From Food to Humans: The Toxicological Effects of Alternaria Mycotoxins in the Liver and Colon
Abstract
1. Introduction
2. Alternaria Mycotoxins Occurrence
| Country | Detection Method | N | Prevalence (%) | Concentration (µg/kg) | Ref | ||
|---|---|---|---|---|---|---|---|
| Mean | Max | ||||||
| Cereals | |||||||
| ALT | Germany | HPLC-MS/MS | 9 | 0 | - | - | [33] |
| HPLC | 267 | 2.6 | - | 197 | [40] | ||
| South Africa | HPLC-MS/MS | 42 | 7.1 | 8.7 | 13 | [30] | |
| AOH | Canada | HPLC-MS/MS | 44 | 9 | - | 8 | [41] |
| China | LC-ESI-MS/MS | 370 | 47 | 12.9 | 74.4 | [29] | |
| Germany | HPLC-MS/MS | 9 | 89 | - | <0.6 | [33] | |
| HPLC | 1064 | 8.1 | 77 | 832 | [40] | ||
| Italy | LC-MS/MS | 74 | 31 | 11 | 121 | [27] | |
| The Netherlands | LC-MS/MS | 14 | 7.1 | - | 5.2 | [42] | |
| Serbia | LC-MS/MS | 92 | 12 | 18.6 | 48.9 | [28] | |
| QuEChERS LC-MS/MS | 20 | 20 | 3.3 | 5.3 | [43] | ||
| Slovenia | LC-MS/MS | 433 | 11 | 155 | 1836 | [44] | |
| South Africa | Micro HPLC-MS/MS | 42 | 2.4 | - | <0.005 | [30] | |
| AME | Canada | HPLC-MS/MS ESI-MRM | 44 | 16 | - | 17 | [41] |
| China | LC-ESI-MS/MS | 370 | 15 | 9.1 | 54.8 | [29] | |
| Germany | HPLC-MS/MS | 9 | 57 | 3.2 | 3.2 | [33] | |
| HPLC | 1064 | 3.1 | 77 | 905 | [40] | ||
| Italy | LC-MS/MS | 74 | 26 | 7 | 48 | [27] | |
| The Netherlands | LC-MS/MS | 14 | 7.1 | - | 3.0 | [42] | |
| Serbia | LC-MS/MS | 92 | 6.5 | 39 | 70.2 | [28] | |
| QuEChERS LC-MS/MS | 20 | 10 | 2.2 | 2.3 | [43] | ||
| Slovenia | LC-MS/MS | 433 | 6 | 148 | 1121 | [44] | |
| South Africa | Micro HPLC-MS/MS | 42 | 7.1 | - | <0.005 | [30] | |
| ATX-I | Germany | HPLC-MS/MS | 9 | 0 | - | - | [33] |
| South Africa | Micro HPLC-MS/MS | 42 | 2.4 | 43 | 43 | [30] | |
| TeA | China | LC-ESI-MS/MS | 370 | 100 | 289 | 3330.7 | [29] |
| Germany | HPLC-MS/MS | 9 | 100 | 140 | 210 | [33] | |
| HPLC | 1064 | 30.2 | - | 4224 | [40] | ||
| Serbia | LC-MS/MS | 92 | 68.5 | 92.4 | 2676 | [28] | |
| Slovenia | LC-MS/MS | 433 | 26 | 170 | 2277 | [44] | |
| TEN | Canada | HPLC-MS/MS ESI-MRM | 44 | 89 | - | 63 | [41] |
| China | LC-ESI-MS/MS | 370 | 77 | 43.8 | 258.6 | [29] | |
| Germany | HPLC-MS/MS | 9 | 100 | 11 | 12 | [33] | |
| The Netherlands | LC-MS/MS | 14 | 100 | 6.0 | 14 | [42] | |
| Serbia | QuEChERS LC-MS/MS | 20 | 0 | - | - | [43] | |
| Slovenia | LC-MS/MS | 433 | 8 | 27 | 116 | [44] | |
| Tomato Products | |||||||
| ALT | Belgium | UPLC-MS/MS | 83 | 46 | 8.27 | 62 | [36] |
| Germany | HPLC-MS/MS | 34 | 0 | - | - | [33] | |
| The Netherlands | LC-MS/MS | 8 | 0 | - | - | [42] | |
| LC-MS/MS | 43 | 0 | - | - | [45] | ||
| AOH | Belgium | UPLC-MS/MS | 83 | 81 | 4.13 | 41.6 | [36] |
| Germany | HPLC-MS/MS | 34 | 71 | 13 | 25 | [33] | |
| The Netherlands | LC-MS/MS | 8 | 50 | 16 | 25 | [42] | |
| LC-MS/MS | 43 | 37 | 4.8 | 26 | [45] | ||
| AME | Belgium | UPLC-MS/MS | 83 | 66 | 1.47 | 6.1 | [36] |
| Germany | HPLC-MS/MS | 34 | 79 | 2.5 | 7.4 | [33] | |
| The Netherlands | LC-MS/MS | 8 | 50 | 3.8 | 7.8 | [42] | |
| LC-MS/MS | 43 | 9 | 1.2 | 5.6 | [45] | ||
| ATX-I | Belgium | UPLC-MS/MS | 83 | 0 | - | - | [36] |
| Germany | HPLC-MS/MS | 34 | 0 | - | - | [33] | |
| TeA | Belgium | UPLC-MS/MS | 83 | 100 | 62.5 | 333.1 | [36] |
| Germany | HPLC-MS/MS | 34 | 91 | 200 | 460 | [33] | |
| The Netherlands | LC-MS/MS | 8 | 100 | 202 | 462 | [42] | |
| LC-MS/MS | 43 | 60 | 63 | 344 | [45] | ||
| TEN | Belgium | UPLC-MS/MS | 83 | 41 | 1.17 | 8.9 | [36] |
| Germany | HPLC-MS/MS | 34 | 26.5 | - | <0.5 | [33] | |
| The Netherlands | LC-MS/MS | 8 | 0 | - | - | [42] | |
| LC-MS/MS | 43 | 0 | - | - | [45] | ||
| Dried Fruits | |||||||
| ALT | The Netherlands | LC-MS/MS | 14 | 0 | - | - | [45] |
| LC-MS/MS | 5 | 0 | - | - | [42] | ||
| AOH | China | UPLC-MS/MS | 220 | 2.3 | 12 | 27.4 | [46] |
| The Netherlands | LC-MS/MS | 14 | 7 | 2.5 | 8.7 | [45] | |
| LC-MS/MS | 5 | 0 | - | - | [42] | ||
| AME | China | UPLC-MS/MS | 220 | 8.2 | 3 | 15 | [46] |
| The Netherlands | LC-MS/MS | 14 | 0 | - | - | [45] | |
| LC-MS/MS | 5 | 0 | - | - | [42] | ||
| TeA | China | UPLC-MS/MS | 220 | 42.7 | 456.5 | 5665.3 | [46] |
| The Netherlands | LC-MS/MS | 14 | 100 | 473 | 1728 | [45] | |
| LC-MS/MS | 5 | 100 | 1043 | 2345 | [42] | ||
| TEN | China | UPLC-MS/MS | 220 | 20.5 | 120.5 | 1032.6 | [46] |
| The Netherlands | LC-MS/MS | 14 | 0 | - | - | [45] | |
| LC-MS/MS | 5 | 0 | - | - | [42] | ||
| Sunflower products | |||||||
| ALT | Germany | HPLC-MS/MS | 11 | 9.1 | - | <2.5 | [33] |
| The Netherlands | LC-MS/MS | 21 | 0 | - | - | [45] | |
| LC-MS/MS | 5 | 0 | - | - | [42] | ||
| AOH | Germany | HPLC-MS/MS | 11 | 54.5 | 27 | 39 | [33] |
| The Netherlands | LC-MS/MS | 21 | 5 | 5.4 | 36 | [45] | |
| LC-MS/MS | 5 | 0 | - | - | [42] | ||
| AME | Germany | HPLC-MS/MS | 11 | 63.6 | 11 | 21 | [33] |
| The Netherlands | LC-MS/MS | 21 | 10 | 1.8 | 17 | [45] | |
| LC-MS/MS | 5 | 0 | - | - | [42] | ||
| ATX-I | Germany | HPLC-MS/MS | 11 | 9.1 | - | <6.9 | [33] |
| TeA | Germany | HPLC-MS/MS | 11 | 100 | 420 | 490 | [33] |
| The Netherlands | LC-MS/MS | 21 | 38 | 240 | 1350 | [45] | |
| LC-MS/MS | 5 | 100 | 223 | 449 | [42] | ||
| TEN | Germany | HPLC-MS/MS | 11 | 90.9 | 110 | 800 | [33] |
| The Netherlands | LC-MS/MS | 21 | 0 | - | - | [45] | |
| LC-MS/MS | 5 | 20 | - | 5 | [42] | ||
| Vegetable Oil | |||||||
| ALT | Germany | HPLC-MS/MS | 19 | 0 | - | - | [33] |
| AOH | Germany | HPLC-MS/MS | 19 | 47.4 | 6 | 6 | [33] |
| AME | Germany | HPLC-MS/MS | 19 | 84.2 | 9.9 | 14 | [33] |
| ATX-I | Germany | HPLC-MS/MS | 19 | 0 | - | - | [33] |
| TeA | Germany | HPLC-MS/MS | 19 | 21.1 | 15 | 15 | [33] |
| TEN | Germany | HPLC-MS/MS | 19 | 47.4 | 11 | 11 | [33] |
| Wine | |||||||
| AOH | Germany | HPLC-MS/MS | 25 | 96 | 2.13 | 7.65 | [47] |
| The Netherlands | LC-MS/MS | 5 | 20 | - | 11 | [42] | |
| AME | Germany | HPLC-MS/MS | 25 | 52 | 1.19 | 1.45 | [47] |
