköping University Electronic Press: Linköping, Sweden, 2015. [Google Scholar]
- Kanda, W.; Sakao, T.; Hjelm, O. Components of business concepts for the diffusion of large scaled environmental technology systems. J. Clean. Prod. 2016, 128, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Spinardi, G. Up in the air: Barriers to greener air traffic control and infrastructure lock-in in a complex socio-technical system. Energy Res. Soc. Sci. 2015, 6, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Bolton, R.; Foxon, T. Negotiating the Energy Policy ‘Trilemma’—An Analysis of UK Energy Governance From a Socio-Technical Systems Perspective. In Theorising Governance Change for a Sustainable Economy; British Library: London, UK, 2013; pp. 1–24. [Google Scholar]
- Brown, T. Design thinking. Harv. Bus. Rev. 2008, 86, 84–92,141. [Google Scholar]
- Sakao, T.; Wasserbaur, R.; Mathieux, F. A methodological approach for manufacturers to enhance value-in-use of service-based offerings considering three dimensions of sustainability. Cirp Ann. Manuf. Technol. 2019, 68, 33–36. [Google Scholar] [CrossRef]
- Jansson, D.G.; Smith, S.M. Design fixation. Des. Stud. 1991, 12, 3–11. [Google Scholar]
- Goldschmidt, G. Avoiding Design Fixation: Transformation and Abstraction in Mapping from Source to Target. J. Creat. Behav. 2011, 45, 92–100. [Google Scholar] [CrossRef]
- Youmans, R.J.; Arciszewski, T. Design fixation: Classifications and modern methods of prevention. AI EDAM 2014, 28, 129–137. [Google Scholar] [CrossRef]
- Gero, J.S. Design prototypes: A knowledge representation schema for design. AI Mag. 1990, 11, 26. [Google Scholar]
- Moreno, D.P.; Blessing, L.T.; Yang, M.C.; Hernandez, A.A.; Wood, K.L. Overcoming design fixation: Design by analogy studies and nonintuitive findings. AI EDAM 2016, 30, 185–199. [Google Scholar] [CrossRef]
- Trist, E.L.; Bamforth, K.W. Some social and psychological consequences of the longwall method of coal-getting: An examination of the psychological situation and defences of a work group in relation to the social structure and technological content of the work system. Hum. Relat. 1951, 4, 3–38. [Google Scholar]
- Hughes, T.P. The Evolution of Large Technological Systems. In The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology; MIT Press: Cambridege, MA, USA, 1987; Volume 82. [Google Scholar]
- Rohracher, H. A Sociotechnical Mapping of Domestic Biomass Heating Systems in Austria. Bull. Sci. Technol. Soc. 2016, 22, 474–483. [Google Scholar] [CrossRef]
- Geels, F.W. From sectoral systems of innovation to socio-technical systems—Insights about dynamics and change from sociology and institutional theory. Res. Policy 2004, 33, 897–920. [Google Scholar] [CrossRef]
- Kanda, W.; Kivimaa, P. What opportunities could the COVID-19 outbreak offer for sustainability transitions research on electricity and mobility? Energy Res. Soc. Sci. 2020, 68, 101666. [Google Scholar] [CrossRef]
- Savaget, P.; Geissdoerfer, M.; Kharrazi, A.; Evans, S. The theoretical foundations of sociotechnical systems change for sustainability: A systematic literature review. J. Clean. Prod. 2019, 206, 878–892. [Google Scholar] [CrossRef]
- Burk, D. Infrastructure, Social Practice, and Environmentalism: The Case of Bicycle-Commuting. Soc. Forces 2017, 95, 1209–1236. [Google Scholar] [CrossRef]
- Brown, T.; Katz, B. Change by Design. J. Prod. Innov. Manag. 2011, 28, 381–383. [Google Scholar] [CrossRef]
