Indoor Air Quality Monitoring Systems for Enhanced Living Environments: A Review toward Sustainable Smart Cities
Abstract
:1. Introduction
2. Indoor Air Quality and Enhanced Living Environments
3. Indoor Air Quality Monitoring: Architectures, Algorithms, and Systems
4. Results and Discussion
5. Conclusions and Future Scope
Author Contributions
Funding
Conflicts of Interest
References
- Marques, G.; Pitarma, R.M.; Garcia, N.; Pombo, N. Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review. Electronics 2019, 8, 1081. [Google Scholar] [CrossRef] [Green Version]
- Universal Open Platform and Reference Specification for Ambient Assisted Living. Available online: http://www.universaal.info/ (accessed on 20 March 2020).
- Dohr, A.; Modre-Opsrian, R.; Drobics, M.; Hayn, D.; Schreier, G. The Internet of Things for Ambient Assisted Living. In Proceedings of the 2010 Seventh International Conference on Information Technology: New Generations, Las Vegas, NV, USA, 12–14 April 2010; pp. 804–809. [Google Scholar]
- Ganchev, I.; Garcia, N.M.; Dobre, C.; Mavromoustakis, C.X.; Goleva, R. (Eds.) Enhanced Living Environments: Algorithms, Architectures, Platforms, and Systems; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11369, ISBN 978-3-03-010751-2. [Google Scholar]
- Dobre, C.; Mavromoustakis, C.X.; Garcia, N.M.; Mastorakis, G.; Goleva, R.I. Introduction to the AAL and ELE Systems. In Ambient Assisted Living and Enhanced Living Environments; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–16. ISBN 978-0-12-805195-5. [Google Scholar]
- Goleva, R.I.; Garcia, N.M.; Mavromoustakis, C.X.; Dobre, C.; Mastorakis, G.; Stainov, R.; Chorbev, I.; Trajkovik, V. AAL and ELE Platform Architecture. In Ambient Assisted Living and Enhanced Living Environments; Elsevier: Amsterdam, The Netherlands, 2017; pp. 171–209. ISBN 978-0-12-805195-5. [Google Scholar]
- Ben Hmida, H.; Braun, A. Enabling an Internet of Things Framework for Ambient Assisted Living. In Ambient Assisted Living; Wichert, R., Mand, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 181–196. ISBN 978-3-31-952321-7. [Google Scholar]
- Bacciu, D.; Barsocchi, P.; Chessa, S.; Gallicchio, C.; Micheli, A. An experimental characterization of reservoir computing in ambient assisted living applications. Neural Comput. Appl. 2014, 24, 1451–1464. [Google Scholar] [CrossRef]
- Dziak, D.; Jachimczyk, B.; Kulesza, W. IoT-Based Information System for Healthcare Application: Design Methodology Approach. Appl. Sci. 2017, 7, 596. [Google Scholar] [CrossRef]
- Woo, M.W.; Lee, J.; Park, K. A reliable IoT system for Personal Healthcare Devices. Future Gener. Comput. Syst. 2018, 78, 626–640. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I.; Jiang, M.; Liljeberg, P. Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Gener. Comput. Syst. 2018, 78, 641–658. [Google Scholar] [CrossRef]
- Wu, F.; Li, X.; Sangaiah, A.K.; Xu, L.; Kumari, S.; Wu, L.; Shen, J. A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Future Gener. Comput. Syst. 2018, 82, 727–737. [Google Scholar] [CrossRef]
- Evans, J.; Papadopoulos, A.; Silvers, C.T.; Charness, N.; Boot, W.R.; Schlachta-Fairchild, L.; Crump, C.; Martinez, M.; Ent, C.B. Remote Health Monitoring for Older Adults and Those with Heart Failure: Adherence and System Usability. Telemed. E-Health 2016, 22, 480–488. [Google Scholar] [CrossRef] [Green Version]
- Kakria, P.; Tripathi, N.K.; Kitipawang, P. A Real-Time Health Monitoring System for Remote Cardiac Patients Using Smartphone and Wearable Sensors. Int. J. Telemed. Appl. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Andrews, R.G. Mobile sensor data measurements and analysis for fall detection in elderly health care. Master’s Thesis, Aalto University, Espoo, Finland, 2017. [Google Scholar]
- Buckingham, S.A.; Williams, A.J.; Morrissey, K.; Price, L.; Harrison, J. Mobile health interventions to promote physical activity and reduce sedentary behaviour in the workplace: A systematic review. Digit. Health 2019, 5, 205520761983988. [Google Scholar] [CrossRef] [Green Version]
- Moumtzoglou, A. (Ed.) Mobile Health Applications for Quality Healthcare Delivery; Advances in Healthcare Information Systems and Administration; IGI Global: Hershey, PA, USA, 2019; ISBN 978-1-52-258021-8. [Google Scholar]