| TeA | Germany | HPLC-MS/MS | 25 | 88 | 10.73 | 60 | [47] |
| The Netherlands | LC-MS/MS | 5 | 60 | 25 | 46 | [42] | |
| TEN | Germany | HPLC-MS/MS | 25 | 40 | 1.17 | 1.47 | [47] |
| Fruit Juices | |||||||
| ALT | Germany | HPLC-MS/MS | 23 | 4.3 | - | <2.5 | [33] |
| AOH | Germany | HPLC-MS/MS | 23 | 56.5 | 3.1 | 16 | [33] |
| HPLC-MS/MS | 78 | 27 | 4.08 | 4.31 | [47] | ||
| AME | Germany | HPLC-MS/MS | 23 | 43.5 | 1.8 | 4.9 | [33] |
| HPLC-MS/MS | 78 | 5 | 1.28 | 1.54 | [47] | ||
| ATX-I | Germany | HPLC-MS/MS | 23 | 0 | - | - | [33] |
| TeA | Germany | HPLC-MS/MS | 23 | 52.2 | 21 | 250 | [33] |
| HPLC-MS/MS | 78 | 63 | 3.67 | 19.2 | [47] | ||
| TEN | Germany | HPLC-MS/MS | 23 | 47.8 | 1 | 1 | [33] |
| HPLC-MS/MS | 78 | 27 | 5.44 | 10.27 | [47] | ||
3. Preventive Measures for Contamination Control
4. Human Exposure to Alternaria Mycotoxins
5. Toxicokinetics Data on Alternaria Mycotoxins
| Mycotoxin | Absorption | Metabolism | Excretion | Ref. | |
|---|---|---|---|---|---|
| Phase I | Phase II | ||||
| AOH | Low systemic absorption | Hydroxylation | Glucuronidation and sulfation | Mainly fecal; minor urinary elimination | [72,73,74,75] |
| AME | Poor absorption | Hydroxylation | Glucuronidation and sulfation | Predominantly Fecal | [73,75,77,78,79,80,81,82] |
| ATX-I | Moderate permeability; detectable in plasma | Not reported | Not reported | Low urinary and fecal recovery | [75,82,83,84] |
| ATX-II | Poor permeability; not detectable in plasma | Reductive de-epoxidation to ATX-I | Glutathione conjugation | Not detected in urine or feces | [82,83,84,85] |
| ALT | Not detectable in plasma; limited absorption | Hydroxylation | Glucuronidation | Low fecal recovery | [75,79,87] |
| TEN | Very limited absorption, not detected in plasma | Hydroxylation | Not reported | Recovered unchanged in feces | [75,88] |
6. Alternaria Mycotoxins Toxicity
6.1. Cytotoxicity
6.2. Genotoxicity
6.2.1. In Vitro Studies
6.2.2. In Vivo Studies
| Mycotoxin | Assay | Cell Model | Time (h) | Concentration Range (μM) | Results | Ref. | |
|---|---|---|---|---|---|---|---|
| AOH | AB | Colon | Caco-2 | 5, 20 | 0.01–40 | No effect | [89,91,97] |
| Caco-2 | 72 | 0–0.05 | No effect | ||||
| Liver | HepG2 | 72 | 0–0.05 | No effect | |||
| HepG2 | - | 48.4–387.3 | EC50 = 108.4 μM | ||||
| FC | Colon | Caco-2 | 48 | 0.4–464.7 | EC50 = 72.5 μM | [95] | |
| Liver | HepG2 | 24 | 0.4–464.7 | EC50 = 45.64 ± 15.7 μM. NOEL = 3.9 μM. LOEL = 5.6 ± 0.2 μM | |||
| FDA | Colon | HCT116 | 24 | 10–200 | IC50 = 65 μM. Hypoploid population goes from 9% (control) to 31%. | [106] | |
| LDH | Colon | HT29 | 1 | 0–50 | No effect | [104] | |
| MTT | Colon | Caco-2 | 24 | 3.125–100 | ↓ Cell Viability ≥ 50 μM. Cytotoxicity reanged from 27–47% | [92,93,94,96,107,108] | |
| Caco-2 | 24, 48, 72 | 1.85–90 | ↓ Cell Viability ≥ 25 μM | ||||
| Caco-2 | 24, 48, 72 | 12.5–100 | ↓ Cell Viability (in 40%) ≥ 75 μM after 24 and 48 h. At 72 h, ≥ 50 μM | ||||
| Caco-2 | 24, 48 | 3.125–100 | ↓ Cell Viability (in 30%) ≥ 50 μM after 48 h. | ||||
| Liver | HepG2 | 24 | 0.01–100 | ↓ Cell Viability at 100 μM | |||
| HepG2 | 24 | 3.2–72 | ↓ Cell Viability ≥ 12.8 μM | ||||
| HepaRG | 24 | 0.01–100 | ↓ Cell Viability at 100 μM | ||||
| PC | Colon | Caco-2 | 24 | 3.125–100 | ↓ Protein content ≥ 25 μM ⟹ ↓ Cell Viability (in 25–32%) | [92,98,103] | |
| HT29 | 24 | 0.1–50 | ↓ Protein content at 50 μM (in 15%) | ||||
| HT29 | 24 | 1–100 | ↓ Protein content ≥ 50 μM | ||||
| WST-1 | Colon | HT29 | 24 | 1–100 | ↓ Cell Viability ≥ 25 μM | [98,103] | |
| HT29 | 3 | 0.1–50 | No effect | ||||
| AME | AB | Colon | Caco-2 | 72 | 0–0.05 | No effect | [91,97] |
| Liver | HepG2 | 72 | 0–0.05 | No effect | |||
| HepG2 | - | 45.9–367.3 | EC50 = 36 μM | ||||
| FC | Colon | Caco-2 | 48 | 0.4–440.8 | EC50 = 54.49 ± 30.54 μM | [95] | |
| Liver | HepG2 | 24 | 0.4–440.8 | EC50 = 18 ± 1.84 μM NOEL = 3.54 μM LOEL = 5.28 ± 1.17 μM | |||
| FDA | Colon | HCEC-1CT | 24 | 10–200 | IC50 = 120 μM | [109] | |
| LDH | Colon | HT29 | 1 | 0–50 | No effect. | [104] | |
| MTT | Colon | Caco-2 | 24, 48 | 3.125–100 | ↓ Cell Viability ≥ 25 μM. Maximum inhibition was 30% | [94,96] | |
| Liver | HepG2 | 24 | 0.01–100 | ↓ Cell Viability ≥ 10 μM. ~70% cytotoxicity at 100 μM | |||
| HepaRG | 24 | 0.01–100 | No effect | ||||
| ALT | SRB | Colon | HCT116 | 72 | - | IC50 = 3.13 μM | [102] |
| ATX-I | AB | Liver | HepG2 | - | 35.5–283.8 | EC50 = 96.5 μM | [97] |
| ATX-II | AB | Liver | HepG2 | - | 35.7–283.5 | EC50 = 97.1 μM | [97] |
| SRB | Colon | HT29 | 24 | 0.01–50 | ↓ Cell Viability ≥ 0.2 μM, dose-dependent | [98,99] | |
| HT29 | 24, 72 | 0.01–10 | ↓ Cell Viability ≥ 0.2 μM (24 h) and ≥ 0.01 μM (72 h). IC50 = 0.8 μM (72 h). | ||||
| WST-1 | Colon | HT29 | 24 | 0.1–25 | EC50 = 16.5 μM | [100] | |
| HCEC-1CT | 24 | 0.1–25 | EC50 = 6.9 μM | ||||
| Liver | HepG2 | 24 | 0.1–25 | EC50 = 7.3 μM | |||
| TeA | AB | Liver | HepG2 | - | 63.4–507.0 | EC50 = 146 μM | [97] |
| FC | Colon | Caco-2 | 48 | 0.5–608.4 | EC50 = 356 ± 87.8 μM | [95] | |
| Liver | HepG2 | 24 | 0.5–608.4 | EC50 = 146 ± 152.3 μM. NOEL = 15.57 ± 3.09 μM LOEL = 18.71 ± 0.56 μM | |||
| MTT | Liver | HepG2 | 24 | 0.01–100 | ↓ Cell Viability (60%) at 100 μM | [96] | |
| HepaRG | 24 | 0.01–100 | No effect | ||||
| TEN | AB | Colon | Caco-2 | 72 | 0–0.05 | No effect | [91] |
| Liver | HepG2 | 72 | 0–0.05 | No effect | |||
| MTT | Liver | HepG2 | 24 | 0.01–100 | No effect | [96] | |
| HepaRG | 24 | 0.01–100 | No effect | ||||
| Mycotoxin | Assay | Cell Model | Time (h) | Concentration Range (uM) | Results | Ref. | |
|---|---|---|---|---|---|---|---|
| AOH | Alkaline unwinding | Colon | Caco-2 | 1.5 | 10 | Positive | [77,83] |
| HT29 | 1 | 1–25 | Positive ≥ 6.25 μM | ||||
| HT29 | 24 | 5–25 | Negative | ||||
| Liver | HepG2 | 1 | 12.5–50 | Positive ≥ 12.5 μM | |||
| HepG2 | 1.5 | 10 | Positive | ||||