- Norman, D. The Design of Everyday Things: Revised and Expanded Edition; Basic Books: New York, NY, USA, 2013. [Google Scholar]
- Ceschin, F. How the Design of Socio-technical Experiments Can Enable Radical Changes for Sustainability. Int. J. Des. 2014, 8, 1–21. [Google Scholar]
- Heiskanen, E.; Hyvonen, K.; Laakso, S.; Laitila, P.; Matschoss, K.; Mikkonen, I. Adoption and Use of Low-Carbon Technologies: Lessons from 100 Finnish Pilot Studies, Field Experiments and Demonstrations. Sustainability 2017, 9, 847. [Google Scholar] [CrossRef] [Green Version]
- Dijk, M.; de Kraker, J.; Hommels, A. Anticipating Constraints on Upscaling from Urban Innovation Experiments. Sustainability 2018, 10, 2796. [Google Scholar] [CrossRef] [Green Version]
- Plattner, H.; Meinel, C.; Leifer, L. Design Thinking Research; Springer: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Cole, R.J.; Oliver, A.; Robinson, J. Regenerative design, socio-ecological systems and co-evolution. Build Res. Inf. 2013, 41, 237–247. [Google Scholar] [CrossRef]
- Finster, M.; Eagan, P.; Hussey, D. Linking Industrial Ecology with Business Strategy: Creating Value for Green Product Design. J. Ind. Ecol. 2001, 5, 107–125. [Google Scholar] [CrossRef]
- Baldassarre, B.; Schepers, M.; Bocken, N.; Cuppen, E.; Korevaar, G.; Calabretta, G. Industrial Symbiosis: Towards a design process for eco-industrial clusters by integrating Circular Economy and Industrial Ecology perspectives. J. Clean. Prod. 2019, 216, 446–460. [Google Scholar] [CrossRef]
- Clune, S.J.; Lockrey, S. Developing environmental sustainability strategies, the Double Diamond method of LCA and design thinking: A case study from aged care. J. Clean. Prod. 2014, 85, 67–82. [Google Scholar] [CrossRef]
- Shapira, H.; Ketchie, A.; Nehe, M. The integration of Design Thinking and Strategic Sustainable Development. J. Clean. Prod. 2017, 140, 277–287. [Google Scholar] [CrossRef]
- Crilly, N.; Cardoso, C. Where next for research on fixation, inspiration and creativity in design? Des. Stud. 2017, 50, 1–38. [Google Scholar] [CrossRef]
- Purcell, A.T.; Gero, J.S. Drawings and the design process. Des. Stud. 1998, 19, 389–430. [Google Scholar] [CrossRef]
- Dane, E. Reconsidering the Trade-Off between Expertise and Flexibility: A Cognitive Entrenchment Perspective. Acad. Manag. Rev. 2010, 35, 579–603. [Google Scholar] [CrossRef]
- Waldman, M. Durable goods theory for real world markets. J. Econ. Perspect. 2003, 17, 131–154. [Google Scholar] [CrossRef]
- Brambila-Macias, S.A.; Sakao, T.; Kowalkowski, C. Bridging the gap between engineering design and marketing: Insights for research and practice in product/service system design. Des. Sci. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Luchins, A.S. Mechanization in problem solving: The effect of Einstellung. Psychol. Monogr. 1942, 54. [Google Scholar] [CrossRef]
- Smith, S.M.; Linsey, J. A Three-Pronged Approach for Overcoming Design Fixation. J. Creat. Behav. 2011, 45, 83–91. [Google Scholar] [CrossRef]
- Altshuller, H. And Suddenly the Inventor Appeared: The Art of Inventing: How to Invent and Solve Technical Problems; Technical Innovation Center: Hagerstown, MD, USA, 1994. [Google Scholar]
- Dong, A.; Sarkar, S. Unfixing Design Fixation: From Cause to Computer Simulation. J. Creat. Behav. 2011, 45, 147–159. [Google Scholar] [CrossRef]