- Stavrotheodoros, S.; Kaklanis, N.; Votis, K.; Tzovaras, D. A Smart-Home IoT Infrastructure for the Support of Independent Living of Older Adults. In Artificial Intelligence Applications and Innovations; Iliadis, L., Maglogiannis, I., Plagianakos, V., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 520, pp. 238–249. ISBN 978-3-31-992015-3. [Google Scholar]
- Al-Janabi, S.; Al-Shourbaji, I.; Shojafar, M.; Shamshirband, S. Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egypt. Inform. J. 2017, 18, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Seguel, J.M.; Merrill, R.; Seguel, D.; Campagna, A.C. Indoor Air Quality. Am. J. Lifestyle Med. 2016, 1559827616653343. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Wargocki, P.; Chan, Y.-H.; Chen, L.; Tham, K.-W. How does indoor environmental quality in green refurbished office buildings compare with the one in new certified buildings? Build. Environ. 2020, 171, 106677. [Google Scholar] [CrossRef]
- Cornet, V.P.; Holden, R.J. Systematic review of smartphone-based passive sensing for health and wellbeing. J. Biomed. Inform. 2018, 77, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Kirwa, K.; Eliot, M.N.; Alenezi, F.; Menya, D.; Mitter, S.S.; Velazquez, E.J.; Vedanthan, R.; Wellenius, G.A.; Bloomfield, G.S. Household Air Pollution Is Associated with Altered Cardiac Function among Women in Kenya. Am. J. Respir. Crit. Care Med. 2018, 197, 958–961. [Google Scholar] [CrossRef] [PubMed]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Schaffers, H.; Komninos, N.; Pallot, M.; Trousse, B.; Nilsson, M.; Oliveira, A. Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation. In The Future Internet; Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6656, pp. 431–446. ISBN 978-3-64-220897-3. [Google Scholar]
- Chourabi, H.; Nam, T.; Walker, S.; Gil-Garcia, J.R.; Mellouli, S.; Nahon, K.; Pardo, T.A.; Scholl, H.J. Understanding Smart Cities: An Integrative Framework. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 2289–2297. [Google Scholar]
- Adams, M.D.; Kanaroglou, P.S. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models. J. Environ. Manag. 2016, 168, 133–141. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef] [Green Version]
- Andargie, M.S.; Touchie, M.; O’Brien, W. A review of factors affecting occupant comfort in multi-unit residential buildings. Build. Environ. 2019, 160, 106182. [Google Scholar] [CrossRef]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Vilcekova, S.; Meciarova, L.; Burdova, E.K.; Katunska, J.; Kosicanova, D.; Doroudiani, S. Indoor environmental quality of classrooms and occupants’ comfort in a special education school in Slovak Republic. Build. Environ. 2017, 120, 29–40. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Ibaseta, D.; Molleda, J.; Díez, F.; Granda, J.C. Indoor Air Quality Monitoring Sensor for the Web of Things. Proceedings 2018, 2, 1466. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Zeng, Y.; Chen, X.; Fan, Y. The internet of things in healthcare: An overview. J. Ind. Inf. Integr. 2016, 1, 3–13. [Google Scholar] [CrossRef]
- Bhatt, Y.; Bhatt, C. Internet of Things in HealthCare. In Internet of Things and Big Data Technologies for Next Generation Healthcare; Bhatt, C., Dey, N., Ashour, A.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 23, pp. 13–33. ISBN 978-3-31-949735-8. [Google Scholar]
- Gumede, P.R.; Savage, M.J. Respiratory health effects associated with indoor particulate matter (PM2.5) in children residing near a landfill site in Durban, South Africa. Air Qual. Atmos. Health 2017, 10, 853–860. [Google Scholar] [CrossRef]
- Keet, C.A.; Keller, J.P.; Peng, R.D. Long-Term Coarse Particulate Matter Exposure Is Associated with Asthma among Children in Medicaid. Am. J. Respir. Crit. Care Med. 2018, 197, 737–746. [Google Scholar] [CrossRef]
- Bonino, S. Carbon Dioxide Detection and Indoor Air Quality Control. Occup. Health Saf. Waco Tex 2016, 85, 46–48. [Google Scholar]
- Adler-Milstein, J.; Jha, A.K. HITECH Act Drove Large Gains in Hospital Electronic Health Record Adoption. Health Aff. (Millwood) 2017, 36, 1416–1422. [Google Scholar] [CrossRef]