| Comet | Colon | Caco-2 | 24 | 15–60 | Positive ≥ 15 μM. | [90,98,99,103,104,113] | |
| HT29 | 1 | 0.1–50 | Positive ≥ 10 μM.; no difference ± Fpg | ||||
| HT29 | 1 | 0.1–50 | Positive ≥ 0.5 μM; no difference ± Fpg | ||||
| HT29 | 1 | 50 | Positive | ||||
| HT29 | 3 | 50 | Negative | ||||
| γH2AX | Liver | HepG2 | 4 | 0.1–100 | Positive without S9, negative with S9. | [96] | |
| AME | Alkaline unwinding | Colon | HT29 | 1 | 1–25 | Positive ≥ 6.25 μM | [77] |
| HT29 | 24 | 5–25 | Negative | ||||
| Liver | HepG2 | 1 | 6.25–50 | Positive ≥ 6.25 μM | |||
| HepG2 | 24 | 5–25 | Positive ≥ 25 μM | ||||
| Comet | Colon | HT29 | 1 | 1–50 | Positive ≥ 10 μM.; no difference ± Fpg | [98,104] | |
| HT29 | 3 | 0.1–50 | Negative | ||||
| γH2AX | Liver | HepG2 | 4 | 0.1–100 | Positive without S9 | [96] | |
| ATX-I | Alkaline unwinding | Colon | Caco-2 | 1.5 | 10 | Positive | [83] |
| Liver | HepG2 | 1.5 | 10 | Positive | |||
| ATX-II | Alkaline unwinding | Colon | Caco-2 | 1.5 | 0.25–1 | Positive ≥ 0.25 μM | [83] |
| Liver | HepG2 | 1.5 | 0.25–1 | Positive ≥ 0.25 μM | |||
| Comet | Colon | HT29 | 1 | 1 | Positive | [90,99,103] | |
| HT29 | 1 | 0.01–1 | Positive ≥ 0.1 μM; earlier response with Fpg (≥0.05 μM) | ||||
| HT29 | 1 | 0.01–1 | Positive ≥ 0.1 μM; earlier response with Fpg (≥0.05 μM) | ||||
| HT29 | 24 | 0.01–1 | Positive ≥ 0.1 μM; earlier response with Fpg (≥0.05 μM) | ||||
| TeA | Comet | Colon | HT29 | 1 | 0.2–200 | Negative | [99] |
| γH2AX | Liver | HepG2 | 4 | 0.1–100 | Negative with and without S9 | [96] | |
6.3. Mechanistic Insights in Intestinal and Liver Models
7. Co-Exposures, Mixtures, and Real-World Relevance
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALT | Altenuene |
| AME | Alternariol monomethyl ether |
| AOH | Alternariol |
| AT | Alternaria Toxin |
| ATX | Altertoxin |
| TeA | Tenuazonic acid |
| TEN | Tentoxin |
| AU | Alkaline Unwinding |
| SRB | Sulforhodamine B |
| FC | Flow cytometry |
| PC | Protein Content |
| GIT | Gastrointestinal tract |
References
- Deng, Y.; Deng, Q.; Wang, Y.; Sun, L.; Wang, R.; Ye, L.; Liao, J.; Gooneratne, R. Tolerance and Bio-Accumulation of Aflatoxin B1 in Invertebrate Litopenaeus Vannamei and Vertebrate Oreochromis Niloticus. Aquaculture 2020, 524, 735055. [Google Scholar] [CrossRef]
- Juan-García, A.; Pakkanen, H.; Juan, C.; Vehniäinen, E.-R. Alterations in Daphnia Magna Exposed to Enniatin B and Beauvericin Provide Additional Value as Environmental Indicators. Ecotoxicol. Environ. Saf. 2023, 249, 114427. [Google Scholar] [CrossRef]
- Magan, N.; Hope, R.; Cairns, V.; Aldred, D. Post-Harvest Fungal Ecology: Impact of Fungal Growth and Mycotoxin Accumulation in Stored Grain. Eur. J. Plant Pathol. 2003, 109, 723–730. [Google Scholar] [CrossRef]
- Paterson, R.R.M.; Lima, N. How Will Climate Change Affect Mycotoxins in Food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef]
- Murphy, P.A.; Hendrich, S.; Landgren, C.; Bryant, C.M. Food Mycotoxins: An Update. J. Food Sci. 2006, 71, R51–R65. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Ceremuga, M.; Stela, M.; Saluk-Bijak, J.; Siadkowski, A.; Bijak, M. Molecular Aspects of Mycotoxins—A Serious Problem for Human Health. Int. J. Mol. Sci. 2020, 21, 8187. [Google Scholar] [CrossRef]
- Pinotti, L.; Ottoboni, M.; Giromini, C.; Dell’Orto, V.; Cheli, F. Mycotoxin Contamination in the EU Feed Supply Chain: A Focus on Cereal Byproducts. Toxins 2016, 8, 45. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, Toxicology, and Exposure Assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Viegas, S.; Assunção, R.; Martins, C.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Ribeiro, E.; Viegas, C. Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches. Toxins 2019, 11, 78. [Google Scholar] [CrossRef]
- Viegas, S.; Viegas, C.; Martins, C.; Assunção, R. Occupational Exposure to Mycotoxins—Different Sampling Strategies Telling a Common Story Regarding Occupational Studies Performed in Portugal (2012–2020). Toxins 2020, 12, 513. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of Alternaria Toxins in Feed and Food. EFSA J. 2011, 9, 2407. [Google Scholar] [CrossRef]
- Thomma, B.P.H.J. Alternaria spp.: From General Saprophyte to Specific Parasite. Mol. Plant Pathol. 2003, 4, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Patriarca, A. Alternaria in Food Products. Curr. Opin. Food Sci. 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Ostry, V. Alternaria Mycotoxins: An Overview of Chemical Characterization, Producers, Toxicity, Analysis and Occurrence in Foodstuffs. World Mycotoxin J. 2008, 1, 175–188. [Google Scholar] [CrossRef]
- Habauzit, D.; Lemée, P.; Fessard, V. MycoCentral: An Innovative Database to Compile Information on Mycotoxins and Facilitate Hazard Prediction. Food Control 2024, 159, 110273. [Google Scholar] [CrossRef]
- Leite, M.; Freitas, A.; Barbosa, J.; Ramos, F. Mycotoxins in Raw Bovine Milk: UHPLC-QTrap-MS/MS Method as a Biosafety Control Tool. Toxins 2023, 15, 173. [Google Scholar] [CrossRef]
- Emmanuel, K.T.; Els, V.P.; Bart, H.; Evelyne, D.; Els, V.H.; Els, D. Carry-over of Some Fusarium Mycotoxins in Tissues and Eggs of Chickens Fed Experimentally Mycotoxin-Contaminated Diets. Food Chem. Toxicol. 2020, 145, 111715. [Google Scholar] [CrossRef]
- González-Jartín, J.M.; Rodríguez-Cañás, I.; Alvariño, R.; Alfonso, A.; Sainz, M.J.; Vieytes, M.R.; Gomes, A.; Ramos, I.; Botana, L.M. Occurrence of Mycotoxins in Total Mixed Ration of Dairy Farms in Portugal and Carry-over to Milk. Food Control 2024, 165, 110682. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT—Countries by Commodity Imports. Available online: https://www.fao.org/faostat/en/#rankings/countries_by_commodity_imports (accessed on 13 November 2025).
- European Food Safety Authority; Arcella, D.; Eskola, M.; Gómez Ruiz, J.A. Dietary Exposure Assessment to Alternaria Toxins in the European Population. EFSA J. 2016, 14, e04654. [Google Scholar] [CrossRef]