- Gordon, W.J.J. Synectics: The Development of Creative Capacity; Harper: Oxford, UK, 1961; p. xi, 180. [Google Scholar]
- Crilly, N. Fixation and creativity in concept development: The attitudes and practices of expert designers. Des. Stud. 2015, 38, 54–91. [Google Scholar] [CrossRef] [Green Version]
- Alipour, L.; Faizi, M.; Moradi, A.M.; Akrami, G. A review of design fixation: Research directions and key factors. Int. J. Des. Creat. Innov. 2018, 6, 22–35. [Google Scholar] [CrossRef]
- Sarkar, P.; Chakrabarti, A. Assessing design creativity. Des. Stud. 2011, 32, 348–383. [Google Scholar] [CrossRef]
- Whalen, K.A.; Milios, L.; Nussholz, J. Bridging the gap: Barriers and potential for scaling reuse practices in the Swedish ICT sector. Resour. Conserv. Recy. 2018, 135, 123–131. [Google Scholar] [CrossRef]
- Hatcher, G.D.; Ijomah, W.L.; Windmill, J.F.C. Design for remanufacture: A literature review and future research needs. J. Clean. Prod. 2011, 19, 2004–2014. [Google Scholar] [CrossRef]
- Sakao, T.; Shimomura, Y. Service Engineering: A novel engineering discipline for producers to increase value combining service and product. J. Clean. Prod. 2007, 15, 590–604. [Google Scholar] [CrossRef] [Green Version]
- Collado-Ruiz, D.; Ostad-Ahmad-Ghorabi, H. Influence of environmental information on creativity. Des. Stud. 2010, 31, 479–498. [Google Scholar] [CrossRef]
- Brambila-Macias, S.A.; Sakao, T. Effective Ecodesign Implementation with the Support of a Lifecycle Engineer. J. Clean. Prod. 2020, 279, 123520. [Google Scholar] [CrossRef]
- Fujimoto, T. Product Integrity and the Role of DESIGNER-AS-INTEGRATOR. Des. Manag. J. Former Ser. 2010, 2, 29–34. [Google Scholar] [CrossRef]
- Bjorklund, T.; Maula, H.; Soule, S.A.; Maula, J. Integrating Design into Organizations: The Coevolution of Design Capabilities. Calif. Manag. Rev. 2020, 62, 100–124. [Google Scholar] [CrossRef]
- Bocken, N.; Boons, F.; Baldassarre, B. Sustainable business model experimentation by understanding ecologies of business models. J. Clean. Prod. 2019, 208, 1498–1512. [Google Scholar] [CrossRef]
- Lindkvist, H.; Sundin, S. Feedback from Remanufacturing: Its Unexploited Potential to Improve Future Product Design. Sustainability 2019, 11, 4037. [Google Scholar] [CrossRef] [Green Version]
- Matschewsky, J.; Kambanou, M.L.; Sakao, T. Designing and providing integrated product-service systems–challenges, opportunities and solutions resulting from prescriptive approaches in two industrial companies. Int. J. Prod. Res. 2018, 56, 2150–2168. [Google Scholar] [CrossRef] [Green Version]
- Crilly, N. ‘Fixation’ and ‘the pivot’: Balancing persistence with flexibility in design and entrepreneurship. Int. J. Des. Creat. Innov. 2017, 6, 52–65. [Google Scholar] [CrossRef]
- Sarasvathy, S.D. Causation and Effectuation: Toward a Theoretical Shift from Economic Inevitability to Entrepreneurial Contingency. Acad. Manag. Rev. 2001, 26, 243–263. [Google Scholar] [CrossRef] [Green Version]
- Sakao, T.; Napolitano, N.; Tronci, M.; Sundin, E.; Lindahl, M. How are product-service combined offers provided in Germany and Italy? Analysis with company sizes and countries. J. Syst. Sci. Syst. Eng. 2008, 17, 367. [Google Scholar] [CrossRef] [Green Version]
- Rizos, V.; Behrens, A.; van der Gaast, W.; Hofman, E.; Ioannou, A.; Kafyeke, T.; Flamos, A.; Rinaldi, R.; Papadelis, S.; Hirschnitz-Garbers, M.; et al. Implementation of Circular Economy Business Models by Small and Medium-Sized Enterprises (SMEs): Barriers and Enablers. Sustainability 2016, 8, 1212. [Google Scholar] [CrossRef] [Green Version]