- Tsai, W.-T. Overview of Green Building Material (GBM) Policies and Guidelines with Relevance to Indoor Air Quality Management in Taiwan. Environments 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Singleton, R.; Salkoski, A.J.; Bulkow, L.; Fish, C.; Dobson, J.; Albertson, L.; Skarada, J.; Ritter, T.; Kovesi, T.; Hennessy, T.W. Impact of home remediation and household education on indoor air quality, respiratory visits and symptoms in Alaska Native children. Int. J. Circumpolar Health 2018, 77, 1422669. [Google Scholar] [CrossRef] [Green Version]
- Bruce, N.; Pope, D.; Rehfuess, E.; Balakrishnan, K.; Adair-Rohani, H.; Dora, C. WHO indoor air quality guidelines on household fuel combustion: Strategy implications of new evidence on interventions and exposure–risk functions. Atmos. Environ. 2015, 106, 451–457. [Google Scholar] [CrossRef]
- Choi, D.; Choi, H.; Shon, D. Future changes to smart home based on AAL healthcare service. J. Asian Archit. Build. Eng. 2019, 18, 190–199. [Google Scholar] [CrossRef]
- Darby, S.J. Smart technology in the home: Time for more clarity. Build. Res. Inf. 2018, 46, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Feria, F.; Salcedo Parra, O.J.; Reyes Daza, B.S. Design of an Architecture for Medical Applications in IoT. In Cooperative Design, Visualization, and Engineering; Luo, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9929, pp. 263–270. ISBN 978-3-31-946770-2. [Google Scholar]
- Marques, G.; Pitarma, R. A Cost-Effective Air Quality Supervision Solution for Enhanced Living Environments through the Internet of Things. Electronics 2019, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Bruce, N.; Perez-Padilla, R.; Albalak, R. Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Organ. 2000, 78, 1078–1092. [Google Scholar]
- Environmental Protection Agency (EPA), Indoor Air Quality (IAQ). Available online: https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality (accessed on 20 March 2020).
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Utell, M.J.; Frampton, M.W. Acute Health Effects of Ambient Air Pollution: The Ultrafine Particle Hypothesis. J. Aerosol Med. 2000, 13, 355–359. [Google Scholar] [CrossRef]
- Harrison, R.M.; Yin, J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef]
- Dockery, D.W.; Pope, C.A. Acute Respiratory Effects of Particulate Air Pollution. Annu. Rev. Public Health 1994, 15, 107–132. [Google Scholar] [CrossRef]
- Nazaroff, W.W.; Klepeis, N.E. Environmental Tobacco Smoke Particles. In Indoor Environment; Morawska, L., Salthammer, T., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003; pp. 245–274. ISBN 978-3-52-761001-3. [Google Scholar]
- World Health Organization (Ed.) Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Copenhagen, Denmark, 2006; ISBN 978-92-89-02192-0. [Google Scholar]
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Pope, C.A.; Thun, M.J.; Namboodiri, M.M.; Dockery, D.W.; Evans, J.S.; Speizer, F.E.; Heath, C.W. Particulate Air Pollution as a Predictor of Mortality in a Prospective Study of U.S. Adults. Am. J. Respir. Crit. Care Med. 1995, 151, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Chang, M. Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 2000, 41, 109–113. [Google Scholar] [CrossRef]
- Seppanen, O.A.; Fisk, W.J.; Mendell, M.J. Association of Ventilation Rates and CO2 Concentrations with Health andOther Responses in Commercial and Institutional Buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G.; Adgate, J.L.; Banerjee, S.; Church, T.R.; Jones, D.; Fredrickson, A.; Sexton, K. Indoor Air Quality in Two Urban Elementary Schools—Measurements of Airborne Fungi, Carpet Allergens, CO2, Temperature, and Relative Humidity. J. Occup. Environ. Hyg. 2005, 2, 553–566. [Google Scholar] [CrossRef]
- Scheff, P.A.; Paulius, V.K.; Huang, S.W.; Conroy, L.M. Indoor Air Quality in a Middle School, Part I: Use of CO2 as a Tracer for Effective Ventilation. Appl. Occup. Environ. Hyg. 2000, 15, 824–834. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P.; Sundell, J.; Clausen, G.; Fanger, P.O. The Effects of Outdoor Air Supply Rate in an Office on Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity. Indoor Air 2000, 10, 222–236. [Google Scholar] [CrossRef]
- Wyon, D.; Tham, K.W.; Sekhar, C.; Cheong, D. Evaluating IAQ effects on people. In Proceedings of the 7th International Conference on Healthy Buildings 2003, Singapore, 7–11 December 2003; Healthy Buildings: Singapore, 2003; pp. 51–60. [Google Scholar]
