Clustering Analysis of Soybean Production to Understand its Spatiotemporal Dynamics in the North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Spatial Autocorrelation
2.4. Factor Decomposition
3. Results
3.1. Spatiotemporal Dynamics of Soybean Production
3.1.1. Spatiotemporal Changes of Soybean Production
3.1.2. Spatial Statistics of Clustering Characteristics
3.2. Contribution of Yield and Sown Area
3.2.1. Spatiotemporal Changes of Yield and Sown Area
3.2.2. Contribution Rates to Total Production by Yield and Sown Area
4. Discussion
4.1. Variation of Soybean Production
4.2. Statistical Techniques and Production Clusters
4.3. Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bai, Z.; Ma, W.; Ma, L.; Velthof, G.L.; Wei, Z.; Havlik, P.; Oenema, O.; Lee, M.R.F.; Zhang, F. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, e8534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Statistical Database, FAO. 2016. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 25 May 2019).
- Scheneider, M.; Sharma, S. China’s Pork Miracle? Agribusiness and Development in China's Pork Industry; Institute for Agriculture and Trade Policy: Minneapolis, MN, USA, 2014. [Google Scholar]
- Sheng, Y.; Song, L. Agricultural production and food consumption in China: A long-term projection. China Econ. Rev. 2019, 53, 15–29. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F. Review: Use of human-edible animal feeds by ruminant livestock. Animal 2018, 12, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Ely, A.; Geall, S.; Song, Y. Sustainable maize production and consumption in China: Practices and politics in transition. J. Clean. Prod. 2016, 134, 259–268. [Google Scholar] [CrossRef] [Green Version]
- NBSC. China Statistical Yearbook; China Statistics Press: Beijing, China, 2016. [Google Scholar]
- Dong, W.; Wang, X.; Yang, J. Future perspective of China’s feed demand and supply during its fast transition period of food consumption. J. Integr. Agric. 2015, 14, 1092–1100. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, C. A Comparative Analysis on Food Security in Bangladesh, India and Myanmar. Sustainability 2018, 10, 405. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
- Huang, J.; Yang, G. Understanding recent challenges and new food policy in China. Glob. Food Secur. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- Jin, S.; Ma, H.; Huang, J.; Hu, R.; Rozelle, S. Productivity, efficiency and technical change: Measuring the performance of China’s transforming agriculture. J. Product. Anal. 2010, 33, 191–207. [Google Scholar] [CrossRef]
- Zeng, X. The Strategic Planning of Soybean Industry Development in China. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 89–97. (In Chinese) [Google Scholar]
- Shen, Y.; Sui, P.; Huang, J.; Wang, D.; Whalen, J.K.; Chen, Y. Global warming potential from maize and maize-soybean as affected by nitrogen fertilizer and cropping practices in the North China Plain. Field Crop. Res. 2018, 225, 117–127. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, E.; Miao, C. Fertilizer Use in China: The Role of Agricultural Support Policies. Sustainability 2019, 11, 4391. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Qi, M.; Reed, M.R. The effects of soybean trade policies on domestic soybean market in China during the food crisis. China Agric. Econ. Rev. 2018, 10, 372–385. [Google Scholar] [CrossRef]
- Yu, Y.; Feng, K.; Hubacek, K.; Sun, L. Global Implications of China’s Future Food Consumption. J. Ind. Ecol. 2016, 20, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Mooney, H.; Wu, W.; Tang, H.; Tong, Y.; Xu, Z.; Huang, B.; Cheng, Y.; Yang, X.; Wei, D.; et al. Importing food damages domestic environment: Evidence from global soybean trade. Proc. Natl. Acad. Sci. USA 2018, 115, 5415–5419. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Zhao, X. Evolution and structure optimization of grain and cash crops in Shandong province. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 164–171. (In Chinese) [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Implementation Plan of Soybean Revitalization Plan. Available online: http://www.moa.gov.cn/nybgb/2019/0201903/201905/t20190525_6315395.htm (accessed on 14 July 2020). (In Chinese)
- Chen, X.; Gu, H.; Zhang, H.; Chen, H.; Yuan, X. The history, present and prospect of soybean production development in Jiangsu Province. Jiangsu Agric. Sci. 2011, 1, 6–9. (In Chinese) [Google Scholar]
