Xenobiotics and Broiler Microbiota: Molecular Insights into Bacterial Antimicrobial Resistance and Food Safety Implications for Human Health
Abstract
1. Introduction
2. Microbial Reservoirs of Antimicrobial Resistance in Broiler Production Environments
2.1. The Role of Antibiotics in the Broiler Industry and Their Broader Implications
2.2. Antibiotics as Xenobiotics: Environmental and Health Perspectives
2.3. Fecal Microbiota and the Gut Resistome
2.4. Airborne Microbial Communities in Poultry Houses
2.5. Drinking Water as Vectors of Resistance
2.6. Poultry Litter Microbiome and Its Role in Antimicrobial Resistance Dynamics
3. Antibiotics as Xenobiotics: Invisible Pathways to Human Exposure
3.1. Fragmented Exposure and Hidden Burdens
3.2. Resistome Convergence: From Farm to Clinic
3.3. One Health: Ethical Imperative and Context-Specific Implementation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The European Environment Agency. Veterinary Antimicrobials in Europe’s Environment: A One Health Perspective; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Teillant, A.; Laxminarayan, R. Economics of antibiotic use in U.S. swine and poultry production. Choices 2015, 30, 1–11. [Google Scholar]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef]
- Mulchandani, R.; Wang, Y.; Gilbert, M.; Van Boeckel, T.P. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Glob. Public Health 2023, 3, e0001305. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef]
- Kasabova, S.; Hartmann, M.; Freise, F.; Hommerich, K.; Fischer, S.; Wilms-Schulze-Kump, A.; Rohn, K.; Käsbohrer, A.; Kreienbrock, L. Antibiotic Usage Pattern in Broiler Chicken Flocks in Germany. Front. Vet. Sci. 2021, 8, 673809. [Google Scholar] [CrossRef]
- Castanon, J.I.R. History of the Use of Antibiotic as Growth Promoters in European Poultry Feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef]
- Izah, S.C.; Nurmahanova, A.; Ogwu, M.C.; Toktarbay, Z.; Umirbayeva, Z.; Ussen, K.; Koibasova, L.; Nazarbekova, S.; Tynybekov, B.; Guo, Z. Public health risks associated with antibiotic residues in poultry food products. J. Agric. Food Res. 2025, 21, 101815. [Google Scholar] [CrossRef]
- Lopes, E.D.S.; De Souza, L.C.A.; Santaren, K.C.F.; Parente, C.E.T.; Seldin, L. Microbiome and Resistome in Poultry Litter-Fertilized and Unfertilized Agricultural Soils. Antibiotics 2025, 14, 355. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, X.; Hao, J.; Kong, H.; Zhao, L.; Li, M.; Zou, M.; Liu, G. Serotype Distribution and Antimicrobial Resistance of Salmonella Isolates from Poultry Sources in China. Antibiotics 2024, 13, 959. [Google Scholar] [CrossRef] [PubMed]
- Oladeinde, A.; Abdo, Z.; Zwirzitz, B.; Woyda, R.; Lakin, S.M.; Press, M.O.; Cox, N.A.; Thomas, J.C.; Looft, T.; Rothrock, M.J.; et al. Litter Commensal Bacteria Can Limit the Horizontal Gene Transfer of Antimicrobial Resistance to Salmonella in Chickens. Appl. Environ. Microbiol. 2022, 88, e0251721. [Google Scholar] [CrossRef]
- Zha, Y.; Li, Q.; Liu, H.; Ge, Y.; Wei, Y.; Wang, H.; Zhang, L.; Fan, J.; Chen, Y.; Zhang, C.; et al. Occurrence and ecological risk assessment of antibiotics in manure and the surrounding soil from typical chicken farms in Hangzhou, China. Front. Environ. Sci. 2023, 11, 1241405. [Google Scholar] [CrossRef]
- Durand, G.A.; Raoult, D.; Dubourg, G. Antibiotic discovery: History, methods and perspectives. Int. J. Antimicrob. Agents 2019, 53, 371–382. [Google Scholar] [CrossRef]
- Bloem, E.; Kratz, S. Organic Xenobiotics. In Phosphorus in Agriculture: 100% Zero; Schnug, E., De Kok, L.J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2016; pp. 267–307. [Google Scholar]
- Perkins, S.E.; Hankenson, F.C. Nonexperimental Xenobiotics: Unintended Consequences of Intentionally Administered Substances in Terrestrial Animal Models. ILAR J. 2019, 60, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.V.; Gotah, A. Application of QuEChERS for Determining Xenobiotics in Foods of Animal Origin. J. Anal. Methods Chem. 2017, 2017, 2603067. [Google Scholar] [CrossRef]