- Sundell, J. On the history of indoor air quality and health. Indoor Air 2004, 14, 51–58. [Google Scholar] [CrossRef]
- Hernández-Muñoz, J.M.; Vercher, J.B.; Muñoz, L.; Galache, J.A.; Presser, M.; Hernández Gómez, L.A.; Pettersson, J. Smart Cities at the Forefront of the Future Internet. In The Future Internet; Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6656, pp. 447–462. ISBN 978-3-64-220897-3. [Google Scholar]
- Rashidi, P.; Mihailidis, A. A Survey on Ambient-Assisted Living Tools for Older Adults. Biomed. Health Inform. IEEE J. Of 2013, 17, 579–590. [Google Scholar] [CrossRef]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- de Gennaro, G.; Dambruoso, P.R.; Loiotile, A.D.; Di Gilio, A.; Giungato, P.; Tutino, M.; Marzocca, A.; Mazzone, A.; Palmisani, J.; Porcelli, F. Indoor air quality in schools. Environ. Chem. Lett. 2014, 12, 467–482. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Rufo, J.; Ramos, E.; Barros, H.; Teixeira, J.P.; de Oliveira Fernandes, E. Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmos. Environ. 2015, 118, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Salvatori, E.; Gentile, C.; Altieri, A.; Aramini, F.; Manes, F. Nature-Based Solution for Reducing CO2 Levels in Museum Environments: A Phytoremediation Study for the Leonardo da Vinci’s “Last Supper”. Sustainability 2020, 12, 565. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Kobayashi, K.; Loladze, I.; Zhu, J.; Jiang, Q.; Xu, X.; Liu, G.; Seneweera, S.; Ebi, K.L.; Drewnowski, A.; et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, eaaq1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.; Myers, S.S. Measuring the effects of anthropogenic CO 2 emissions on global nutrient intakes: A modelling analysis. Lancet 2017, 389, S19. [Google Scholar] [CrossRef]
- Chirico, F.; Rulli, G. Thermal comfort and indoor air quality in some of the italian state police workplaces. G. Ital. Med. Lav. Ergon. 2017, 39, 230–239. [Google Scholar]
- Marques, G.; Pitarma, R. Environmental Quality Monitoring System Based on Internet of Things for Laboratory Conditions Supervision. In New Knowledge in Information Systems and Technologies; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 932, pp. 34–44. ISBN 978-3-03-016186-6. [Google Scholar]
- Mehra, M.; Saxena, S.; Sankaranarayanan, S.; Tom, R.J.; Veeramanikandan, M. IoT based hydroponics system using Deep Neural Networks. Comput. Electron. Agric. 2018, 155, 473–486. [Google Scholar] [CrossRef]
- Baranwal, T.; Nitika; Pateriya, P.K. Development of IoT based smart security and monitoring devices for agriculture. In Proceedings of the 2016 6th International Conference—Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15 January 2016; IEEE: Noida, India, 2016; pp. 597–602. [Google Scholar]
- Jawad, H.; Nordin, R.; Gharghan, S.; Jawad, A.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.; Egea, G.; Agüera, J.; Pérez-Ruiz, M. A cost-effective canopy temperature measurement system for precision agriculture: A case study on sugar beet. Precis. Agric. 2017, 18, 95–110. [Google Scholar] [CrossRef]
- Skouby, K.E.; Lynggaard, P. Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services. In Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India, 27–29 November 2014; IEEE: Mysore, India, 2014; pp. 874–878. [Google Scholar]
- Dutta, J.; Roy, S. IoT-fog-cloud based architecture for smart city: Prototype of a smart building. In Proceedings of the 2017 7th International Conference on Cloud Computing, Data Science & Engineering—Confluence, Noida, India, 12–13 January 2017; IEEE: Noida, India, 2017; pp. 237–242. [Google Scholar]
- Marques, G.; Pitarma, R. Noise Monitoring for Enhanced Living Environments Based on Internet of Things. In New Knowledge in Information Systems and Technologies; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 932, pp. 45–54. ISBN 978-3-03-016186-6. [Google Scholar]
- Wei, S.; Ning, F.; Simon, F.; Kyungeun, C. A Deep Belief Network for Electricity Utilisation Feature Analysis of Air Conditioners Using a Smart IoT Platform. J. Inf. Process. Syst. 2018, 14, 162–175. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, W.; Li, S. Design and Implementation of an IoT-Based Indoor Air Quality Detector with Multiple Communication Interfaces. IEEE Internet Things J. 2019, 6, 9621–9632. [Google Scholar] [CrossRef]