- Li, S.; Li, J.; Zhao, Y.; Zhou, Y.; Huang, X. Present situation and development countermeasure of soybean production in Shandong province. Shandong Agric. Sci. 2010, 9, 123–124. (In Chinese) [Google Scholar]
- Liu, D.; Liu, S.; Wen, X. Spatial-Temporal Evolution of Grain Production Structure in Northeast China. Econ. Geogr. 2018, 39, 163–170. (In Chinese) [Google Scholar]
- Maranhão, R.L.A.; De Carvalho Júnior, O.A.; Hermuche, P.M.; Gomes, R.A.T.; McManus Pimentel, C.M.; Guimarães, R.F. The Spatiotemporal Dynamics of Soybean and Cattle Production in Brazil. Sustainability 2019, 11, 2150. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.L.S.D.; Sano, E.E.; Bolfe, É.L.; Santos, J.R.N.; Dos Santos, J.S.; Silva, F.B. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy 2019, 80, 57–67. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, L.; Yu, M.; Zhong, M. Warming decreases photosynthates and yield of soybean [Glycine max (L.) Merrill] in the North China Plain. Crop J. 2016, 4, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, Z.; Liu, Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018, 74, 204–213. [Google Scholar] [CrossRef]
- Xu, S.; Wu, J.; Song, W.; Li, Z.; Li, Z.; Kong, F. Spatial-temporal changes in grain production, consumption and driving mechanism in China. J. Integr. Agric. 2013, 12, 374–385. [Google Scholar] [CrossRef]
- Cima, E.G.; Uribe-Opazo, M.A.; Johann, J.A.; Da Rocha, W.F., Jr.; Dalposso, G.H. Analysis of spatial autocorrelation of grain production and agricultural storage in Parana. Eng. Agric. Jaboticabal. 2018, 38, 395–402. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y. The changes of grain output center of gravity and its driving forces in China since 1990. Resour. Sci. 2009, 31, 1188–1194. (In Chinese) [Google Scholar]
- Gao, J.; Qiao, W.; Liu, Y.; Li, Y.; Tu, W.; Zhang, Y. The higher grain production, the more social deprivation? A case study of Henan province in traditional agricultural areas of China. J. Mt. Sci. Engl. 2018, 15, 167–180. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, C. Spatio-temporal pattern change of winter wheat production and its implications in the North China Plain. Sustainability 2019, 11, 3028. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Fan, L. Winter wheat yield potentials and yield gaps in the North China Plain. Field Crop. Res. 2013, 143, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Fang, S.; Li, X.; He, D.; Zhu, Y.; Yang, Z.; Xu, J.; Wu, Y. Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain. Agric. Water Manag. 2019, 214, 78–86. [Google Scholar] [CrossRef]
- Li, Y.; Pan, S.; Miao, C. The spatial-temporal patterns of per capita share of grain at the county level in China: A comparation between registered population and resident population. Acta Geogr. Sin. 2014, 69, 1753–1766. (In Chinese) [Google Scholar]
- Deng, Z.; Feng, Y.; Zhang, J.; Wang, J. Analysis on the characteristics and tendency of grain production’s spatial distribution in China. Econ. Geogr. 2013, 33, 117–123. (In Chinese) [Google Scholar]
- Moran, P.A.P. The interpretation of statistical maps. J. R. Stat. Soc. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Anselin, L. Exploring Spatial Data with GeoDaTM: A Workbook; Urbana Champaign: Champaign, IL, USA, 2005; p. 244. [Google Scholar]
- Câmara, G.; Carvalho, M.S.; Cruz, O.G.; Correa, V. Análise espacial de áreas. In Análise Espacial De Dados Geográficos; Fuks, S.D.C.M., Ed.; INPE: São José dos Campos, Brazil, 2002; p. 44. [Google Scholar]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, G. On Moran’s I coefficient under heterogeneity. Comput. Stat. Data Anal. 2016, 95, 83–94. [Google Scholar] [CrossRef]
- Chen, J.; Jinbao, L.; Shaoyong, F.; Qiang, L. Chinese agricultural policies in thirty years and analysis on the effects. Chin. Popul. Resour. Environ 2008, 18, 1–6. (In Chinese) [Google Scholar]
- Liu, Y.; Wang, C.; Tang, Z.; Nan, Z. Farmland rental and productivity of wheat and maize: An empirical study in Gansu, China. Sustainability 2017, 9, 1618. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.F.; Li, H.; Dawson, R.; Tang, C.J.; Li, X.W. Characteristics of steep cultivated land and the impact of the Grain-for-Green Policy in China. Pedosphere 2006, 16, 215–223. [Google Scholar] [CrossRef]
- FAO. FAOSTAT, FAO. 2016. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 February 2019).