- Bernier, S.; Surette, M. Concentration-dependent activity in natural environments. Front. Microbiol. 2013, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.K.M.; Ghaly, T.M.; Gillings, M.R. A survey of sub-inhibitory concentrations of antibiotics in the environment. J. Environ. Sci. 2021, 99, 21–27. [Google Scholar] [CrossRef]
- Baptiste, K.E.; Kyvsgaard, N.C. Do antimicrobial mass medications work? A systematic review and meta-analysis of randomised clinical trials investigating antimicrobial prophylaxis or metaphylaxis against naturally occurring bovine respiratory disease. Pathog. Dis. 2017, 75, ftx083. [Google Scholar] [CrossRef] [PubMed]
- Odey, T.O.J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial use and resistance in food animal production: Food safety and associated concerns in Sub-Saharan Africa. Int. Microbiol. 2024, 27, 1–23. [Google Scholar] [CrossRef]
- Gaskins, H.R.; Collier, C.T.; Anderson, D.B. Antibiotics as growth promotants: Mode of action. Anim. Biotechnol. 2002, 13, 29–42. [Google Scholar] [CrossRef]
- European, U. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products; European Union: Brussels, Belgium, 2019; pp. 43–167. [Google Scholar]
- European, U. Regulation (EU) 2019/4 of the European Parliament and of the Council of 11 December 2018 on the Manufacture, Placing on the Market and Use of Medicated Feed; European Union: Brussels, Belgium, 2019; pp. 1–42. [Google Scholar]
- Von Wintersdorff, C.J.H.; Penders, J.; Van Niekerk, J.M.; Mills, N.D.; Majumder, S.; Van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Bose, P.; Rahman, M.Z.; Muktaruzzaman, M.; Sultana, P.; Ahamed, T.; Khatun, M.M. A review of antimicrobial usage practice in livestock and poultry production and its consequences on human and animal health. J. Adv. Vet. Anim. Res. 2024, 11, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Bacanlı, M.G. The two faces of antibiotics: An overview of the effects of antibiotic residues in foodstuffs. Arch. Toxicol. 2024, 98, 1717–1725. [Google Scholar] [CrossRef]
- Zou, A.; Nadeau, K.; Xiong, X.; Wang, P.W.; Copeland, J.K.; Lee, J.Y.; Pierre, J.S.; Ty, M.; Taj, B.; Brumell, J.H.; et al. Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure. Microbiome 2022, 10, 127. [Google Scholar] [CrossRef]
- Insawake, K.; Songserm, T.; Songserm, O.; Plaiboon, A.; Homwong, N.; Adeyemi, K.D.; Rassmidatta, K.; Ruangpanit, Y. Effects of isoquinoline alkaloids as an alternative to antibiotic on oxidative stress, inflammatory status, and cecal microbiome of broilers under high stocking density. Poult. Sci. 2025, 104, 104671. [Google Scholar] [CrossRef]
- Ma, B.; Wang, D.; Mei, X.; Lei, C.; Li, C.; Wang, H. Effect of Enrofloxacin on the Microbiome, Metabolome, and Abundance of Antibiotic Resistance Genes in the Chicken Cecum. Microbiol. Spectr. 2023, 11, e0479522. [Google Scholar] [CrossRef] [PubMed]
- Peto, L.; Fawcett, N.; Kamfose, M.M.; Scarborough, C.; Peniket, A.; Danby, R.; Peto, T.E.A.; Crook, D.W.; Llewelyn, M.J.; Sarah Walker, A. The impact of different antimicrobial exposures on the gut microbiome in the ARMORD observational study. medRxiv 2024. [Google Scholar] [CrossRef]
- Willing, B.P.; Russell, S.L.; Finlay, B.B. Shifting the balance: Antibiotic effects on host–microbiota mutualism. Nat. Rev. Microbiol. 2011, 9, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Zhan, R.; Lu, Y.; Xu, Y.; Li, X.; Wang, X.; Yu, G. Effects of antibiotics on chicken gut microbiota: Community alterations and pathogen identification. Front. Microbiol. 2025, 16, 2025. [Google Scholar] [CrossRef]
