R&D Expenditure for New Technology in Livestock Farming: Impact on GHG Reduction in Developing Countries
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
4. Results and Discussions
5. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- FAO (Food and Agricultural Organization). Greenhouse gas emissions from the dairy sector. In A Life Cycle Assessment; Report; FAO: Rome, Italy, 2010. [Google Scholar]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Magalhaes, M. Climate change: Impact on agriculture and costs of adaptation. Intl. Food Policy Res. Inst. 2009, 1–21. [Google Scholar] [CrossRef]
- OECD-FAO. Agricultural Outlook 2016–2025; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Kuznets, S. Economic growth and income inequality. Am. Econ. Rev. 1955, 45, 1–28. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; NBER Working Papers 3914; National Bureau of Economic Research, Inc.: Washington, DC, USA, 1991. [Google Scholar]
- Dinda, S. Environmental Kuznets Curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Stern, D.I. The rise and fall of the environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Richmond, A.K.; Kaufmann, R.K. Is there a turning point in the relationship between income and energy use and/or carbon emissions? Ecol. Econ. 2006, 56, 176–189. [Google Scholar] [CrossRef]
- Galeotti, M.; Manera, M.; Lanza, A. On the robustness of robustness checks of the environmental Kuznets Curve hypothesis. Environ. Resour. Econ. 2009, 42, 551–574. [Google Scholar] [CrossRef]
- Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 2010, 38, 1150–1156. [Google Scholar] [CrossRef]
- Akpan, U.F.; Chuku, A. Economic Growth and Environmental Degradation in Nigeria: Beyond the Environmental Kuznets Curve. In Proceedings of the 4th Annual NAEE/IAEE International Conference, Abuja, Nigeria, 27–29 April 2011. [Google Scholar]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C.; Holling, C.S.; Jansson, B.-O.; Levin, S.; Mäler, K.-G.; Perrings, C.; et al. Economic growth, carrying capacity, and the environment. Ecol. Econ. 1995, 15, 91–95. [Google Scholar] [CrossRef]
- Feng, C.; Wang, M.; Liu, G.-C.; Huang, J.-B. Green development performance and its influencing factors: A global perspective. J. Clean. Prod. 2017, 144, 323–333. [Google Scholar] [CrossRef]
- Abid, M. Does economic, financial and institutional developments matter for environmental quality? A comparative analysis of EU and MEA countries. J. Environ. Manag. 2017, 188, 183–194. [Google Scholar] [CrossRef]
- Apergis, N.; Ozturk, I. Testing environmental Kuznets Curve hypothesis in Asian countries. Ecol. Indic. 2015, 52, 16–22. [Google Scholar] [CrossRef]
- Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable energy consumption and income in emerging economies. Energy Policy 2009, 37, 4021–4028. [Google Scholar] [CrossRef]
- Li, X.; Lin, B. Global convergence in per capita CO2 emissions. Renew. Sustain. Energy Rev. 2013, 24, 357–363. [Google Scholar] [CrossRef]
- Ansuategia, A.; Escapa, M. Economic growth and greenhouse gas emissions. Ecol. Econ. 2002, 40, 23–37. [Google Scholar] [CrossRef]
- Kraft, J.; Kraft, A. On the Relationship between Energy and GNP. J. Energy Dev. 1978, 3, 401–403. [Google Scholar]
- Apergis, N.; Payne, J.E. Energy consumption and economic growth: Evidence from the Commonwealth of Independent States. Energy Econ. 2009, 31, 641–647. [Google Scholar] [CrossRef]
- Adebola, S.S. Electricity consumption and economic growth: Trivariate investigation in Botswana with capital formation. Int. J. Energy Econ. Policy 2011, 1, 32–46. [Google Scholar]
- Masuduzzaman, M. Electricity consumption and economic growth in Bangladesh: Co-integration and causality analysis. Glob. J. Manag. Bus. Res. 2012, 12, 1–12. [Google Scholar]
- Paul, S.; Bhattacharya, R.N. CO2 emission from energy use in India: A decomposition analysis. Energy Policy 2004, 32, 585–593. [Google Scholar] [CrossRef]