- Storm, I.; Rasmussen, R.; Rasmussen, P. Occurrence of Pre- and Post-Harvest Mycotoxins and Other Secondary Metabolites in Danish Maize Silage. Toxins 2014, 6, 2256–2269. [Google Scholar] [CrossRef]
- Borsos, E.; Varga, E.; Aichinger, G.; Marko, D. Unraveling Interspecies Differences in the Phase I Hepatic Metabolism of Alternariol and Alternariol Monomethyl Ether: Closing Data Gaps for a Comprehensive Risk Assessment. Chem. Res. Toxicol. 2024, 37, 1356–1363. [Google Scholar] [CrossRef]
- Crudo, F.; Varga, E.; Aichinger, G.; Galaverna, G.; Marko, D.; Dall’Asta, C.; Dellafiora, L. Co-Occurrence and Combinatory Effects of Alternaria Mycotoxins and Other Xenobiotics of Food Origin: Current Scenario and Future Perspectives. Toxins 2019, 11, 640. [Google Scholar] [CrossRef]
- Terminiello, L.; Patriarca, A.; Pose, G.; Fernandez Pinto, V. Occurrence of Alternariol, Alternariol Monomethyl Ether and Tenuazonic Acid in Argentinean Tomato Puree. Mycotoxin Res. 2006, 22, 236–240. [Google Scholar] [CrossRef]
- Juan, C.; Covarelli, L.; Beccari, G.; Colasante, V.; Mañes, J. Simultaneous Analysis of Twenty-Six Mycotoxins in Durum Wheat Grain from Italy. Food Control 2017, 62, 322–329. [Google Scholar] [CrossRef]
- Hajnal, E.J.; Orčić, D.; Torbica, A.; Mastilović, J.; Skrinjar, M.M. Alternaria Toxins in Wheat from the Autonomous Province of Vojvodina, Serbia: A Preliminary Survey. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 361–370. [Google Scholar] [CrossRef]
- Xu, W.; Han, X.; Li, F.; Zhang, L. Natural Occurrence of Alternaria Toxins in the 2015 Wheat from Anhui Province, China. Toxins 2016, 8, 308. [Google Scholar] [CrossRef]
- Hickert, S.; Gerding, J.; Ncube, E.; Hübner, F.; Flett, B.; Cramer, B.; Humpf, H.-U. A New Approach Using Micro HPLC-MS/MS for Multi-Mycotoxin Analysis in Maize Samples. Mycotoxin Res. 2015, 31, 109–115. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 15 October 2025).
- Han, X.; Xu, W.; Wang, L.; Zhang, R.; Ye, J.; Zhang, J.; Xu, J.; Wu, Y. Natural Occurrence of Alternaria Toxins in Citrus-Based Products Collected from China in 2021. Toxins 2023, 15, 325. [Google Scholar] [CrossRef] [PubMed]
- Hickert, S.; Bergmann, M.; Ersen, S.; Cramer, B.; Humpf, H.-U. Survey of Alternaria Toxin Contamination in Food from the German Market, Using a Rapid HPLC-MS/MS Approach. Mycotoxin Res. 2016, 32, 7–18. [Google Scholar] [CrossRef]
- Scheibenzuber, S.; Hoffmann, T.; Effenberger, I.; Schwab, W.; Asam, S.; Rychlik, M. Enzymatic Synthesis of Modified Alternaria Mycotoxins Using a Whole-Cell Biotransformation System. Toxins 2020, 12, 264. [Google Scholar] [CrossRef]
- Puntscher, H.; Kütt, M.-L.; Skrinjar, P.; Mikula, H.; Podlech, J.; Fröhlich, J.; Marko, D.; Warth, B. Tracking Emerging Mycotoxins in Food: Development of an LC-MS/MS Method for Free and Modified Alternaria Toxins. Anal. Bioanal. Chem. 2018, 410, 4481–4494. [Google Scholar] [CrossRef]
- Walravens, J.; Mikula, H.; Rychlik, M.; Asam, S.; Devos, T.; Ediage, E.N.; Mavungu, J.D.D.; Jacxsens, L.; Landschoot, A.V.; Vanhaecke, L.; et al. Validated UPLC-MS/MS Methods To Quantitate Free and Conjugated Alternaria Toxins in Commercially Available Tomato Products and Fruit and Vegetable Juices in Belgium. J. Agric. Food Chem. 2016, 64, 5101–5109. [Google Scholar] [CrossRef] [PubMed]
- Pavicich, M.A.; De Boevre, M.; Vidal, A.; Iturmendi, F.; Mikula, H.; Warth, B.; Marko, D.; De Saeger, S.; Patriarca, A. Fate of Free and Modified Alternaria Mycotoxins during the Production of Apple Concentrates. Food Control 2020, 118, 107388. [Google Scholar] [CrossRef]
- Woo, S.Y.; Lee, S.Y.; Jeong, T.K.; Park, S.M.; Auh, J.H.; Shin, H.-S.; Chun, H.S. Natural Occurrence of Alternaria Toxins in Agricultural Products and Processed Foods Marketed in South Korea by LC–MS/MS. Toxins 2022, 14, 824. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation (EU) 2022/553 of 5 April 2022 on Monitoring the Presence of Al-ternaria Toxins in Food. Off. J. Eur. Communities 2022, 107, 90. [Google Scholar]
- Müller, M.E.H.; Korn, U. Alternaria Mycotoxins in Wheat—A 10 Years Survey in the Northeast of Germany. Food Control 2013, 34, 191–197. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Blagden, R.; Chan, J.; Gaba, D.; Mckendry, T.; Pleskach, K.; Roscoe, M. Fusarium and Alternaria Mycotoxins Present in Canadian Wheat and Durum Harvest Samples. Can. J. Plant Pathol. 2019, 41, 403–414. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.J.; de Nijs, M. Occurrence of Alternaria Toxins in Food Products in The Netherlands. Food Control 2016, 60, 196–204. [Google Scholar] [CrossRef]
- Puvača, N.; Avantaggiato, G.; Merkuri, J.; Vuković, G.; Bursić, V.; Cara, M. Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method. Toxins 2022, 14, 791. [Google Scholar] [CrossRef] [PubMed]
- Babič, J.; Tavčar-Kalcher, G.; Celar, F.; Kos, K.; Knific, T.; Jakovac-Strajn, B. Occurrence of Alternaria and Other Toxins in Cereal Grains Intended for Animal Feeding Collected in Slovenia: A Three-Year Study. Toxins 2021, 13, 304. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; Mol, H.; Spanjer, M.; de Stoppelaar, J.; Pfeiffer, E.; de Nijs, M. Alternaria Toxins and Conjugates in Selected Foods in The Netherlands. Food Control 2016, 69, 153–159. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Y.; Jiang, D.; Feng, X.; Li, J.; Wang, M. Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China. Toxins 2017, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Zwickel, T.; Klaffke, H.; Richards, K.; Rychlik, M. Development of a High Performance Liquid Chromatography Tandem Mass Spectrometry Based Analysis for the Simultaneous Quantification of Various Alternaria Toxins in Wine, Vegetable Juices and Fruit Juices. J. Chromatogr. A 2016, 1455, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.R.; Korzeniowska, M.; Guiné, R.P.F. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies—A Revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Li, J. Updating Techniques on Controlling Mycotoxins—A Review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Kayitesi, E.; Adebo, O.A.; Changwa, R.; Njobeh, P.B. Food Fermentation and Mycotoxin Detoxification: An African Perspective. Food Control 2019, 106, 106731. [Google Scholar] [CrossRef]