- Sanchez-Rosario, F.; Sanchez-Rodriguez, D.; Alonso-Hernandez, J.B.; Travieso-Gonzalez, C.M.; Alonso-Gonzalez, I.; Ley-Bosch, C.; Ramirez-Casanas, C.; Quintana-Suarez, M.A. A low consumption real time environmental monitoring system for smart cities based on ZigBee wireless sensor network. In Proceedings of the 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, Croatia, 24–28 August 2015; IEEE: Dubrovnik, Croatia, 2015; pp. 702–707. [Google Scholar]
- Kim, J.-Y.; Chu, C.-H.; Shin, S.-M. ISSAQ: An Integrated Sensing Systems for Real-Time Indoor Air Quality Monitoring. IEEE Sens. J. 2014, 14, 4230–4244. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. Health informatics for indoor air quality monitoring. In Proceedings of the 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), Las Palmas, Spain, 15–18 June 2016; pp. 1–6. [Google Scholar]
- Pitarma, R.; Marques, G.; Ferreira, B.R. Monitoring Indoor Air Quality for Enhanced Occupational Health. J. Med. Syst. 2017, 41. [Google Scholar] [CrossRef] [PubMed]
- Marques, G.; Pitarma, R. Monitoring Health Factors in Indoor Living Environments Using Internet of Things. In Recent Advances in Information Systems and Technologies; Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 570, pp. 785–794. ISBN 978-3-31-956537-8. [Google Scholar]
- Abraham, S.; Li, X. A Cost-effective Wireless Sensor Network System for Indoor Air Quality Monitoring Applications. Procedia Comput. Sci. 2014, 34, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Marques, G.; Pitarma, R. An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public. Health 2016, 13, 1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, G.; Roque Ferreira, C.; Pitarma, R. A System Based on the Internet of Things for Real-Time Particle Monitoring in Buildings. Int. J. Environ. Res. Public. Health 2018, 15, 821. [Google Scholar] [CrossRef] [Green Version]
- Marques, G.; Pitarma, R. Promoting Health and Well-Being Using Wearable and Smartphone Technologies for Ambient Assisted Living Through Internet of Things. In Big Data and Networks Technologies; Farhaoui, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 81, pp. 12–22. ISBN 978-3-03-023671-7. [Google Scholar]
- Marques, G.; Pitarma, R. Monitoring and control of the indoor environment. In Proceedings of the 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, Portugal, 14–17 June 2017; pp. 1–6. [Google Scholar]
- Lohani, D.; Acharya, D. Smartvent: A context aware iot system to measure indoor air quality and ventilation rate. In Proceedings of the 2016 17th IEEE International Conference on Mobile Data Management (MDM), Porto, Portugal, 13–16 June 2016; Volume 2, pp. 64–69. [Google Scholar]
- Mantha, B.R.; Feng, C.; Menassa, C.C.; Kamat, V.R. Real-time building energy and comfort parameter data collection using mobile indoor robots. In Proceedings of the 32nd International Symposium on Automation and Robotics in Construction, Oulu, Finland, 15–18 June 2015; pp. 1–9. [Google Scholar]
- Jin, M.; Liu, S.; Schiavon, S.; Spanos, C. Automated mobile sensing: Towards high-granularity agile indoor environmental quality monitoring. Build. Environ. 2018, 127, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Srivatsa, P.; Pandhare, A. Indoor Air Quality: IoT Solution. In Proceedings of the National Conference “NCPCI, 19 March 2016; Volume 2016, p. 19. [Google Scholar]
- Salamone, F.; Belussi, L.; Danza, L.; Galanos, T.; Ghellere, M.; Meroni, I. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality. Sensors 2017, 17, 1021. [Google Scholar] [CrossRef]
- Meena, M.J.; Prabha, S.S.; Pandian, S. A cloud-based mobile robotic system for environmental monitoring. In Proceedings of the 2014 Asia-Pacific Conference on Computer Aided System Engineering (APCASE), South Kuta, Indonesia, 10–12 February 2014; IEEE: South Kuta, Indonesia, 2014; pp. 122–126. [Google Scholar]
- Marques, G.; Pires, I.; Miranda, N.; Pitarma, R. Air Quality Monitoring using Assistive Robots for Ambient Assisted Living and Enhanced Living Environments through Internet of Things. Electronics 2019, 8, 1375. [Google Scholar] [CrossRef] [Green Version]
- Taştan, M.; Gökozan, H. Real-Time Monitoring of Indoor Air Quality with Internet of Things-Based E-Nose. Appl. Sci. 2019, 9, 3435. [Google Scholar] [CrossRef]