- Junginger, S. Design and innovation in the public sector: Matters of design in policy-making and policy implementation. Annu. Rev. Policy Des. 2013, 1, 1–11. [Google Scholar]
- De Weck, O.L.; Roos, D.; Magee, C.L. Engineering Systems: Meeting Human Needs in a Complex Technological World; MIT Press: Cambridege, MA, USA, 2011. [Google Scholar]
- Pucher, J.; Buehler, R. Making cycling irresistible: Lessons from the Netherlands, Denmark and Germany. Transp. Rev. 2008, 28, 495–528. [Google Scholar] [CrossRef]
- Shepherd, S.P. A review of system dynamics models applied in transportation. Transp. B Transp. Dyn. 2014, 2, 83–105. [Google Scholar] [CrossRef] [Green Version]
- Cecere, G.; Corrocher, N.; Gossart, C.; Ozman, M. Lock-in and path dependence: An evolutionary approach to eco-innovations. J. Evol. Econ. 2014, 24, 1037–1065. [Google Scholar] [CrossRef]
- Maitre-Ekern, E.; Dalhammar, C. Regulating Planned Obsolescence: A Review of Legal Approaches to Increase Product Durability and Reparability in Europe. Rev. Eur. Comp. Int. Environ. Law 2016, 25, 378–394. [Google Scholar] [CrossRef]
- Ceschin, F.; Gaziulusoy, I. Evolution of design for sustainability: From product design to design for system innovations and transitions. Des. Stud. 2016, 47, 118–163. [Google Scholar] [CrossRef]
- Linder, S.H.; Peters, B.G. From social theory to policy design. J. Public Policy 1984, 4, 237–259. [Google Scholar]
- Howlett, M. From the ‘old’ to the ‘new’ policy design: Design thinking beyond markets and collaborative governance. Policy Sci. 2014, 47, 187–207. [Google Scholar]
- Lewis, J.M.; Mcgann, M.; Blomkamp, E. When design meets power: Design thinking, public sector innovation and the politics of policymaking. Policy Politics 2020, 48, 111–130. [Google Scholar] [CrossRef]
- Vaz, F.; Prendeville, S. Design as an Agent for Public Policy Innovation. Conf. Proc. Acad. Des. Innov. Manag. 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Papalambros, P.Y. Design Science: Why, What and How. Des. Sci. 2015, 1, 1–38. [Google Scholar] [CrossRef] [Green Version]
- McGann, M.; Blomkamp, E.; Lewis, J.M. The rise of public sector innovation labs: Experiments in design thinking for policy. Policy Sci. 2018, 51, 249–267. [Google Scholar] [CrossRef]
- Clarke, A.; Craft, J. The twin faces of public sector design. Gov. Int. J. Policy Adm. Inst. 2019, 32, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Mintrom, M.; Luetjens, J. Design Thinking in Policymaking Processes: Opportunities and Challenges. Aust. J. Public Adm. 2016, 75, 391–402. [Google Scholar] [CrossRef]
- Melazzini, M.; Campodall’Orto, S.; Carella, G.; Vignati, A.; Zurlo, F. Design Thinking Methods to Activate Co-creation Process Among Policymakers, Creative Industries and SMEs. In Proceedings of the II International Triple Helix Summit, Dubai, UAE, 10–13 November 2018. [Google Scholar]
- Djelic, M.-L.; Sahlin-Andersson, K. Marketization: From Intellectual Agenda to Global Policy-Making. In Transnational Governance; Cambridge University Press: Cambridge, UK, 2006; pp. 53–73. [Google Scholar] [CrossRef] [Green Version]
- Foxon, T.J. A coevolutionary framework for analysing a transition to a sustainable low carbon economy. Ecol. Econ. 2011, 70, 2258–2267. [Google Scholar] [CrossRef]