- Alberts, J.F.; Lilly, M.; Rheeder, J.P.; Burger, H.-M.; Shephard, G.S.; Gelderblom, W.C.A. Technological and Community-Based Methods to Reduce Mycotoxin Exposure. Food Control 2017, 73, 101–109. [Google Scholar] [CrossRef]
- Daichi, M.B.; Masiello, M.; Haidukowski, M.; De Girolamo, A.; Moretti, A.; Bencheikh, A.; Rouag, N.; Somma, S. Assessing Alternaria Species and Related Mycotoxin Contamination in Wheat in Algeria: A Food Safety Risk. Toxins 2025, 17, 309. [Google Scholar] [CrossRef]
- Mónaco, C.; Sisterna, M.; Perelló, A.; Dal Bello, G. Preliminary Studies on Biological Control of the Blackpoint Complex of Wheat in Argentina. World J. Microbiol. Biotechnol. 2004, 20, 285–290. [Google Scholar] [CrossRef]
- Saleh, I.; Zeidan, R.; Abu-Dieyeh, M. The Characteristics, Occurrence, and Toxicological Effects of Alternariol: A Mycotoxin. Arch. Toxicol. 2024, 98, 1659–1683. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Post-Harvest Control Strategies: Minimizing Mycotoxins in the Food Chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Niu, H.; Zhang, L.; Xiang, Q.; Zong, W. Alternaria Mycotoxin Degradation and Quality Evaluation of Jujube Juice by Cold Plasma Treatment. Food Control 2022, 137, 108926. [Google Scholar] [CrossRef]
- Li, Y.; Shao, Y.; Zhu, Y.; Chen, A.; Qu, J.; Gao, Y.; Lu, S.; Luo, P.; Mao, X. Temperature-Dependent Mycotoxins Production Investigation in Alternaria Infected Cherry by Ultra-High Performance Liquid Chromatography and Orbitrap High Resolution Mass Spectrometry. Int. J. Food Microbiol. 2023, 388, 110070. [Google Scholar] [CrossRef] [PubMed]
- Hamad, G.M.; Mehany, T.; Simal-Gandara, J.; Abou-Alella, S.; Esua, O.J.; Abdel-Wahhab, M.A.; Hafez, E.E. A Review of Recent Innovative Strategies for Controlling Mycotoxins in Foods. Food Control 2023, 144, 109350. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Hadidi, M.; Forough, M.; Nafchi, A.M.; Mousavi Khaneghah, A. The Control of Fungi and Mycotoxins by Food Active Packaging: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 6393–6411. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Babič, J.; Pezo, L.; Banjac, V.; Filipčev, B.; Miljanić, J.; Kos, J.; Jakovac-Strajn, B. Reduction of Alternaria Toxins via the Extrusion Processing of Whole-Grain Red Sorghum Flour. Foods 2024, 13, 255. [Google Scholar] [CrossRef] [PubMed]
- Janić-Hajnal, E.; Kos, J.; Orčić, D. Stability of Alternaria Toxins during Bread-Making Process. Food Feed Res. 2019, 46, 73–81. [Google Scholar] [CrossRef]
- Bretträger, M.; Scheibenzuber, S.; Asam, S.; Rychlik, M.; Gastl, M.; Becker, T. Evolution of Alternaria Toxins during the Brewing Process and the Usability of Optical Sorting Methods to Reduce Mycotoxin Concentrations in Beer. Eur. Food Res. Technol. 2023, 249, 1613–1626. [Google Scholar] [CrossRef]
- Qin, Q.; Fan, Y.; Jia, Q.; Duan, S.; Liu, F.; Jia, B.; Wang, G.; Guo, W.; Wang, C. The Potential of Alternaria Toxins Production by A. Alternata in Processing Tomatoes. Toxins 2022, 14, 827. [Google Scholar] [CrossRef]
- Azam, M.S.; Ahmed, S.; Islam, M.N.; Maitra, P.; Islam, M.M.; Yu, D. Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins 2021, 13, 323. [Google Scholar] [CrossRef]
- Kroes, R.; Renwick, A.G.; Cheeseman, M.; Kleiner, J.; Mangelsdorf, I.; Piersma, A.; Schilter, B.; Schlatter, J.; Van Schothorst, F.; Vos, J.G.; et al. Structure-Based Thresholds of Toxicological Concern (TTC): Guidance for Application to Substances Present at Low Levels in the Diet. Food Chem. Toxicol. 2004, 42, 65–83. [Google Scholar] [CrossRef]
- Zhao, K.; Shao, B.; Yang, D.; Li, F.; Zhu, J. Natural Occurrence of Alternaria Toxins in Wheat-Based Products and Their Dietary Exposure in China. PLoS ONE 2015, 10, e0132019. [Google Scholar] [CrossRef]
- Escrivá, L.; Oueslati, S.; Font, G.; Manyes, L. Alternaria Mycotoxins in Food and Feed: An Overview. J. Food Qual. 2017, 2017, 1569748. [Google Scholar] [CrossRef]
- Mujahid, C.; Savoy, M.-C.; Baslé, Q.; Woo, P.M.; Ee, E.C.Y.; Mottier, P.; Bessaire, T. Levels of Alternaria Toxins in Selected Food Commodities Including Green Coffee. Toxins 2020, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Gotthardt, M.; Asam, S.; Gunkel, K.; Moghaddam, A.F.; Baumann, E.; Kietz, R.; Rychlik, M. Quantitation of Six Alternaria Toxins in Infant Foods Applying Stable Isotope Labeled Standards. Front. Microbiol. 2019, 10, 109. [Google Scholar] [CrossRef]
- Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Asam, S.; Habler, K.; Rychlik, M. Determination of Tenuazonic Acid in Human Urine by Means of a Stable Isotope Dilution Assay. Anal. Bioanal. Chem. 2013, 405, 4149–4158. [Google Scholar] [CrossRef]
- Schuchardt, S.; Ziemann, C.; Hansen, T. Combined Toxicokinetic and in Vivo Genotoxicity Study on Alternaria Toxins. EFSA Support. Publ. 2014, 11, 679E. [Google Scholar] [CrossRef]
- Burkhardt, B.; Pfeiffer, E.; Metzler, M. Absorption and Metabolism of the Mycotoxins Alternariol and Alternariol-9-Methyl Ether in Caco-2 Cells In Vitro. Mycotoxin Res. 2009, 25, 149–157. [Google Scholar] [CrossRef]
- Lemke, A.; Burkhardt, B.; Bunzel, D.; Pfeiffer, E.; Metzler, M.; Huch, M.; Kulling, S.E.; Franz, C.M.A.P. Alternaria Toxins of the Alternariol Type Are Not Metabolised by Human Faecal Microbiota. WMJ 2016, 9, 41–50. [Google Scholar] [CrossRef]