- Chiesa, G.; Cesari, S.; Garcia, M.; Issa, M.; Li, S. Multisensor IoT Platform for Optimising IAQ Levels in Buildings through a Smart Ventilation System. Sustainability 2019, 11, 5777. [Google Scholar] [CrossRef] [Green Version]
- Sai, K.B.K.; Subbareddy, S.R.; Luhach, A.K. IOT based Air Quality Monitoring System Using MQ135 and MQ7 with Machine Learning Analysis. Scalable Comput. Pract. Exp. 2019, 20, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Alabdullah, A.J.; Farhat, B.I.; Chtourou, S. Air Quality Arduino Based Monitoring System. In Proceedings of the 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 1–3 May 2019; IEEE: Riyadh, Saudi Arabia, 2019; pp. 1–5. [Google Scholar]
- Haux, R. Health information systems—past, present, future. Int. J. Med. Inf. 2006, 75, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhao, H. Data Security and Privacy Protection Issues in Cloud Computing. In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; pp. 647–651. [Google Scholar]
- Appari, A.; Johnson, M.E. Information security and privacy in healthcare: Current state of research. Int. J. Internet Enterp. Manag. 2010, 6, 279–314. [Google Scholar] [CrossRef]
- Riazul Islam, S.M.; Daehan Kwak; Humaun Kabir, M.; Hossain, M.; Kwak, K.-S. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- De Vito, S.; Fattoruso, G.; Liguoro, R.; Oliviero, A.; Massera, E.; Sansone, C.; Casola, V.; Di Francia, G. Cooperative 3D Air Quality Assessment with Wireless Chemical Sensing Networks. Procedia Eng. 2011, 25, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Preethichandra, D.M.G. Design of a smart indoor air quality monitoring wireless sensor network for assisted living. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013; pp. 1306–1310. [Google Scholar]
- Agiwal, M.; Saxena, N.; Roy, A. Towards connected living: 5G enabled internet of things (IoT). IETE Tech. Rev. 2019, 36, 190–202. [Google Scholar] [CrossRef]
- Rao, S.K.; Prasad, R. Impact of 5G technologies on smart city implementation. Wirel. Pers. Commun. 2018, 100, 161–176. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Pickwell-Macpherson, E. 5G-Based mHealth Bringing Healthcare Convergence to Reality. IEEE Rev. Biomed. Eng. 2019, 12, 2–3. [Google Scholar] [CrossRef]
- Ahad, A.; Tahir, M.; Yau, K.-L.A. 5G-Based Smart Healthcare Network: Architecture, Taxonomy, Challenges and Future Research Directions. IEEE Access 2019, 7, 100747–100762. [Google Scholar] [CrossRef]
- Liu, G.; Hou, X.; Huang, Y.; Shao, H.; Zheng, Y.; Wang, F.; Wang, Q. Coverage Enhancement and Fundamental Performance of 5G: Analysis and Field Trial. IEEE Commun. Mag. 2019, 57, 126–131. [Google Scholar] [CrossRef]
- Allam, Z.; Dhunny, Z.A. On big data, artificial intelligence and smart cities. Cities 2019, 89, 80–91. [Google Scholar] [CrossRef]
- Shastri, A.; Deshpande, M. A Review of Big Data and Its Applications in Healthcare and Public Sector. In Big Data Analytics in Healthcare; Springer: Berlin/Heidelberg, Germany, 2020; pp. 55–66. [Google Scholar]
- Wang, Y.; Kung, L.; Gupta, S.; Ozdemir, S. Leveraging big data analytics to improve quality of care in healthcare organizations: A configurational perspective. Br. J. Manag. 2019, 30, 362–388. [Google Scholar] [CrossRef]
- Nalepa, G.J.; Kutt, K.; Bobek, S. Mobile platform for affective context-aware systems. Future Gener. Comput. Syst. 2019, 92, 490–503. [Google Scholar] [CrossRef]
- Wang, D.; Xiang, Z.; Fesenmaier, D.R. Smartphone Use in Everyday Life and Travel. J. Travel Res. 2016, 55, 52–63. [Google Scholar] [CrossRef]
- Böhm, S.; Driehaus, H.; Wick, M. Contextual Push Notifications on Mobile Devices: A Pre-study on the Impact of Usage Context on User Response. In Mobile Web and Intelligent Information Systems; Awan, I., Younas, M., Ünal, P., Aleksy, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11673, pp. 316–330. ISBN 978-3-03-027191-6. [Google Scholar]
- Turner, L.D.; Allen, S.M.; Whitaker, R.M. The influence of concurrent mobile notifications on individual responses. Int. J. Hum.-Comput. Stud. 2019, 132, 70–80. [Google Scholar] [CrossRef]
- Can Mobile Health Technologies Transform Health Care?|Health Care Delivery Models|JAMA|JAMA Network. Available online: https://jamanetwork.com/journals/jama/article-abstract/1762473 (accessed on 21 March 2020).