- Narayan, P.K.; Smyth, R. Multivariate granger causality between electricity consumption, exports and GDP: Evidence from a panel of Middle Eastern countries. Energy Policy 2009, 37, 229–236. [Google Scholar] [CrossRef]
- Odhiambo, N.M. Energy consumption and economic growth nexus in Tanzania: An ARDL bounds testing approach. Energy Policy 2009, 37, 617–622. [Google Scholar] [CrossRef]
- Bildirici, M.E. The analysis of the relationship between economic growth and electricity consumption in South American continents: MS-Granger causality analysis. Energy Sources Part B Econ. Plan. Policy 2016, 11, 766–775. [Google Scholar] [CrossRef]
- Othman, N.F.; Ya’acob, M.E.; Abdul-Rahim, A.S.; Shahwahid Othman, M.; Radzi, M.A.M.; Hizam, H.; Wang, Y.D.; Ya’Acob, A.M.; Jaafar, H.Z.E. Embracing new agriculture commodity through integration of Java Tea as high Value Herbal crops in solar PV farms. J. Clean. Prod. 2015, 91, 71–77. [Google Scholar] [CrossRef]
- Wolde-Rufael, Y. Electricity consumption and economic growth: A time series experience for 17 African countries. Energy Policy 2006, 34, 1106–1114. [Google Scholar] [CrossRef]
- Acaravci, A.; Ozturk, I. Electricity consumption-growth nexus: Evidence from panel data for transition countries. Energy Econ. 2010, 32, 604–608. [Google Scholar] [CrossRef]
- Omri, A. CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models. Energy Econ. 2013, 40, 657–664. [Google Scholar] [CrossRef]
- Qi, T.; Weng, Y.; Zhang, X.; He, J. An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013. Energy Econ. 2016, 60, 15–22. [Google Scholar] [CrossRef]
- Tajudeen, I.A.; Wossink, A.; Banerjee, P. How significant is energy efficiency to mitigate CO2 emissions? Evidence from OECD countries. Energy Econ. 2018, 72, 200–221. [Google Scholar] [CrossRef]
- Agnolucci, P.; Arvanitopoulos, T. Industrial characteristics and air emissions: Long-term determinants in the UK manufacturing sector. Energy Econ. 2019, 78, 546–566. [Google Scholar] [CrossRef]
- Ang, J.B. Economic development, pollutant emissions and energy consumption in Malaysia. J. Policy Model. 2008, 30, 271–278. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Pao, H.-T.; Tsai, C.-M. Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, India, and China) countries. Energy 2011, 36, 685–693. [Google Scholar] [CrossRef]
- Liu, D.; Guo, X.; Xiao, B. What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Sci. Total Environ. 2019, 661, 750–766. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Wei, Y.-M.; Fischedick, M.; Chiu, A.; Chen, B.; Yan, J. Recent trend of industrial emissions in developing countries. Appl. Energy 2016, 166, 187–190. [Google Scholar] [CrossRef]
- Musvoto, C.; Nortje, K.; de Wet, B.; Mahumani, B.K.; Nahman, A. Imperatives for an agricultural green economy in South Africa. S. Afr. J. Sci. 2015, 111, 1–8. [Google Scholar] [CrossRef]
- GIZ. Programmatic and institutional overview. In The Comprehensive Africa Agriculture Development Programme (CAADP); Support Programme in South Africa and the Global Donor Platform for Rural Development; GIZ: Bonn, Germany, 2018. [Google Scholar]
- World Bank. World Development Indicators. 2016. Available online: http://data.worldbank.org/data-catalog/world-development-indicators (accessed on 15 March 2016).
- Cole, M.A.; Neumayer, E. Examining the impact of demographic factors on air pollution. Popul. Environ. 2004, 26, 5–21. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. An assessment of GHG emissions from small ruminants in comparison with GHG emissions from large ruminants and monogastric livestock. Atmos. Environ. 2012, 49, 13–23. [Google Scholar] [CrossRef]
- De Pinto, A.; Li, M.; Haruna, A.; Hyman, G.G.; Martinez, M.A.L.; Creamer, B.; Kwon, H.-Y.; Garcia, J.B.V.; Tapasco, J.; Martinez, J.D. Low emission development strategies in agriculture. An agriculture, forestry, and other land uses (AFOLU) perspective. World Dev. 2016, 87, 180–203. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agricultural Organization. 2014. Available online: http://www.fao.org/faostat/en/#data (accessed on 25 November 2019).