- Puntscher, H.; Hankele, S.; Tillmann, K.; Attakpah, E.; Braun, D.; Kütt, M.-L.; Favero, G.D.; Aichinger, G.; Pahlke, G.; Höger, H.; et al. First Insights into Alternaria Multi-Toxin in Vivo Metabolism. Toxicol. Lett. 2019, 301, 168–178. [Google Scholar] [CrossRef]
- Den Hollander, D.; De Baere, S.; Holvoet, C.; Devreese, M.; Antonissen, G.; Martens, A.; Demeyere, K.; Audenaert, K.; Meyer, E.; Croubels, S. Absolute Oral Bioavailability, Quantitative Toxicokinetics and Metabolite Profiling of Alternariol and Alternariol Monomethyl Ether in Pigs. Arch. Toxicol. 2025, 99, 2801–2817. [Google Scholar] [CrossRef]
- Pfeiffer, E.-F.; Eschbach, S.; Metzler, M. Alternaria Toxins: DNA Strand-Breaking Activity in Mammalian Cells-in Vitro. Mycotoxin Res. 2007, 23, 152–157. [Google Scholar] [CrossRef]
- Burkhardt, B.; Wittenauer, J.; Pfeiffer, E.; Schauer, U.M.D.; Metzler, M. Oxidative Metabolism of the Mycotoxins Alternariol and Alternariol-9-methyl Ether in Precision-cut Rat Liver Slices in Vitro. Mol. Nutr. Food Res. 2011, 55, 1079–1086. [Google Scholar] [CrossRef]
- Pfeiffer, E.; Burkhardt, B.; Altemöller, M.; Podlech, J.; Metzler, M. Activities of Human Recombinant Cytochrome P450 Isoforms and Human Hepatic Microsomes for the Hydroxylation of Alternaria Toxins. Mycotoxin Res. 2008, 24, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, E.; Schmit, C.; Burkhardt, B.; Altemöller, M.; Podlech, J.; Metzler, M. Glucuronidation of the Mycotoxins Alternariol and Alternariol-9-Methyl Ether in Vitro: Chemical Structures of Glucuronides and Activities of Human UDP-Glucuronosyltransferase Isoforms. Mycotoxin Res. 2009, 25, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Pollock, G.A.; DiSabatino, C.E.; Heimsch, R.C.; Coulombe, R.A. The Distribution, Elimination, and Metabolism of14 C-alternariol Monomethyl Ether. J. Environ. Sci. Health Part B 1982, 17, 109–124. [Google Scholar] [CrossRef]
- Puntscher, H.; Aichinger, G.; Grabher, S.; Attakpah, E.; Krüger, F.; Tillmann, K.; Motschnig, T.; Hohenbichler, J.; Braun, D.; Plasenzotti, R.; et al. Bioavailability, Metabolism, and Excretion of a Complex Alternaria Culture Extract versus Altertoxin II: A Comparative Study in Rats. Arch. Toxicol. 2019, 93, 3153–3167. [Google Scholar] [CrossRef]
- Fleck, S.C.; Pfeiffer, E.; Podlech, J.; Metzler, M. Epoxide Reduction to an Alcohol: A Novel Metabolic Pathway for Perylene Quinone-Type Alternaria Mycotoxins in Mammalian Cells. Chem. Res. Toxicol. 2014, 27, 247–253. [Google Scholar] [CrossRef]
- Fleck, S.C.; Pfeiffer, E.; Metzler, M. Permeation and Metabolism of Alternaria Mycotoxins with Perylene Quinone Structure in Cultured Caco-2 Cells. Mycotoxin Res. 2014, 30, 17–23. [Google Scholar] [CrossRef]
- Jarolim, K.; Favero, G.D.; Pahlke, G.; Dostal, V.; Zimmermann, K.; Heiss, E.; Ellmer, D.; Stark, T.D.; Hofmann, T.; Marko, D. Activation of the Nrf2-ARE Pathway by the Alternaria Alternata Mycotoxins Altertoxin I and II. Arch. Toxicol. 2016, 91, 203–216. [Google Scholar] [CrossRef]
- Peach, J.T.; Puntscher, H.; Höger, H.; Marko, D.; Warth, B. Rats Exposed to Alternaria Toxins in Vivo Exhibit Altered Liver Activity Highlighted by Disruptions in Riboflavin and Acylcarnitine Metabolism. Arch. Toxicol. 2024, 98, 3477–3489. [Google Scholar] [CrossRef]
- Pfeiffer, E.; Herrmann, C.; Altemöller, M.; Podlech, J.; Metzler, M. Oxidative In Vitro Metabolism of the Alternaria Toxins Altenuene and Isoaltenuene. Mol. Nutr. Food Res. 2009, 53, 452–459. [Google Scholar] [CrossRef]
- Perrin, L.; Loiseau, N.; André, F.; Delaforge, M. Metabolism of N-Methyl-amide by Cytochrome P450s: Formation and Characterization of Highly Stable Carbinol-amide Intermediate. FEBS J. 2011, 278, 2167–2178. [Google Scholar] [CrossRef]
- Schmutz, C.; Cenk, E.; Marko, D. The Alternaria Mycotoxin Alternariol Triggers the Immune Response of IL-1β-stimulated, Differentiated Caco-2 Cells. Mol. Nutr. Food Res. 2019, 63, 1900341. [Google Scholar] [CrossRef] [PubMed]
- Tiessen, C.; Ellmer, D.; Mikula, H.; Pahlke, G.; Warth, B.; Gehrke, H.; Zimmermann, K.; Heiss, E.; Fröhlich, J.; Marko, D. Impact of Phase I Metabolism on Uptake, Oxidative Stress and Genotoxicity of the Emerging Mycotoxin Alternariol and Its Monomethyl Ether in Esophageal Cells. Arch. Toxicol. 2016, 91, 1213–1226. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.; Viktorova, J.; Augustynkova, K.; Jelenova, N.; Dobiasova, S.; Rehorova, K.; Fenclova, M.; Stranska-Zachariasova, M.; Vitek, L.; Hajslova, J.; et al. In Silico and In Vitro Studies of Mycotoxins and Their Cocktails; Their Toxicity and Its Mitigation by Silibinin Pre-Treatment. Toxins 2020, 12, 148. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Fernández-Blanco, C.; Sagratini, G.; Font, G.; Ruiz, M.-J. Effects of Soyasaponin I and Soyasaponins-Rich Extract on the Alternariol-Induced Cytotoxicity on Caco-2 Cells. Food Chem. Toxicol. 2015, 77, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Chiesi, C.; Fernandez-Blanco, C.; Cossignani, L.; Font, G.; Ruiz, M.J. Alternariol-Induced Cytotoxicity in Caco-2 Cells. Protective Effect of the Phenolic Fraction from Virgin Olive Oil. Toxicon 2015, 93, 103–111. [Google Scholar] [CrossRef]
- Fernández-Blanco, C.; Font, G.; Ruiz, M.-J. Role of Quercetin on Caco-2 Cells against Cytotoxic Effects of Alternariol and Alternariol Monomethyl Ether. Food Chem. Toxicol. 2016, 89, 60–66. [Google Scholar] [CrossRef]
- den Hollander, D.; Holvoet, C.; Demeyere, K.; De Zutter, N.; Audenaert, K.; Meyer, E.; Croubels, S. Cytotoxic Effects of Alternariol, Alternariol Monomethyl-Ether, and Tenuazonic Acid and Their Relevant Combined Mixtures on Human Enterocytes and Hepatocytes. Front. Microbiol. 2022, 13, 849243. [Google Scholar] [CrossRef] [PubMed]