- Plata, G.; Baxter, N.T.; Susanti, D.; Volland-Munson, A.; Gangaiah, D.; Nagireddy, A.; Mane, S.P.; Balakuntla, J.; Hawkins, T.B.; Kumar Mahajan, A. Growth promotion and antibiotic induced metabolic shifts in the chicken gut microbiome. Commun. Biol. 2022, 5, 293. [Google Scholar] [CrossRef]
- Paul, S.S.; Rama Rao, S.V.; Hegde, N.; Williams, N.J.; Chatterjee, R.N.; Raju, M.V.L.N.; Reddy, G.N.; Kumar, V.; Phani Kumar, P.S.; Mallick, S.; et al. Effects of Dietary Antimicrobial Growth Promoters on Performance Parameters and Abundance and Diversity of Broiler Chicken Gut Microbiome and Selection of Antibiotic Resistance Genes. Front. Microbiol. 2022, 13, 905050. [Google Scholar] [CrossRef]
- Lundberg, R.; Scharch, C.; Sandvang, D. The link between broiler flock heterogeneity and cecal microbiome composition. Anim. Microbiome 2021, 3, 54. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, S.I.; Kim, S.A.; Christensen, K.; Ricke, S.C. Comparison of antibiotic supplementation versus a yeast-based prebiotic on the cecal microbiome of commercial broilers. PLoS ONE 2017, 12, e0182805. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, K.; Wang, D.; Wang, H.; Zhao, H.; Pu, J.; Wang, K.; Li, C. Distribution and environmental dissemination of antibiotic resistance genes in poultry farms and surrounding ecosystems. Poult. Sci. 2025, 104, 104665. [Google Scholar] [CrossRef]
- Yang, F.; Gao, Y.; Zhao, H.; Li, J.; Cheng, X.; Meng, L.; Dong, P.; Yang, H.; Chen, S.; Zhu, J. Revealing the distribution characteristics of antibiotic resistance genes and bacterial communities in animal-aerosol-human in a chicken farm: From One-Health perspective. Ecotoxicol. Environ. Saf. 2021, 224, 112687. [Google Scholar] [CrossRef] [PubMed]
- Bhat, B.A.; Mir, R.A.; Qadri, H.; Dhiman, R.; Almilaibary, A.; Alkhanani, M.; Mir, M.A. Integrons in the development of antimicrobial resistance: Critical review and perspectives. Front. Microbiol. 2023, 14, 2023. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Lin, J. Functional Cloning and Characterization of Antibiotic Resistance Genes from the Chicken Gut Microbiome. Appl. Environ. Microbiol. 2012, 78, 3028–3032. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, W.; Xie, C.; Zhu, Y.; Tang, W.; Zhou, X.; Xiao, H. Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes. Sci. Total Environ. 2022, 846, 157420. [Google Scholar] [CrossRef]
- Song, L.; Jiang, G.; Wang, C.; Ma, J.; Chen, H. Effects of antibiotics consumption on the behavior of airborne antibiotic resistance genes in chicken farms. J. Hazard. Mater. 2022, 437, 129288. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; He, L.-Y.; Wu, D.-L.; Gao, F.-Z.; Zhang, M.; Zou, H.-Y.; Yao, M.-S.; Ying, G.-G. Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environ. Int. 2022, 158, 106927. [Google Scholar] [CrossRef]
- Lou, C.; Chen, Z.; Bai, Y.; Chai, T.; Guan, Y.; Wu, B. Exploring the Microbial Community Structure in the Chicken House Environment by Metagenomic Analysis. Animals 2023, 14, 55. [Google Scholar] [CrossRef]
- Smith, B.L.; King, M.D. Sampling and Characterization of Bioaerosols in Poultry Houses. Microorganisms 2023, 11, 2068. [Google Scholar] [CrossRef]
- Tao, C.-W.; Chen, J.-S.; Hsu, B.-M.; Koner, S.; Hung, T.-C.; Wu, H.-M.; Rathod, J. Molecular Evaluation of Traditional Chicken Farm-Associated Bioaerosols for Methicillin-Resistant Staphylococcus aureus Shedding. Antibiotics 2021, 10, 917. [Google Scholar] [CrossRef] [PubMed]
- Laghari, A.A.; Song, L.; Jia, Y.; Kumar, A.; Rani, K.; Gul, S.; Jamro, I.A.; Sajnani, S.; Zhang, J.; Shen, Y.; et al. Bioaerosol is an important source for dissemination of antibiotic resistance genes in chicken farms. Aerosol Sci. Technol. 2025, 59, 649–662. [Google Scholar] [CrossRef]
- Song, L.; Ma, J.; Jiang, G.; Wang, C.; Zhang, Y.; Chen, H.; Huang, R.-J. Comparison of Airborne Antibiotic Resistance Genes in the Chicken Farm during Winter and Summer. Indoor Air 2024, 2024, 1707863. [Google Scholar] [CrossRef]