- Kanda, W.; Hjelm, O.; Mejia-Dugand, S. Promoting the export of environmental technologies: An analysis of governmental initiatives from eight countries. Environ. Dev. 2016, 17, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Geels, F.W. The dynamics of transitions in socio-technical systems: A multi-level analysis of the transition pathway from horse-drawn carriages to automobiles (1860–1930). Technol. Anal. Strateg. Manag. 2005, 17, 445–476. [Google Scholar] [CrossRef]
- Pettersen, I.N.; Boks, C.; Tukker, A. Framing the role of design in transformation of consumption practices: Beyond the designer-product-user triad. Int. J. Technol. Manag. 2013, 63, 70–103. [Google Scholar] [CrossRef]
- Borg, L.; Hogberg, L. Organization of Laundry Facility Types and Energy Use in Owner-Occupied Multi-Family Buildings in Sweden. Sustainability 2014, 6, 3843–3860. [Google Scholar] [CrossRef] [Green Version]
- Park, S. Quantitative analysis of network externalities in competing technologies: The VCR case. Rev. Econ. Stat. 2004, 86, 937–945. [Google Scholar] [CrossRef]
- Gupta, M.; Esmaeilzadeh, P.; Uz, I.; Tennant, V.M. The effects of national cultural values on individuals’ intention to participate in peer-to-peer sharing economy. J. Bus. Res. 2019, 97, 20–29. [Google Scholar] [CrossRef]
- Sterman, J. Business Dynamics: Systems Thinking and Modeling for a Complex World; Irwin/McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Wasserbaur, R.; Sakao, T.; Ljunggren Söderman, M.; Plepys, A.; Dalhammar, C. What if everyone becomes a sharer? A quantification of the environmental impact of access-based consumption for household laundry activities. Resour. Conserv. Recycl. 2020, 158, 104780. [Google Scholar] [CrossRef]
- SCB. Living Conditions Surveys (ULF/SILC). Available online: https://www.scb.se/hitta-statistik/statistik-efter-amne/levnadsforhallanden/levnadsforhallanden/undersokningarna-av-levnadsforhallanden-ulf-silc/ (accessed on 6 March 2019).
- Eurostat. Population Projections at National Level (2015–2080). Available online: https://ec.europa.eu/eurostat/data/database?node_code=proj (accessed on 10 March 2019).
- Retamal, M.; Schandl, H. Dirty Laundry in Manila: Comparing Resource Consumption Practices for Individual and Shared Laundering. J. Ind. Ecol. 2017, 22, 1389–1401. [Google Scholar] [CrossRef]
- Pakula, C.; Stamminger, R. Electricity and water consumption for laundry washing by washing machine worldwide. Energy Effic. 2010, 3, 365–382. [Google Scholar] [CrossRef]
- Lund, K. Tvättstugan: En Svensk Historia; Nordiska Museets Förlag: Stockholm, Sweden, 2009. (In Swedish) [Google Scholar]
- Electrolux. A Uniquely Swedish Way of Washing Your Clothes. Available online: https://www.electroluxgroup.com/en/a-uniquely-swedish-way-of-washing-your-clothes-29699/ (accessed on 16 October 2019).
- Michel, A.; Attali, S.; Bush, E. Energy Efficiency of White Goods in Europe: Monitoring the Market with Sales Data; topten.eu: Zurich, Switzerland, 2015. [Google Scholar]
- Homie. HOMIE Pay Per Use—Rent a Washing Machine. Available online: https://www.homiepayperuse.com/ (accessed on 25 September 2020).
- Bosch. Home | BlueMovement. Available online: https://www.bluemovement.nl/default.aspx?nr=11 (accessed on 23 November 2018).
- Electrolux. Front Load Washers—Electrolux Professional. Available online: https://professional.electrolux.com/commercial-laundry-equipment/front-load-washers/ (accessed on 23 November 2018).