- Gallo, C.; Faccilongo, N.; La Sala, P. Clustering analysis of environmental emissions: A study on Kyoto Protocol’s impact on member countries. J. Clean. Prod. 2018, 172, 3685–3703. [Google Scholar] [CrossRef]
- Edenhofer, O.; Sokona, Y.; Minx, J.C.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; Kriemann, B.; et al. Climate Change 2014 Mitigation of Climate Change Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Lubbers, I.M.; van Groenigen, K.J.; Fonte, S.J.; Six, J.; Brussaard, L.; van Groenigen, J.W. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Chang. 2013, 3, 187–194. [Google Scholar] [CrossRef]
- Cornwall, A.; Aghajanian, A. How to find out what’s really going on: Understanding impact through participatory process evaluation. World Dev. 2017, 99, 173–185. [Google Scholar] [CrossRef]
- Hirano, K.; Imbens, G.W. The propensity score with continuous treatments. In Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives; Wiley: New York, NY, USA, 2005; pp. 73–84. [Google Scholar]
- Imbens, G. The role of the propensity score in estimating dose-response functions. Biometrika 2000, 87, 706–710. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Cochran, W.G. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 1968, 24, 295–313. [Google Scholar] [CrossRef]
- Bia, M.; Mattei, A.A. Stata package for the estimation of the dose-response function through adjustment for the generalized propensity score. Stata J. 2008, 8, 354–373. [Google Scholar] [CrossRef]
- Bostian, M.; Färe, R.; Grosskopf, S.; Lundgren, T. Environmental investment and firm performance: A network approach. Energy Econ. 2016, 57, 243–255. [Google Scholar] [CrossRef]
- Wang, E.C.; Huang, W. Relative efficiency of R&D activities: A cross-country study accounting for environmental factors in the DEA approach. Res. Policy 2007, 36, 260–273. [Google Scholar]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef]
- Mariotti, S.; Piscitello, L.; Elia, S. Spatial agglomeration of multinational enterprises: The role of information externalities and knowledge spillovers. J. Econ. Geogr. 2010, 10, 519–538. [Google Scholar] [CrossRef]
- Antonioli, D.; Borghesi, S.; Mazzanti, M. Are regional systems greening the economy? Local spillovers, green innovations and firms’ economic performances. Econ. Innov. New Technol. 2016, 25, 692–713. [Google Scholar] [CrossRef]
- Fiore, M.; Spada, A.; Contò, F.; Pellegrini, G. GHG and cattle farming: CO-assessing the emissions and economic performances in Italy. J. Clean. Prod. 2018, 172, 3704–3712. [Google Scholar]
- FAO. World Livestock 2011 Livestock in Food Security; FAO: Rome, Italy, 2011. [Google Scholar]
- Lóránt, A.; Allen, B. Net-Zero Agriculture in 2050: How to Get There? Report by the Institute for European Environmental Policy, 2019. Available online: https://ieep.eu/uploads/articles/attachments/eeac4853-3629-4793-9e7b-2df5c156afd3/IEEP_NZ2050_Agriculture_report_screen.pdf?v=63718575577 (accessed on 11 November 2019).
- EIP-AGRI Focus Group Reducing Emissions from Cattle Farming, Starting Paper 14 January 2016. 2016. Available online: https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/fg18_starting_paper_2016_en.pdf (accessed on 10 October 2019).
- Weiss, F.; Leip, A. Greenhouse gas emissions from the EU livestock sector: A life cycle assessment carried out with the CAPRI model Agriculture. Agric. Ecosyst. Environ. 2012, 149, 124–134. [Google Scholar] [CrossRef]
Country | GHG Emissions (CO2 Equation) Dairy Cattle | GHG Emissions (CO2 Equation) Total Cattle | Public Agricultural R&D Investments ASTI Expenditures (Share of Value Added) ($ USD) | Population (Million) | Livestock (Number Total Cattle) | Livestock (Number Dairy Cattle) |
---|---|---|---|---|---|---|