- Bai, L.; Zhang, L.; Liu, R.; Lin, C.; Men, M. Regional difference research of grain per unit area yield in Hebei province base on ESDA. J. Agric. Mech. Res. 2012, 1, 18–24. (In Chinese) [Google Scholar]
- Cho, S.; Newman, D.H. Spatial analysis of rural land development. For. Policy Econ. 2005, 7, 732–744. [Google Scholar] [CrossRef]
- Donfouet, H.P.P.; Barczak, A.; Détang-Dessendre, C.; Maigné, E. Crop production and crop diversity in France: A spatial analysis. Ecol. Econ. 2017, 134, 29–39. [Google Scholar] [CrossRef]
- Tan, F.; Wang, J.; Song, Y. Impacts of climate warming on trend of meteorological disasters in the North China Plain. J. Nat. Disasters 2010, 19, 125–131. (In Chinese) [Google Scholar]
- Yang, Y.; Wang, J.; Hou, L.; Huang, J. Extreme drought events and rural poverty: Differences on farmers’ adaptive behavior and production impacts among different income groups in North China Plain. China Popul. Resour. Environ. 2018, 28, 124–133. (In Chinese) [Google Scholar]
- Tao, F.; Zhang, S.; Zhang, Z.; Rotter, R.P. Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China. Agric. Ecosyst. Environ. 2015, 208, 12–20. [Google Scholar] [CrossRef]
- Li, E.; Wei, S.; Xu, Y. An analysis of the evolution and mechanism of China’s soybean planting agglomeration and geographic pattern. Econ. Surv. 2016, 33, 37–42. (In Chinese) [Google Scholar]
- Li, X.; Liu, H.; Yang, Y. Production factors’ investment of households under drought on the Northern China Plain. Resour. Sci. 2015, 37, 2261–2270. (In Chinese) [Google Scholar]
- Wang, J.; Wei, J. Study on the reform of agricultural supply side based on food security. Asian Agric. Res. 2017, 9, 8–10. [Google Scholar]
- Guo, K. Issues and recommendations on supply-side structural reform of maize in China. Am. J. Agric. For. 2018, 6, 176–181. [Google Scholar]
- Zhou, Z.; Luo, Q.; Liu, Y.; Gao, M.; Zhang, Q. Discussion on agricultural supply side reform in China. Chin. J. Agric. Resour. Reg. Plan. 2017, 38, 22–25. (In Chinese) [Google Scholar]
- Lu, X.; Han, X.; Zou, W.; Zhang, J.; Wang, L.; Yang, Y.; Wang, Y.; Ni, F. Effects of reduced fertilization on yield and economic benefit in soybean and maize. Soil Crop. 2016, 5, 240–247. (In Chinese) [Google Scholar]
- Yin, Z.; Qin, X.; Li, C. Study on water consumption and deficiency of main crops in Northeastern China. Sci. Technol. Rev. 2009, 27, 42–49. (In Chinese) [Google Scholar]
- Lu, J.; Zhang, Y.; Wang, X.; Zhao, G.; Zhang, C. Effect of long-term single application of chemical fertilizer on soil properties and crop yield. Chin. J. Appl. Ecol. 2001, 12, 569–572. (In Chinese) [Google Scholar]
- Liu, Q.; Lin, Z.; Zhou, L. Spatio-temporal differentiation and environmental risk assessment of fertilization in Shandong Province, China. Trans. Chin. Soc. Agric. Eng. 2015, 31, 208–214. (In Chinese) [Google Scholar]
- Zhao, B.; Chen, J.; Zhang, J.; Xin, X.; Hao, X. How different long-term fertilization strategies influence crop yield and soil properties in a maize field in the North China Plain. J. Plant Nutr. Soil Sci. 2013, 176, 99–109. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, J.; Hu, Z. Situation and problem analysis of water resource security in China. Resour. Environ. Yangtze Basin 2009, 18, 116–120. (In Chinese) [Google Scholar]