- Hessel-Pras, S.; Kieshauer, J.; Roenn, G.; Luckert, C.; Braeuning, A.; Lampen, A. In Vitro Characterization of Hepatic Toxicity of Alternaria Toxins. Mycotoxin Res. 2019, 35, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.M.; Abdel-Razek, A.S.; Soliman, H.S.M.; Ponomareva, L.V.; Thorson, J.S.; Shaaban, K.A.; Shaaban, M. Diverse Polyketides from the Marine Endophytic Alternaria Sp. LV52: Structure Determination and Cytotoxic Activities. Biotechnol. Rep. 2022, 33, e00628. [Google Scholar] [CrossRef]
- Tiessen, C.; Gehrke, H.; Kropat, C.; Schwarz, C.; Bächler, S.; Fehr, M.; Pahlke, G.; Marko, D. Role of Topoisomerase Inhibition and DNA Repair Mechanisms in the Genotoxicity of Alternariol and Altertoxin-II. World Mycotoxin J. 2013, 6, 233–244. [Google Scholar] [CrossRef]
- Schwarz, C.; Kreutzer, M.; Marko, D. Minor Contribution of Alternariol, Alternariol Monomethyl Ether and Tenuazonic Acid to the Genotoxic Properties of Extracts from Alternaria Alternata Infested Rice. Toxicol. Lett. 2012, 214, 46–52. [Google Scholar] [CrossRef]
- Vejdovszky, K.; Sack, M.; Jarolim, K.; Aichinger, G.; Somoza, M.M.; Marko, D. In Vitro Combinatory Effects of the Alternaria Mycotoxins Alternariol and Altertoxin II and Potentially Involved miRNAs. Toxicol. Lett. 2017, 267, 45–52. [Google Scholar] [CrossRef]
- Del Favero, G.; Zaharescu, R.; Marko, D. Functional Impairment Triggered by Altertoxin II (ATXII) in Intestinal Cells in Vitro: Cross-Talk between Cytotoxicity and Mechanotransduction. Arch. Toxicol. 2018, 92, 3535–3547. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Q.; Gao, Y.-Q.; Tang, J.-J.; Zhang, A.-L.; Gao, J.-M. Secondary Metabolites from the Endophytic Botryosphaeria Dothidea of Melia Azedarach and Their Antifungal, Antibacterial, Antioxidant, and Cytotoxic Activities. J. Agric. Food Chem. 2014, 62, 3584–3590. [Google Scholar] [CrossRef]
- Aichinger, G.; Puntscher, H.; Beisl, J.; Kütt, M.-L.; Warth, B.; Marko, D. Delphinidin Protects Colon Carcinoma Cells against the Genotoxic Effects of the Mycotoxin Altertoxin II. Toxicol. Lett. 2018, 284, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Fehr, M.; Pahlke, G.; Fritz, J.; Christensen, M.O.; Boege, F.; Altemöller, M.; Podlech, J.; Marko, D. Alternariol Acts as a Topoisomerase Poison, Preferentially Affecting the IIα Isoform. Mol. Nutr. Food Res. 2009, 53, 441–451. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, D.; Chen, Y.; Zhu, X.; Tang, X.; Zhang, J.; Zhang, L.; Chen, J. General Toxicity and Genotoxicity of Alternariol: A Novel 28-Day Multi-Endpoint Assessment in Male Sprague–Dawley Rats. Mycotoxin Res. 2022, 38, 231–241. [Google Scholar] [CrossRef]
- Bensassi, F.; Gallerne, C.; Sharaf El Dein, O.; Hajlaoui, M.R.; Bacha, H.; Lemaire, C. Cell Death Induced by the Alternaria Mycotoxin Alternariol. Toxicol. Vitr. 2012, 26, 915–923. [Google Scholar] [CrossRef]
- Fernández-Blanco, C.; Juan-García, A.; Font, G.; Ruiz, M.-J. Alternariol Induce Toxicity via Cell Death and Mitochondrial Damage on Caco-2 Cells. Food Chem. Toxicol. 2016, 88, 32–39. [Google Scholar] [CrossRef]
- Juan-García, A.; Juan, C.; Manyes, L.; Ruiz, M.-J. Binary and Tertiary Combination of Alternariol, 3-Acetyl-Deoxynivalenol and 15-Acetyl-Deoxynivalenol on HepG2 Cells: Toxic Effects and Evaluation of Degradation Products. Toxicol. Vitr. 2016, 34, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Bensassi, F.; Gallerne, C.; Sharaf, O.; Hajlaoui, M.R.; Bacha, H.; Lemaire, C. Mechanism of Alternariol Monomethyl Ether-Induced Mitochondrial Apoptosis in Human Colon Carcinoma Cells. Toxicology 2011, 290, 230–240. [Google Scholar] [CrossRef]
- Tang, X.; Chen, Y.; Zhu, X.; Miao, Y.; Wang, D.; Zhang, J.; Li, R.; Zhang, L.; Chen, J. Alternariol Monomethyl Ether Toxicity and Genotoxicity in Male Sprague-Dawley Rats: 28-Day in Vivo Multi-Endpoint Assessment. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 873, 503435. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, Y.; Tang, X.; Wang, D.; Miao, Y.; Zhang, J.; Li, R.; Zhang, L.; Chen, J. General Toxicity and Genotoxicity of Altertoxin I: A Novel 28-day Multiendpoint Assessment in Male Sprague–Dawley Rats. J. Appl. Toxicol. 2022, 42, 1310–1322. [Google Scholar] [CrossRef]
- Aichinger, G.; Pahlke, G.; Puntscher, H.; Groestlinger, J.; Grabher, S.; Braun, D.; Tillmann, K.; Plasenzotti, R.; Favero, D.; Warth, B.; et al. Markers for DNA Damage Are Induced in the Rat Colon by the Alternaria Toxin Altertoxin-II, but Not a Complex Extract of Cultured Alternaria Alternata. Front. Toxicol. 2022, 4, 977147. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Blanco, C.; Font, G.; Ruiz, M.-J. Oxidative DNA Damage and Disturbance of Antioxidant Capacity by Alternariol in Caco-2 Cells. Toxicol. Lett. 2015, 235, 61–66. [Google Scholar] [CrossRef]
- Fleck, S.C.; Burkhardt, B.; Pfeiffer, E.; Metzler, M. Alternaria Toxins: Altertoxin II Is a Much Stronger Mutagen and DNA Strand Breaking Mycotoxin than Alternariol and Its Methyl Ether in Cultured Mammalian Cells. Toxicol. Lett. 2012, 214, 27–32. [Google Scholar] [CrossRef]
- Solhaug, A.; Eriksen, G.S.; Holme, J.A. Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. Basic Clin. Pharmacol. Toxicol. 2016, 119, 533–539. [Google Scholar] [CrossRef]
- Rogakou, E.P.; Nieves-Neira, W.; Boon, C.; Pommier, Y.; Bonner, W.M. Initiation of DNA Fragmentation during Apoptosis Induces Phosphorylation of H2AX Histone at Serine 139. J. Biol. Chem. 2000, 275, 9390–9395. [Google Scholar] [CrossRef]
- Wen, L.; Liu, L.; Wen, L.; Yu, T.; Wei, F. Artesunate Promotes G2/M Cell Cycle Arrest in MCF7 Breast Cancer Cells through ATM Activation. Breast Cancer 2018, 25, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Huertero, F.; Zaragoza-Ojeda, M.; Sánchez-Alarcón, J.; Milić, M.; Klarić, M.Š.; Montiel-González, J.M.; Va-lencia-Quintana, R. Involvement of Ahr Pathway in Toxicity of Aflatoxins and Other Mycotoxins. Front. Microbiol. 2019, 10, 2347. [Google Scholar] [CrossRef]