Benin | 516.1338 | 1614.8265 | 0.56 | 10.29 | 2,222,000 | 534,300 |
Botswana | 318.78 | 1143.3399 | 2.33 | 2.16 | 1,596,605 | 330,000 |
Burkina Faso | 1255.8 | 6327.5457 | 1.01 | 17.59 | 9,090,700 | 1,300,000 |
Burundi | 111.09 | 573.9914 | 0.5 | 9.89 | 826,062 | 115,000 |
Cabo Verde | 6.5727 | 16.9874 | 0.86 | 0.52 | 22,802 | 6804 |
Central African Rep. | 300.0695 | 2929.6988 | 0.29 | 4.51 | 4,350,000 | 310,631 |
Chad | 712.908 | 5542.94 | 0.09 | 13.57 | 8,157,404 | 738,000 |
Congo, Dem. Rep. | 207.048 | 222.222 | 0.43 | 73.72 | 340,000 | 2800 |
Cote d’Ivoire | 280.14 | 1124.487 | 0.56 | 22.53 | 1,587,000 | 290,000 |
Eswatini | 130.20 | 444.7762 | 0.74 | 1.29 | 618,000 | 134,788 |
Ethiopia | 10994.985 | 40501.1804 | 0.24 | 97.37 | 56,706,389 | 11,381,972 |
Gambia | 54.1424 | 329.6033 | 0.87 | 1.91 | 479,183 | 56,048 |
Ghana | 290.9891 | 1173.5948 | 0.92 | 26.96 | 1,657,000 | 301,231 |
Guinea | 603.75 | 4151.049 | 0.29 | 11.81 | 6,074,000 | 625,000 |
Kenya | 5554.5 | 13690.4584 | 0.78 | 46.02 | 18,247,632 | 5,750,000 |
Lesotho | 131.376 | 394.4666 | 0.73 | 2.14 | 540,133 | 136,000 |
Madagascar | 1787.1 | 7222.1688 | 0.13 | 23.59 | 10,198,800 | 1,850,000 |
Malawi | 106.5034 | 891.9655 | 0.53 | 17.07 | 1,316,799 | 110,252 |
Mauritania | 352.59 | 1319.325 | 0.45 | 4.06 | 1,850,000 | 365,000 |
Mauritius | 4.347 | 5.3502 | 4.44 | 1.26 | 6041 | 4500 |
Namibia | 237.4293 | 1953.9229 | 3.09 | 2.37 | 2,882,489 | 245,786 |
Nigeria | 2299.08 | 13609.0651 | 0.22 | 176.5 | 19,753,249 | 2,380,000 |
Rwanda | 275.31 | 834.519 | 0.76 | 11.35 | 1,144,000 | 285,000 |
Senegal | 610.7651 | 2465.3756 | 1.61 | 14.55 | 3,481,126 | 632,262 |
Sierra Leone | 115.92 | 488.292 | 0.24 | 7.07 | 692,000 | 120,000 |
Togo | 56.028 | 303.0109 | 0.17 | 7.22 | 437,390 | 58,000 |
Uganda | 3381 | 9971.073 | 0.94 | 38.83 | 13,623,000 | 3,500,000 |
Zambia | 289.8 | 2753.835 | 0.51 | 15.62 | 4,085,000 | 300,000 |
Zimbabwe | 898.38 | 3462.2504 | 1.4 | 15.41 | 4,868,357 | 930,000 |
Variable | N | Mean | Std. Dev |
---|---|---|---|
R&D investments ASTI expenditures (share of value added) ($ USD) | 29 | 0.885 | 0.948 |
GHG Emissions (CO2 equation) Cattle Dairy | 29 | 737,501.8 | 3,965,463.0 |
Population (million) | 29 | 23,820 | 36,733 |
Livestock (number cattle dairy) | 29 | 1,130,806 | 2,328,927 |
Treatment Interval | |||||||||
---|---|---|---|---|---|---|---|---|---|
[0.09, 0.24] | [0.29, 0.56] | [0.73, 0.92] | |||||||
Covariate | Mean Difference | Std | T Value | Mean Difference | Std | T Value | Mean Difference | Std | T Value |
Population | 12,724 | 90,755 | 0.140 | −99,062 | 12,457 | −0.795 | 97,987 | 98,338 | −0.996 |
Livestock dairy | −1.5 × 106 | 8.9 × 105 | −1.64 | 1.8 × 106 | 9.2 × 105 | 1.9532 | 2.9 × 105 | 1.0 × 106 | 0.289 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spada, A.; Fiore, M.; Monarca, U.; Faccilongo, N. R&D Expenditure for New Technology in Livestock Farming: Impact on GHG Reduction in Developing Countries. Sustainability 2019, 11, 7129. https://doi.org/10.3390/su11247129
Spada A, Fiore M, Monarca U, Faccilongo N. R&D Expenditure for New Technology in Livestock Farming: Impact on GHG Reduction in Developing Countries. Sustainability. 2019; 11(24):7129. https://doi.org/10.3390/su11247129
Chicago/Turabian StyleSpada, Alessia, Mariantonietta Fiore, Umberto Monarca, and Nicola Faccilongo. 2019. "R&D Expenditure for New Technology in Livestock Farming: Impact on GHG Reduction in Developing Countries" Sustainability 11, no. 24: 7129. https://doi.org/10.3390/su11247129
APA StyleSpada, A., Fiore, M., Monarca, U., & Faccilongo, N. (2019). R&D Expenditure for New Technology in Livestock Farming: Impact on GHG Reduction in Developing Countries. Sustainability, 11(24), 7129. https://doi.org/10.3390/su11247129