3D-Printed Models Are an Innovation Becoming Standard in Surgical Practice—Review
Abstract
1. Introduction
2. Origins of 3D Printing
2.1. Technological Advancements and Accessibility
2.2. 3D Printing in Medicine
3. Current 3D Printing Technology
4. Discipline-Specific Applications
4.1. Vascular Surgery and Interventional Radiology
4.1.1. Aortic and Renal Aneurysms
4.1.2. Cerebral Aneurysms and Preoperative Simulations
4.1.3. Application in Pediatric Vascular Surgery
4.1.4. Challenges and Future Directions
4.2. Urology
4.3. Oncological Surgery
4.3.1. Head and Neck Oncological Surgery
4.3.2. Bone Sarcoma
4.3.3. Pediatric Tumors
4.3.4. Others
4.4. Liver Surgery
4.4.1. Hepatobiliary Surgery
4.4.2. Liver Transplantation and Biliary Stenosis
4.5. Respiratory Tract
4.6. Other Applications of 3D Printing in Surgery
4.6.1. Guide Plates: VPS Placement
4.6.2. Maxillofacial Surgery (MFS)
4.6.3. Chest Wall Reconstruction
4.6.4. Craniofacial Reconstruction in Low-Resource Settings
4.6.5. Breast Reconstruction
4.6.6. Pediatric Vitreoretinal Surgery
4.6.7. Conjoined Twin Separation
4.7. Medical Education and Patient Information
4.7.1. Simulation and Practice
4.7.2. Visualization and Understanding
4.7.3. Limitations of 3D Printing in Education
4.7.4. Future Directions in Medical Education
4.7.5. Patient Information and Understanding
4.8. Ethics, Data Privacy and Patient Consent
4.9. Costs and Accessibility
5. Discussion
Technical Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Segaran, N.; Saini, G.; Mayer, J.L.; Naidu, S.; Patel, I.; Alzubaidi, S.; Oklu, R. Application of 3D Printing in Preoperative Planning. J. Clin. Med. 2021, 10, 917. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, A.; Chen, D.; Elumalai, A.; Albers, B.; Tappa, K.; Jammalamadaka, U.; Hoegger, M.J.; Ballard, D.H. Guide for Starting or Optimizing a 3D Printing Clinical Service. Methods 2022, 206, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Szary, J.; Luis, M.S.; Mikulski, S.; Patel, A.; Schulz, F.; Tretiakow, D.; Fercho, J.; Jaguszewska, K.; Frankiewicz, M.; Pawłowska, E.; et al. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals & Mdash; Cross-Sectional Multispecialty Review. Available online: https://www.mdpi.com/1660-4601/19/6/3331 (accessed on 19 October 2024).
- Sukanya, V.S.; Panigrahy, N.; Rath, S.N. Recent Approaches in Clinical Applications of 3D Printing in Neonates and Pediatrics. Eur. J. Pediatr. 2021, 180, 323–332. [Google Scholar] [CrossRef]
- Ganguli, A.; Pagan-Diaz, G.J.; Grant, L.; Cvetkovic, C.; Bramlet, M.; Vozenilek, J.; Kesavadas, T.; Bashir, R. 3D Printing for Preoperative Planning and Surgical Training: A Review. Biomed. Microdevices 2018, 20, 65. [Google Scholar] [CrossRef]
- Villarreal, J.A.; Yoeli, D.; Masand, P.M.; Galvan, N.T.N.; Olutoye, O.O.; Goss, J.A. Hepatic Separation of Conjoined Twins: Operative Technique and Review of Three-Dimensional Model Utilization. J. Pediatr. Surg. 2020, 55, 2828–2835. [Google Scholar] [CrossRef]
- Habermann, A.C.; Timmerman, W.R.; Cohen, S.M.; Burkhardt, B.W.; Amendola, M.F. Clinical Applications of 3D Printing in Colorectal Surgery: A Systematic Review. Int. J. Colorectal. Dis. 2024, 39, 127. [Google Scholar] [CrossRef]
- Francoisse, C.A.; Sescleifer, A.M.; King, W.T.; Lin, A.Y. Three-Dimensional Printing in Medicine: A Systematic Review of Pediatric Applications. Pediatr. Res. 2021, 89, 415–425. [Google Scholar] [CrossRef]
- Tejo-Otero, A.; Buj-Corral, I.; Fenollosa-Artés, F. 3D Printing in Medicine for Preoperative Surgical Planning: A Review. Ann. Biomed. Eng. 2020, 48, 536–555. [Google Scholar] [CrossRef]