- Fiksel, J.R. Design for Environment; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Mont, O.K. Clarifying the concept of product–service system. J. Clean. Prod. 2002, 10, 237–245. [Google Scholar] [CrossRef]
- Manzini, E. Making Things Happen: Social Innovation and Design. Des. Issues 2014, 30, 57–66. [Google Scholar] [CrossRef]
- Sakao, T.; Rönnbäck, A.Ö.; Sandström, G.Ö. Uncovering benefits and risks of integrated product service offerings—Using a case of technology encapsulation. J. Syst. Sci. Syst. Eng. 2013, 22, 421–439. [Google Scholar] [CrossRef] [Green Version]
- Vezzoli, C.; Ceschin, F.; Diehl, J.C.; Kohtala, C. New design challenges to widely implement ‘Sustainable Product–Service Systems’. J. Clean. Prod. 2015, 97, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Klotz, L.; Weber, E.; Johnson, E.; Shealy, T.; Hernandez, M.; Gordon, B. Beyond rationality in engineering design for sustainability. Nat. Sustain. 2018, 1, 225–233. [Google Scholar] [CrossRef]
- Pasmore, W.; Winby, S.; Mohrman, S.A.; Vanasse, R. Reflections: Sociotechnical Systems Design and Organization Change. J. Chang. Manag. 2019, 19, 67–85. [Google Scholar] [CrossRef] [Green Version]
- Cherns, A. The principles of sociotechnical design. Hum. Relat. 1976, 29, 783–792. [Google Scholar] [CrossRef] [Green Version]
- Clegg, C.W. Sociotechnical principles for system design. Appl. Ergon. 2000, 31, 463–477. [Google Scholar] [CrossRef]
- Clegg, C.W.; Robinson, M.A.; Davis, M.C.; Bolton, L.E.; Pieniazek, R.L.; McKay, A. Applying organizational psychology as a design science: A method for predicting malfunctions in socio-technical systems (PreMiSTS). Des. Sci. 2017, 3, e6. [Google Scholar] [CrossRef] [Green Version]
- Crilly, N. Creativity and fixation in the real world: A literature review of case study research. Des. Stud. 2019, 64, 154–168. [Google Scholar] [CrossRef]
- Crilly, N. The Structure of Design Revolutions: Kuhnian Paradigm Shifts in Creative Problem Solving. Des. Issues 2010, 26, 54–66. [Google Scholar] [CrossRef]
Business as Usual | Scenario A | Scenario B | Scenario C | |
---|---|---|---|---|
Explanation | Continuation of current practice | Individualistic with retail machines | Collectivistic with retail machines | Collectivistic with semi-prof. machines |
Organisational level (relative to Scenario A) | Not applicable | Not applicable | Fixated | Fixation overcome |
Institutional level (relative to Scenario A) | Not applicable | Not applicable | Fixation overcome | Fixation overcome |
Accumulated CO2eq emissions in year 2049 (billion kgCO2eq) | 2.66 | 4.52 | 3.92 | 1.54 |
Total number washing machines of retail or semi-prof. washing machines produced until year 2049 | 2.6 mio retail + 0.12 mio semi-prof. | 6.2 mio retail | 4.1 mio retail | 0.44 mio semi-prof. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasserbaur, R.; Sakao, T. Conceptualising Design Fixation and Design Limitation and Quantifying Their Impacts on Resource Use and Carbon Emissions. Sustainability 2020, 12, 8104. https://doi.org/10.3390/su12198104
Wasserbaur R, Sakao T. Conceptualising Design Fixation and Design Limitation and Quantifying Their Impacts on Resource Use and Carbon Emissions. Sustainability. 2020; 12(19):8104. https://doi.org/10.3390/su12198104
Chicago/Turabian StyleWasserbaur, Raphael, and Tomohiko Sakao. 2020. "Conceptualising Design Fixation and Design Limitation and Quantifying Their Impacts on Resource Use and Carbon Emissions" Sustainability 12, no. 19: 8104. https://doi.org/10.3390/su12198104