- Yang, X.; Chen, Y.; Pacenka, S.; Steenhuis, T.S.; Sui, P. Managing food and bioenergy crops with declining groundwater levels in the North China Plain. Field Crop. Res. 2019, 234, 1–14. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Y.; Zhu, X.; Yang, T.; Bai, J.; Sun, Z. Drought evolution and its impact on the crop yield in the North China Plain. J. Hydrol. 2018, 564, 984–996. [Google Scholar] [CrossRef]
Province/Municipality | Selected Counties | Surveyed Households | Sample Area (Ha) |
---|---|---|---|
Beijing | 7 | 39 | 392.75 |
Tianjin | 4 | 33 | 10.29 |
Hebei | 35 | 305 | 89.61 |
Jiangsu | 35 | 345 | 82.17 |
Anhui | 14 | 155 | 44.77 |
Shandong | 50 | 494 | 143.34 |
Henan | 35 | 197 | 73.13 |
Total | 180 | 1568 | 836.07 |
Pattern | Z value | p-Value | Similarity Degree | Yield Level |
---|---|---|---|---|
HH | 2.58 ≤ Z | p ≤ 0.01 | High | Higher than average |
HM | 1.96 ≤ Z < 2.58 | 0.01 < p ≤ 0.05 | Medium | |
HL | 1.65 ≤ Z < 1.96 | 0.05 < p ≤ 0.1 | Low | |
NS | |Z| < 1.65 | 0.1 < p | No significance | / |
LL | −1.96 < Z ≤ −1.65 | 0.05 < p ≤ 0.1 | Low | Lower than average |
LM | −2.58 < Z ≤ −1.96 | 0.01 < p ≤ 0.05 | Medium | |
LH | Z ≤ −2.58 | p ≤ 0.01 | High |
Year | Moran Index | Z Value | p-Value | Result |
---|---|---|---|---|
1998 | 0.270 | 7.312 | 0.000 | grouped |
1999 | 0.328 | 8.246 | 0.000 | grouped |
2000 | 0.303 | 7.668 | 0.000 | grouped |
2001 | 0.320 | 8.057 | 0.000 | grouped |
2002 | 0.335 | 8.556 | 0.000 | grouped |
2003 | 0.232 | 6.009 | 0.000 | grouped |
2004 | 0.346 | 8.875 | 0.000 | grouped |
2005 | 0.352 | 9.050 | 0.000 | grouped |
2006 | 0.356 | 9.302 | 0.000 | grouped |
2007 | 0.350 | 9.254 | 0.000 | grouped |
2008 | 0.362 | 9.476 | 0.000 | grouped |
2009 | 0.378 | 9.757 | 0.000 | grouped |
2010 | 0.378 | 9.745 | 0.000 | grouped |
2011 | 0.380 | 9.688 | 0.000 | grouped |
2012 | 0.367 | 9.525 | 0.000 | grouped |
2013 | 0.363 | 9.470 | 0.000 | grouped |
2014 | 0.379 | 9.771 | 0.000 | grouped |
2015 | 0.380 | 9.721 | 0.000 | grouped |
Item | Total Cost Gap | Gross Return Gap | Net Return Gap | Market Price Gap |
---|---|---|---|---|
Total production | −0.666 ** | −0.726 ** | −0.255 | −0.320 |
Sown area | −0.675 ** | −0.841 ** | −0.069 | −0.556 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Lu, C. Clustering Analysis of Soybean Production to Understand its Spatiotemporal Dynamics in the North China Plain. Sustainability 2020, 12, 6178. https://doi.org/10.3390/su12156178
Zhang Z, Lu C. Clustering Analysis of Soybean Production to Understand its Spatiotemporal Dynamics in the North China Plain. Sustainability. 2020; 12(15):6178. https://doi.org/10.3390/su12156178
Chicago/Turabian StyleZhang, Zemin, and Changhe Lu. 2020. "Clustering Analysis of Soybean Production to Understand its Spatiotemporal Dynamics in the North China Plain" Sustainability 12, no. 15: 6178. https://doi.org/10.3390/su12156178
APA StyleZhang, Z., & Lu, C. (2020). Clustering Analysis of Soybean Production to Understand its Spatiotemporal Dynamics in the North China Plain. Sustainability, 12(15), 6178. https://doi.org/10.3390/su12156178