- Zhao, H.; Li, S.; Pu, J.; Wang, H.; Zhang, H.; Li, G.; Qu, L.; Dou, X. Effects and health risk assessments of different spray disinfectants on microbial aerosols in chicken houses. Poult. Sci. 2025, 104, 105083. [Google Scholar] [CrossRef]
- Piccirillo, A.; Tolosi, R.; Mughini-Gras, L.; Kers, J.G.; Laconi, A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics 2024, 13, 808. [Google Scholar] [CrossRef]
- Mustedanagic, A.; Matt, M.; Weyermair, K.; Schrattenecker, A.; Kubitza, I.; Firth, C.L.; Loncaric, I.; Wagner, M.; Stessl, B. Assessment of microbial quality in poultry drinking water on farms in Austria. Front. Vet. Sci. 2023, 10, 1254442. [Google Scholar] [CrossRef]
- Hahne, F.; Jensch, S.; Hamscher, G.; Meißner, J.; Kietzmann, M.; Kemper, N.; Schulz, J.; Mateus-Vargas, R.H. Innovative Perspectives on Biofilm Interactions in Poultry Drinking Water Systems and Veterinary Antibiotics Used Worldwide. Antibiotics 2022, 11, 77. [Google Scholar] [CrossRef]
- Heinemann, C.; Leubner, C.D.; Savin, M.; Sib, E.; Schmithausen, R.M.; Steinhoff-Wagner, J. Research Note: Tracing pathways of entry and persistence of facultative pathogenic and antibiotic-resistant bacteria in a commercial broiler farm with substantial health problems. Poult. Sci. 2020, 99, 5481–5486. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, L.; Pal, A.; Biswas, R.; Batabyal, K.; Dey, S.; Joardar, S.N.; Dutta, T.K.; Bandyopadhyay, S.; Pal, S.; Samanta, I. In-silico insights of ESBL variants and tracking the probable sources of ESBL-producing Escherichia coli in a small-scale poultry farm. Microb. Pathog. 2024, 192, 106710. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, H.R.; Yoon, S.; Lim, S.K.; Lee, Y.J. Situational analysis on fluoroquinolones use and characterization of high-level ciprofloxacin-resistant Enterococcus faecalis by integrated broiler operations in South Korea. Front. Vet. Sci. 2023, 10, 1158721. [Google Scholar] [CrossRef]
- Rui, Y.; Qiu, G. Analysis of Antibiotic Resistance Genes in Water Reservoirs and Related Wastewater from Animal Farms in Central China. Microorganisms 2024, 12, 396. [Google Scholar] [CrossRef] [PubMed]
- Smoglica, C.; Farooq, M.; Ruffini, F.; Marsilio, F.; Di Francesco, C.E. Microbial Community and Abundance of Selected Antimicrobial Resistance Genes in Poultry Litter from Conventional and Antibiotic-Free Farms. Antibiotics 2023, 12, 1461. [Google Scholar] [CrossRef]
- Agga, G.E.; Durso, L.M.; Sistani, K.R. Effect of poultry litter soil amendment on antibiotic-resistant Escherichia coli. J. Environ. Qual. 2024, 53, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, S.; Venkateswarlu, K.; Megharaj, M. Tetracycline and fluoroquinolone antibiotics contamination in agricultural soils fertilized long-term with chicken litter: Trends and ravages. Sci. Total Environ. 2024, 946, 174286. [Google Scholar] [CrossRef] [PubMed]
- Ngogang, M.P.; Ernest, T.; Kariuki, J.; Mouliom Mouiche, M.M.; Ngogang, J.; Wade, A.; Van Der Sande, M.A.B. Microbial Contamination of Chicken Litter Manure and Antimicrobial Resistance Threat in an Urban Area Setting in Cameroon. Antibiotics 2020, 10, 20. [Google Scholar] [CrossRef]
- Gupta, C.L.; Blum, S.E.; Kattusamy, K.; Daniel, T.; Druyan, S.; Shapira, R.; Krifucks, O.; Zhu, Y.-G.; Zhou, X.-Y.; Su, J.-Q.; et al. Longitudinal study on the effects of growth-promoting and therapeutic antibiotics on the dynamics of chicken cloacal and litter microbiomes and resistomes. Microbiome 2021, 9, 178. [Google Scholar] [CrossRef]
- Fučík, J.; Amrichová, A.; Brabcová, K.; Karpíšková, R.; Koláčková, I.; Pokludová, L.; Poláková, Š.; Mravcová, L. Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. Environ. Sci. Pollut. Res. 2024, 31, 20017–20032. [Google Scholar] [CrossRef]