- Derbez, M.; Wyart, G.; Le Ponner, E.; Ramalho, O.; Ribéron, J.; Mandin, C. Indoor air quality in energy-efficient dwellings: Levels and sources of pollutants. Indoor Air 2018, 28, 318–338. [Google Scholar] [CrossRef]
- Kumar, P.; Martani, C.; Morawska, L.; Norford, L.; Choudhary, R.; Bell, M.; Leach, M. Indoor air quality and energy management through real-time sensing in commercial buildings. Energy Build. 2016, 111, 145–153. [Google Scholar] [CrossRef]
- Cao, S.-J.; Deng, H.-Y. Investigation of temperature regulation effects on indoor thermal comfort, air quality, and energy savings toward green residential buildings. Sci. Technol. Built Environ. 2019, 25, 309–321. [Google Scholar] [CrossRef]
- Steinemann, A.; Wargocki, P.; Rismanchi, B. Ten questions concerning green buildings and indoor air quality. Build. Environ. 2017, 112, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Anand, P.; Sekhar, C.; Cheong, D.; Santamouris, M.; Kondepudi, S. Occupancy-based zone-level VAV system control implications on thermal comfort, ventilation, indoor air quality and building energy efficiency. Energy Build. 2019, 204, 109473. [Google Scholar] [CrossRef]
- Brilli, F.; Fares, S.; Ghirardo, A.; de Visser, P.; Calatayud, V.; Muñoz, A.; Annesi-Maesano, I.; Sebastiani, F.; Alivernini, A.; Varriale, V.; et al. Plants for Sustainable Improvement of Indoor Air Quality. Trends Plant Sci. 2018, 23, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Guyot, G.; Melois, A.; Bernard, A.-M.; Coeudevez, C.-S.; Déoux, S.; Berlin, S.; Parent, E.; Huet, A.; Berthault, S.; Jobert, R.; et al. Ventilation performance and indoor air pollutants diagnosis in 21 French low energy homes. Int. J. Vent. 2018, 17, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Mohan, B.; Islam, M.R.; Chou, S.K.; Chua, K.J. Energy performance evaluation and application of an air treatment system for conditioning building spaces in tropics. Appl. Energy 2017, 204, 1500–1512. [Google Scholar] [CrossRef]
- Babu, P.; Suthar, G. Indoor Air Quality and Thermal Comfort in Green Building: A Study for Measurement, Problem and Solution Strategies. In Indoor Environmental Quality; Sharma, A., Goyal, R., Mittal, R., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore, 2020; Volume 60, pp. 139–146. ISBN 978-9-81-151333-6. [Google Scholar]
- MacNaughton, P.; Spengler, J.; Vallarino, J.; Santanam, S.; Satish, U.; Allen, J. Environmental perceptions and health before and after relocation to a green building. Build. Environ. 2016, 104, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmerich, S.J.; Teichman, K.Y.; Persily, A.K. Literature review on field study of ventilation and indoor air quality performance verification in high-performance commercial buildings in North America. Sci. Technol. Built Environ. 2017, 23, 1159–1166. [Google Scholar] [CrossRef]
- Coombs, K.C.; Chew, G.L.; Schaffer, C.; Ryan, P.H.; Brokamp, C.; Grinshpun, S.A.; Adamkiewicz, G.; Chillrud, S.; Hedman, C.; Colton, M.; et al. Indoor air quality in green-renovated vs. non-green low-income homes of children living in a temperate region of US (Ohio). Sci. Total Environ. 2016, 554–555, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Balaban, O.; Puppim de Oliveira, J.A. Sustainable buildings for healthier cities: Assessing the co-benefits of green buildings in Japan. J. Clean. Prod. 2017, 163, S68–S78. [Google Scholar] [CrossRef]
- Thakur, D.; Kumar, Y.; Kumar, A.; Singh, P.K. Applicability of Wireless Sensor Networks in Precision Agriculture: A Review. Wirel. Pers. Commun. 2019, 107, 471–512. [Google Scholar] [CrossRef]