- Pahlke, G.; Tiessen, C.; Domnanich, K.A.; Kahle, N.; Anna, I.; Schreck, I.; Weiss, C.; Marko, D. Impact of Alternaria Toxins on CYP1A1 Expression in Different Human Tumor Cells and Relevance for Genotoxicity. Toxicol. Lett. 2016, 240, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Gerdemann, A.; Behrens, M.; Esselen, M. Hans-Ulrich Humpf Metabolic Profiling as a Powerful Tool for the Analysis of Cellular Alterations Caused by 20 Mycotoxins in HepG2 Cells. Arch. Toxicol. 2022, 96, 2983–2998. [Google Scholar] [CrossRef]
- Kowalska, K.; Habrowska-Górczyńska, D.E.; Kozieł, M.J.; Urbanek, K.A.; Domińska, K.; Piastowska-Ciesielska, A.W. Mycotoxin Alternariol (AOH) Affects Viability and Motility of Mammary Breast Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 696. [Google Scholar] [CrossRef] [PubMed]
- Tiessen, C.; Fehr, M.; Schwarz, C.; Baechler, S.; Domnanich, K.; Böttler, U.; Pahlke, G.; Marko, D. Modulation of the Cellular Redox Status by the Alternaria Toxins Alternariol and Alternariol Monomethyl Ether. Toxicol. Lett. 2013, 216, 23–30. [Google Scholar] [CrossRef]
- Cuperus, F.J.C.; Claudel, T.; Gautherot, J.; Halilbasic, E.; Trauner, M. The Role of Canalicular ABC Transporters in Cholestasis. Drug Metab. Dispos. 2014, 42, 546–560. [Google Scholar] [CrossRef] [PubMed]
- Soukup, S.T.; Fleck, S.C.; Pfeiffer, E.; Podlech, J.; Kulling, S.E.; Metzler, M. DNA Reactivity of Altertoxin II: Identification of Two Covalent Guanine Adducts Formed under Cell-Free Conditions. Toxicol. Lett. 2020, 331, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.E.; Taranu, I. Using In Silico Approach for Metabolomic and Toxicity Prediction of Alternariol. Toxins 2023, 15, 421. [Google Scholar] [CrossRef] [PubMed]
- Bensassi, F.; Gallerne, C.; Sharaf, O.; Hajlaoui, M.R.; Bacha, H.; Lemaire, C. Combined Effects of Alternariols Mixture on Human Colon Carcinoma Cells. Toxicol. Mech. Methods 2015, 25, 56–62. [Google Scholar] [CrossRef]
- Ismail, A.; Elshewy, E.; El-Ganainy, S.; Magistà, D.; Hamouda, A.; Alhudaib, K.; Ebrahim, W.; Almaghasla, M. Mycotoxins from Tomato Pathogenic Alternaria Alternata and Their Combined Cytotoxic Effects on Human Cell Lines and Male Albino Rats. J. Fungi 2023, 9, 282. [Google Scholar] [CrossRef]





| Mycotoxin | Cyt. | Gen. | Mechanisms | Notes | Ref |
|---|---|---|---|---|---|
| ALT | Moderate | Low | Possibly oxidative stress | Limited data, but current evidence suggests low toxicity | [79,87] |
| AOH | Moderate to High | Moderate | DNA strand breaks, inhibition of topoisomerase II, oxidative stress, activation of p53, AhR → ↑ CYP1A1, modulation of Nrf2 pathway | One of the best-studied; shows both direct and indirect genotoxic effects | [73,90,96,98,104,114,115,116,119,120,121] |
| AME | Moderate to High | Moderate | Similar to AOH: topoisomerase II inhibition. γ-H2AX/53BP1 foci, AhR activation, oxidative stress, Nrf2 and phase II enzyme modulation | Often co-occurs with AOH and mimics many of its toxic mechanisms | [73,77,78,80,90,96,104,119,120,121,122] |
| ATX-I | High | High | DNA adduct formation, oxidative stress, apoptosis, γ-H2AX ↑ | Higher DNA damage than AOH; | [90,98,101,104,119,124] |
| ATX-II | Very High | Very High | Inhibits topoisomerase II, causes double-strand breaks, DNA adducts, oxidative stress, rapid metabolism to ATX-I | The most genotoxic Alternaria toxin; acts mainly in the gut | [90,98,101,104,119,124] |
| TeA | High | Low | Inhibits protein synthesis by targeting eukaryotic initiation factors, induces apoptosis, oxidative stress | Not genotoxic, but very cytotoxic | [96,99] |
| TEN | Low | Low to negligible | Downregulation of ABC transporters in hepatic cells, which leads to impaired bile and xenobiotic excretion, affects inflammatory and apoptotic gene expression | Mainly hepatotoxic; indirect mechanisms | [96,119,123] |
| Toxin Combination | Cell Line | Observed Combined Mechanistic Effect | Interaction Type | Ref. |
|---|---|---|---|---|
| AOH + AME (1:1) | Caco-2 | ↑ cytotoxicity compared to single exposure. AOH + AME induced oxidative stress, apoptosis. Quercetin attenuated ROS and cytotoxicity, suggesting oxidative stress is a key mechanism. | Synergistic | [94] |
| HCT116 | ↑ cytotoxicity. DNA damage: increased micronuclei formation and genotoxic stress. Oxidative stress: ↑ ROS. | Additive | [126] | |
| AOH + Fusarium toxins (3- and 15-ADON) | HepG2 | ↑ cytotoxicity than AOH alone. Mechanistic endpoints: apoptosis induction, mitochondrial membrane potential disruption, partial formation of degradation products affecting toxicity. | Low-dose binary combinations showed additive effects; higher concentrations showed antagonism. | [108] |
| AOH + ATX-II (1:1) | HepG2, HT29, HCEC-1CT | ↑ cytotoxicity at higher concentrations. Mechanistic effects: modulation of miRNA expression (e.g., miR-34a), apoptosis induction, DNA damage. | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilela, R.S.; Pina-Martins, F.; Ventura, C. From Food to Humans: The Toxicological Effects of Alternaria Mycotoxins in the Liver and Colon. J. Xenobiot. 2025, 15, 205. https://doi.org/10.3390/jox15060205
Vilela RS, Pina-Martins F, Ventura C. From Food to Humans: The Toxicological Effects of Alternaria Mycotoxins in the Liver and Colon. Journal of Xenobiotics. 2025; 15(6):205. https://doi.org/10.3390/jox15060205
Chicago/Turabian StyleVilela, Rita Sofia, Francisco Pina-Martins, and Célia Ventura. 2025. "From Food to Humans: The Toxicological Effects of Alternaria Mycotoxins in the Liver and Colon" Journal of Xenobiotics 15, no. 6: 205. https://doi.org/10.3390/jox15060205
APA StyleVilela, R. S., Pina-Martins, F., & Ventura, C. (2025). From Food to Humans: The Toxicological Effects of Alternaria Mycotoxins in the Liver and Colon. Journal of Xenobiotics, 15(6), 205. https://doi.org/10.3390/jox15060205