- Vargas, M.B.; Pokrant, E.; García, I.; Cadena, R.; Mena, F.; Yévenes, K.; Fuentes, C.; Zavala, S.; Flores, A.; Maturana, M.; et al. Assessing the spread of sulfachloropyridazine in poultry environment and its impact on Escherichia coli resistance. Prev. Vet. Med. 2024, 233, 106362. [Google Scholar] [CrossRef]
- Oxendine, A.; Walsh, A.A.; Young, T.; Dixon, B.; Hoke, A.; Rogers, E.E.; Lee, M.D.; Maurer, J.J. Conditions Necessary for the Transfer of Antimicrobial Resistance in Poultry Litter. Antibiotics 2023, 12, 1006. [Google Scholar] [CrossRef]
- Tripathi, A.; Kumar, D.; Chavda, P.; Rathore, D.S.; Pandit, R.; Blake, D.; Tomley, F.; Joshi, M.; Joshi, C.G.; Dubey, S.K. Resistome profiling reveals transmission dynamics of antimicrobial resistance genes from poultry litter to soil and plant. Environ. Pollut. 2023, 327, 121517. [Google Scholar] [CrossRef] [PubMed]
- Seyoum, M.M.; Ashworth, A.J.; Owens, P.R.; Katuwal, S.; Lyte, J.M.; Savin, M. Leaching of antibiotic resistance genes and microbial assemblages following poultry litter applications in karst and non-karst landscapes. Sci. Total Environ. 2024, 934, 172905. [Google Scholar] [CrossRef] [PubMed]
- Okada, E.; Young, B.J.; Pérez, D.J.; Pellegrini, M.C.; Carciochi, W.D.; Lavallén, C.M.; Ponce, A.G.; Dopchiz, M.C.; Hernández Guijarro, K.; Franco, M.d.R.; et al. Effect of on-farm poultry litter composting processes on physicochemical, biological, and toxicological parameters and reduction of antibiotics and antibiotic-resistant Escherichia coli. Waste Manag. 2024, 174, 310–319. [Google Scholar] [CrossRef]
- Barrero, M.A.O.; Varón-López, M.; Peñuela-Sierra, L.M. Competing microorganisms with exclusion effects against multidrug-resistant Salmonella Infantis in chicken litter supplemented with growth-promoting antimicrobials. Vet. World 2025, 18, 1127–1136. [Google Scholar] [CrossRef]
- Gomes, B.; Dias, M.; Cervantes, R.; Pena, P.; Santos, J.; Vasconcelos Pinto, M.; Viegas, C. One Health Approach to Tackle Microbial Contamination on Poultries—A Systematic Review. Toxics 2023, 11, 374. [Google Scholar] [CrossRef]
- Aworh, M.K.; Kwaga, J.; Okolocha, E.; Harden, L.; Hull, D.; Hendriksen, R.S.; Thakur, S. Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook 2020, 2, 8. [Google Scholar] [CrossRef]
- Niu, D.; Ke, Y.; Lv, Q.; Zhang, Z.; Liu, T.; Xu, Z.; Li, T.; Zhang, Y.; Zhang, R.; Zhang, X.; et al. Pathogens and drug resistance or virulence genes from animals and surrounding environment in Shenzhen, 2023 using targeted next-generation sequencing. Infect. Genet. Evol. 2025, 131, 105755. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Llorens, J.; Monroy, I.; Torres-Boncompte, J.; Soriano, J.; Catalá-Gregori, P.; Sevilla-Navarro, S. Tracking the Prevalence of Antibiotic Resistance in Enterococcus Within the Spanish Poultry Industry: Insights from a One Health Approach. Antibiotics 2024, 14, 16. [Google Scholar] [CrossRef]
- Davidovich, C.; Erokhina, K.; Gupta, C.L.; Zhu, Y.-G.; Su, J.-Q.; Djordjevic, S.P.; Wyrsch, E.R.; Blum, S.E.; Cytryn, E. Occurrence of “under-the-radar” antibiotic resistance in anthropogenically affected produce. ISME J. 2025, 19, wrae261. [Google Scholar] [CrossRef]
- Rajendiran, S.; Veloo, Y.; Thahir, S.S.A.; Shaharudin, R. Resistance towards Critically Important Antimicrobials among Enterococcus faecalis and E. faecium in Poultry Farm Environments in Selangor, Malaysia. Antibiotics 2022, 11, 1118. [Google Scholar] [CrossRef]
- Julianingsih, D.; Alvarado-Martinez, Z.; Tabashsum, Z.; Tung, C.-W.; Aditya, A.; Kapadia, S.; Maskey, S.; Mohapatra, A.; Biswas, D. Identification of Salmonella enterica biovars Gallinarum and Pullorum and their antibiotic resistance pattern in integrated crop-livestock farms and poultry meats. Access Microbiol. 2024, 6, 000775-v6. [Google Scholar] [CrossRef]