- Ahmmad, S.N.Z.; Eswendy, M.A.G.; Muchtar, F.; Singh, P.K. Implementation of Automated Aroma Therapy Candle Process Planting Using IoT and WSN. In Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario’s; Singh, P.K., Bhargava, B.K., Paprzycki, M., Kaushal, N.C., Hong, W.C., Eds.; Springer: Cham, Switzerland, 2020; Volume 1132, pp. 520–545. [Google Scholar] [CrossRef]
Year | Ref | Total of Studies |
---|---|---|
2014 | [85,89,99] | 3 |
2015 | [84,95] | 2 |
2016 | [86,90,94,97] | 4 |
2017 | [87,88,93,98] | 4 |
2018 | [91,96] | 2 |
2019 | [92,100,101,102,103,104] | 6 |
Database | Ref | Total of Studies |
---|---|---|
IEEE | [84,85,86,93,94,99] | 6 |
Springer | [87,88,92] | 3 |
ScienceDirect | [89,96] | 2 |
Web of Science | [90,91,98,100,101,102,103,104] | 8 |
ResearchGate | [95,97] | 2 |
MCU/ Connectivity | Arduino | TI MSP430 | Raspberry Pi | Waspmote | ESP8266 | ESP32 | Sun SPOT |
---|---|---|---|---|---|---|---|
Wi-Fi | [88,90,92,96,99,103] | - | [97,102] | - | [85,88,90,92,94,103] | [101] | - |
Bluetooth | [94,99,104] | - | - | - | - | - | - |
Ethernet | [86,87,93] | - | - | - | - | - | - |
ZigBee | [86,87,89,90,98] | [85] | [85] | [84] | - | - | [100] |
Architecture/ Connectivity | WSN | Internet of Things | WSN/Internet of Things |
---|---|---|---|
Wi-Fi | [89] | [88,91,92,94,95,96,101,102,103] | [90,97,99] |
Bluetooth | - | [94,104] | [99] |
Ethernet | [86,87] | [93] | - |
ZigBee | [84,85,86,87,89,98,100] | - | [90] |
MCU/ Architecture | Arduino | TI MSP430 | Raspberry Pi | Waspmote | ESP8266 | ESP32 | Sun SPOT |
---|---|---|---|---|---|---|---|
WSN | [86,87,89,90,98] | [85] | [85] | [84] | [90] | - | [100] |
Internet of Things | [88,93,94,96,103,104] | - | [102] | - | - | [101] | - |
WSN/Internet of Things | [99] | - | [97] | - | - | - | - |
Sensors | Studies Distribution | Total of Studies |
---|---|---|
Temperature | [84,86,87,88,89,90,92,93,94,96,99,101,102,104] | 14 |
CO2 | [85,86,87,88,90,92,94,95,96,98,99,101,102,104] | 14 |
Humidity | [84,86,87,88,89,90,92,93,94,99,101,102] | 12 |
Light | [86,87,88,90,92,93,95,96] | 8 |
PM | [84,85,88,91,92,101] | 6 |
CO | [85,86,87,90,101,103] | 6 |
VOC | [85,89,96,102,104] | 4 |
NO2 | [85,101] | 2 |
O3 | [85] | 1 |
SO2 | [85] | 1 |
Sound | [84] | 1 |
Flame sensor | [93] | 1 |
GPS | [84] | 1 |
LPG | [100] | 1 |
Pressure | [102] | 1 |
Air Quality Index | [103] | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, G.; Saini, J.; Dutta, M.; Singh, P.K.; Hong, W.-C. Indoor Air Quality Monitoring Systems for Enhanced Living Environments: A Review toward Sustainable Smart Cities. Sustainability 2020, 12, 4024. https://doi.org/10.3390/su12104024
Marques G, Saini J, Dutta M, Singh PK, Hong W-C. Indoor Air Quality Monitoring Systems for Enhanced Living Environments: A Review toward Sustainable Smart Cities. Sustainability. 2020; 12(10):4024. https://doi.org/10.3390/su12104024
Chicago/Turabian StyleMarques, Gonçalo, Jagriti Saini, Maitreyee Dutta, Pradeep Kumar Singh, and Wei-Chiang Hong. 2020. "Indoor Air Quality Monitoring Systems for Enhanced Living Environments: A Review toward Sustainable Smart Cities" Sustainability 12, no. 10: 4024. https://doi.org/10.3390/su12104024
APA StyleMarques, G., Saini, J., Dutta, M., Singh, P. K., & Hong, W.-C. (2020). Indoor Air Quality Monitoring Systems for Enhanced Living Environments: A Review toward Sustainable Smart Cities. Sustainability, 12(10), 4024. https://doi.org/10.3390/su12104024