- Ma, L.; Xia, Y.; Li, B.; Yang, Y.; Li, L.-G.; Tiedje, J.M.; Zhang, T. Metagenomic Assembly Reveals Hosts of Antibiotic Resistance Genes and the Shared Resistome in Pig, Chicken, and Human Feces. Environ. Sci. Technol. 2016, 50, 420–427. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Liu, F.; Cao, J.; Lv, N.; Zhu, B.; Zhang, G.; Gao, G.F. Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ. Int. 2020, 138, 105649. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhong, H.; Cui, X.; Wang, T.; Gu, Y.; Li, M.; Miao, X.; Li, J.; Lu, L.; Xu, W.; et al. Metagenomic profiling uncovers microbiota and antibiotic resistance patterns across human, chicken, pig fecal, and soil environments. Sci. Total Environ. 2024, 947, 174734. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Wang, Y.; Sun, Y.; Ma, L.; Zeng, Q.; Jiang, X.; Li, A.; Zeng, Z.; Zhang, T. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome 2018, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Coltro, E.P.; Cafferati Beltrame, L.; Da Cunha, C.R.; Zamparette, C.P.; Feltrin, C.; Benetti Filho, V.; Vanny, P.D.A.; Beduschi Filho, S.; Klein, T.C.R.; Scheffer, M.C.; et al. Evaluation of the resistome and gut microbiome composition of hospitalized patients in a health unit of southern Brazil coming from a high animal husbandry production region. Front. Antibiot. 2025, 3, 1489356. [Google Scholar] [CrossRef]
- Buta-Hubeny, M.; Korzeniewska, E.; Hubeny, J.; Zieliński, W.; Rolbiecki, D.; Harnisz, M.; Paukszto, Ł. Structure of the manure resistome and the associated mobilome for assessing the risk of antimicrobial resistance transmission to crops. Sci. Total Environ. 2022, 808, 152144. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, X.; Zhao, J.; Li, H.; Xu, J.; Li, Z.; Wang, M.; Peng, Y.; Tian, T.; Yuan, G.; et al. Regional antimicrobial resistance gene flow among the One Health sectors in China. Microbiome 2025, 13, 3. [Google Scholar] [CrossRef]
- Xin, X.; Yin, Y.; Kong, J.; Wang, M.; Wang, Z.; Li, R. Genomic Insights into Carbapenem-Resistant Organisms Producing New Delhi Metallo-β-Lactamase in Live Poultry Markets. Microorganisms 2025, 13, 1195. [Google Scholar] [CrossRef]
- Hurtado, A.; Ocejo, M.; Oporto, B.; Lavín, J.L.; Rodríguez, R.; Marcos, M.Á.; Urrutikoetxea-Gutiérrez, M.; Alkorta, M.; Marimón, J.M. A One Health approach for the genomic characterization of antibiotic-resistant Campylobacter isolates using Nanopore whole-genome sequencing. Front. Microbiol. 2025, 16, 1540210. [Google Scholar] [CrossRef]
- Flatgard, B.M.; Williams, A.D.; Amin, M.B.; Hobman, J.L.; Stekel, D.J.; Rousham, E.K.; Islam, M.A. Tracking antimicrobial resistance transmission in urban and rural communities in Bangladesh: A One Health study of genomic diversity of ESBL-producing and carbapenem-resistant Escherichia coli. Microbiol. Spectr. 2024, 12, e0395623. [Google Scholar] [CrossRef]
- Njoga, E.O.; Nwanta, J.A.; Chah, K.F. Detection of multidrug-resistant Campylobacter species from food-producing animals and humans in Nigeria: Public health implications and one health control measures. Comp. Immunol. Microbiol. Infect. Dis. 2023, 103, 102083. [Google Scholar] [CrossRef]
- James, E.M.; Kimera, Z.I.; Mgaya, F.X.; Niccodem, E.M.; Efraim, J.E.; Matee, M.I.; Mbugi, E.V. Occurrence of virulence genes in multidrug-resistant Escherichia coli isolates from humans, animals, and the environment: One health perspective. PLoS ONE 2025, 20, e0317874. [Google Scholar] [CrossRef]
- Rehman, M.A.; Rempel, H.; Carrillo, C.D.; Ziebell, K.; Allen, K.; Manges, A.R.; Topp, E.; Diarra, M.S. Virulence Genotype and Phenotype of Multiple Antimicrobial-Resistant Escherichia coli Isolates from Broilers Assessed from a “One-Health” Perspective. J. Food Prot. 2022, 85, 336–354. [Google Scholar] [CrossRef] [PubMed]
- Mattock, J.; Chattaway, M.A.; Hartman, H.; Dallman, T.J.; Smith, A.M.; Keddy, K.; Petrovska, L.; Manners, E.J.; Duze, S.T.; Smouse, S.; et al. A One Health Perspective on Salmonella enterica Serovar Infantis, an Emerging Human Multidrug-Resistant Pathogen. Emerg. Infect. Dis. 2024, 30, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.E.Z.; Zaheer, R.; Poulin-Laprade, D.; Scott, A.; Rehman, M.A.; Diarra, M.; Topp, E.; Domselaar, G.V.; Zovoilis, A.; McAllister, T.A. Comparative Genomic Analysis of Enterococci across Sectors of the One Health Continuum. Microorganisms 2023, 11, 727. [Google Scholar] [CrossRef] [PubMed]
- Mudenda, S.; Mulenga, K.M.; Nyirongo, R.; Chabalenge, B.; Chileshe, C.; Daka, V.; M’Kandawire, E.; Jere, E.; Muma, J.B. Non-prescription sale and dispensing of antibiotics for prophylaxis in broiler chickens in Lusaka District, Zambia: Findings and implications on one health. JAC-Antimicrob. Resist. 2024, 6, dlae094. [Google Scholar] [CrossRef]
- Ogundare, S.T.; Fasina, F.O.; Makumbi, J.-P.; van der Zel, G.A.; Geertsma, P.F.; Kock, M.M.; Smith, A.M.; Ehlers, M.M. Epidemiology and antimicrobial resistance profiles of pathogenic Escherichia coli from commercial swine and poultry abattoirs and farms in South Africa: A One Health approach. Sci. Total Environ. 2024, 951, 175705. [Google Scholar] [CrossRef]
- Imran-Ariff, I.; Kamaruzaman, I.N.A.; Mahamud, S.N.A.; Aklilu, E.; Abubakar, S.; Loong, S.K. Integrating One Health strategy to mitigate antibiotic resistance in Salmonella: Insights from poultry isolates in Southeast Asia. Trop. Biomed. 2025, 42, 27–35. [Google Scholar] [CrossRef]
- Lopes, E.d.S.; Ferreira Santaren, K.C.; Araujo de Souza, L.C.; Parente, C.E.T.; Picão, R.C.; Jurelevicius, D.d.A.; Seldin, L. Cross-environmental cycling of antimicrobial resistance in agricultural areas fertilized with poultry litter: A one health approach. Environ. Pollut. 2024, 363, 125177. [Google Scholar] [CrossRef]
- Gunasekara, Y.D.; Kottawatta, S.A.; Nisansala, T.; Wijewickrama, I.J.B.; Basnayake, Y.I.; Silva-Fletcher, A.; Kalupahana, R.S. Antibiotic resistance through the lens of One Health: A study from an urban and a rural area in Sri Lanka. Zoonoses Public Health 2024, 71, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Menck-Costa, M.F.; Baptista, A.A.S.; Sanches, M.S.; Santos, B.Q.D.; Cicero, C.E.; Kitagawa, H.Y.; Justino, L.; Medeiros, L.P.; Souza, M.D.; Rocha, S.P.D.; et al. Resistance and Virulence Surveillance in Escherichia coli Isolated from Commercial Meat Samples: A One Health Approach. Microorganisms 2023, 11, 2712. [Google Scholar] [CrossRef] [PubMed]
- Chala, G.; Eguale, T.; Abunna, F.; Asrat, D.; Stringer, A. Identification and Characterization of Campylobacter Species in Livestock, Humans, and Water in Livestock Owning Households of Peri-urban Addis Ababa, Ethiopia: A One Health Approach. Front. Public Health 2021, 9, 750551. [Google Scholar] [CrossRef]
- Alabi, E.D.; Rabiu, A.G.; Adesoji, A.T. A review of antimicrobial resistance challenges in Nigeria: The need for a one health approach. One Health 2025, 20, 101053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, J.; Abbas, M.; Yang, Q.; Li, Q.; Liu, M.; Zhu, D.; Wang, M.; Tian, B.; Cheng, A. Threats across boundaries: The spread of ESBL-positive Enterobacteriaceae bacteria and its challenge to the “one health” concept. Front. Microbiol. 2025, 16, 1496716. [Google Scholar] [CrossRef]
- Alhassan, M.Y.; Kabara, M.K.; Ahmad, A.A.; Abdulsalam, J.; Habib, H.I. Revisiting antibiotic stewardship: Veterinary contributions to combating antimicrobial resistance globally. Bull. Natl. Res. Cent. 2025, 49, 25. [Google Scholar] [CrossRef]
- Time, M.S.; Veggeland, F. Adapting to a Global Health Challenge: Managing Antimicrobial Resistance in the Nordics. Politics Gov. 2020, 8, 53–64. [Google Scholar] [CrossRef]
- WOAH. Strategy on Antimicrobial Resistance and Prudent Use of Antimicrobials. Available online: https://www.woah.org/app/uploads/2021/03/en-amr-strategy-2022-final-single-pages.pdf (accessed on 16 July 2025).
- Food and Agriculture Organization of the United Nations. Fao Action Plan on Antimicrobial Resistance 2021–2025: Supporting Innovation and Resilience. In Food and Agriculture Sectors; Food & Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- EMA Committee for Medicinal Products for Veterinary Use (CVMP) and EFSA Panel on Biological Hazards (BIOHAZ); Murphy, D.; Ricci, A.; Auce, Z.; Beechinor, J.G.; Bergendahl, H.; Breathnach, R.; Bureš, J.; Duarte Da Silva, J.P.; Hederová, J. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J. 2017, 15, e04666. [Google Scholar] [CrossRef]
- Franklin, A.M.; Weller, D.L.; Durso, L.M.; Bagley, M.; Davis, B.C.; Frye, J.G.; Grim, C.J.; Ibekwe, A.M.; Jahne, M.A.; Keely, S.P.; et al. A one health approach for monitoring antimicrobial resistance: Developing a national freshwater pilot effort. Front. Water 2024, 6, 1359109. [Google Scholar] [CrossRef]
- Smits, C.H.; Li, D.; den Hartog, L. Animal Nutrition Strategies and Options to Reduce the Use of Antimicrobials in Animal Production; FAO: Rome, Italy, 2021. [Google Scholar]
- Antimicrobial Advice Ad Hoc Expert Group. Updated Advice on the Use of Colistin Productsin Animals Within the European Union: Development of Resistance and Possible Impact on Human and Animal Health (EMA/CVMP/CHMP/231573/2016). Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/updated-advice-use-colistin-products-animals-within-european-union-development-resistance-and-possible-impact-human-and-animal-health_en.pdf-0 (accessed on 16 July 2025).
- FAO. Assessment Tool for Laboratories and Antimicrobial Resistance Surveillance Systems (ATLASS). Available online: https://www.fao.org/antimicrobial-resistance/resources/tools/ATLASS/en/ (accessed on 16 July 2025).
Class/Example | Origin | Uses in Poultry Production | Justification as Xenobiotic * |
---|---|---|---|
Tetracyclines (e.g., oxytetracycline) | Naturally derived (Streptomyces) and semi-synthetic derivatives | Therapeutic, prophylactic, growth promotion | Foreign to poultry microbiota and ecosystems; excreted into environment, exerting selective pressure |
Macrolides (e.g., tylosin) | Naturally derived (Streptomyces) | Therapeutic and prophylactic | Disruptive to microbial communities and detected as residues in soil and water |
Beta-lactams (e.g., amoxicillin) | Naturally derived (Penicillium) and semi-synthetic | Therapeutic | Not produced by poultry; persists in manure; selects for resistance genes |
Sulfonamides (e.g., sulfamethazine) | Fully synthetic | Therapeutic and prophylactic | Synthetic compounds, foreign to all biological systems |
Fluoroquinolones (e.g., enrofloxacin) | Fully synthetic | Therapeutic | Fully synthetic, foreign to ecosystems; strong ecological impact |
Aminoglycosides (e.g., gentamicin) | Naturally derived (Micromonospora) and semi-synthetic | Therapeutic | Non-host compounds, environmentally persistent |
Polypeptides (e.g., colistin) | Naturally derived (Bacillus, Paenibacillus) | Growth promotion, therapeutic | Alters gut flora and environmental microbiota despite natural origin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, M.; Vale, N.; Martins da Costa, P.; Silva, P. Xenobiotics and Broiler Microbiota: Molecular Insights into Bacterial Antimicrobial Resistance and Food Safety Implications for Human Health. J. Xenobiot. 2025, 15, 129. https://doi.org/10.3390/jox15040129
Gonçalves M, Vale N, Martins da Costa P, Silva P. Xenobiotics and Broiler Microbiota: Molecular Insights into Bacterial Antimicrobial Resistance and Food Safety Implications for Human Health. Journal of Xenobiotics. 2025; 15(4):129. https://doi.org/10.3390/jox15040129
Chicago/Turabian StyleGonçalves, Marta, Nuno Vale, Paulo Martins da Costa, and Paula Silva. 2025. "Xenobiotics and Broiler Microbiota: Molecular Insights into Bacterial Antimicrobial Resistance and Food Safety Implications for Human Health" Journal of Xenobiotics 15, no. 4: 129. https://doi.org/10.3390/jox15040129
APA StyleGonçalves, M., Vale, N., Martins da Costa, P., & Silva, P. (2025). Xenobiotics and Broiler Microbiota: Molecular Insights into Bacterial Antimicrobial Resistance and Food Safety Implications for Human Health. Journal of Xenobiotics, 15(4), 129. https://doi.org/10.3390/jox15040129