- Komada, T.; Kamomae, T.; Matsushima, M.; Hyodo, R.; Naganawa, S. Embolization Using Patient-Specific Vascular Models Created by a 3D Printer for Difficult Cases: A Report of Two Cases. Nagoya J. Med. Sci. 2022, 84, 477–483. [Google Scholar] [CrossRef]
- Le Bras, A.; Boustia, F.; Janot, K.; Le Pabic, E.; Ouvrard, M.; Fougerou-Leurent, C.; Ferre, J.-C.; Gauvrit, J.-Y.; Eugene, F. Rehearsals Using Patient-Specific 3D-Printed Aneurysm Models for Simulation of Endovascular Embolization of Complex Intracranial Aneurysms: 3D SIM Study. J. Neuroradiol. 2023, 50, 86–92. [Google Scholar] [CrossRef]
- Coles-Black, J.; Barber, T.; Bolton, D.; Chuen, J. A Systematic Review of Three-Dimensional Printed Template-Assisted Physician-Modified Stent Grafts for Fenestrated Endovascular Aneurysm Repair. J. Vasc. Surg. 2021, 74, 296–306.e1. [Google Scholar] [CrossRef]
- Mercader, C.; Vilaseca, A.; Moreno, J.L.; López, A.; Sebastià, M.C.; Nicolau, C.; Ribal, M.J.; Peri, L.; Costa, M.; Alcaraz, A. Role of the Three-Dimensional Printing Technology in Complex Laparoscopic Renal Surgery: A Renal Tumor in a Horseshoe Kidney. Int. Braz. J. Urol. 2019, 45, 1129–1135. [Google Scholar] [CrossRef]
- Lim, B.; Lee, S.; Kim, T.; Ock, J.; Song, C.; Kim, N.; Kyung, Y.S. Clinical Utility of a 3D-Printed Patient-Specific Surgical Guide for Partial Nephrectomy. Urol. Int. 2023, 107, 591–594. [Google Scholar] [CrossRef]
- Ai, G.Y.; Zhou, Z.; Huang, Z.; Zhong, J.; Liu, S.; Liu, W.; Pang, X.; Zhu, W. The Value of 3D Printing Model Combined PCNL in Kidney Stones: A Systematic Review and Meta-Analysis. Minerva Urol. Nephrol. 2024, 76, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Keyu, G.; Shuaishuai, L.; Raj, A.; Shuofeng, L.; Shuai, L.; Yuan, Z.; Haitao, Z.; Junqi, W. A 3D Printing Personalized Percutaneous Puncture Guide Access Plate for Percutaneous Nephrolithotomy: A Pilot Study. BMC Urol. 2021, 21, 184. [Google Scholar] [CrossRef]
- Li, W.-D.; Keyoumu, R.; Wang, C.; Liu, Z. 3D Printing-Guided Endovascular Repair of Enormous Twisted Thoracoabdominal Aortic Aneurysm with Branch Stenosis and Occlusion. Catheter. Cardiovasc. Interv. 2023, 101, 813–816. [Google Scholar] [CrossRef]
- Tarsitano, A.; Mazzoni, S.; Cipriani, R.; Scotti, R.; Marchetti, C.; Ciocca, L. The CAD-CAM Technique for Mandibular Reconstruction: An 18 Patients Oncological Case-Series. J. Cranio Maxillofac. Surg. 2014, 42, 1460–1464. [Google Scholar] [CrossRef] [PubMed]
- Nyirjesy, S.C.; Heller, M.; von Windheim, N.; Gingras, A.; Kang, S.Y.; Ozer, E.; Agrawal, A.; Old, M.O.; Seim, N.B.; Carrau, R.L.; et al. The Role of Computer Aided Design/Computer Assisted Manufacturing (CAD/CAM) and 3-Dimensional Printing in Head and Neck Oncologic Surgery: A Review and Future Directions. Oral Oncol. 2022, 132, 105976. [Google Scholar] [CrossRef] [PubMed]
- Evrard, R.; Schubert, T.; Paul, L.; Docquier, P.-L. Resection Margins Obtained with Patient-Specific Instruments for Resecting Primary Pelvic Bone Sarcomas: A Case-Control Study. Orthop. Traumatol. Surg. Res. 2019, 105, 781–787. [Google Scholar] [CrossRef]
- McCulloch, R.A.; Frisoni, T.; Kurunskal, V.; Donati, D.M.; Jeys, L. Computer Navigation and 3D Printing in the Surgical Management of Bone Sarcoma. Cells 2021, 10, 195. [Google Scholar] [CrossRef]
- Krauel, L.; Fenollosa, F.; Riaza, L.; Pérez, M.; Tarrado, X.; Morales, A.; Gomà, J.; Mora, J. Use of 3D Prototypes for Complex Surgical Oncologic Cases. World J. Surg. 2016, 40, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, Á.; Girón-Vallejo, Ó.; Ruiz-Pruneda, R.; Fernandez-Ibieta, M.; García-Calderon, D.; Villamil, V.; Giménez-Aleixandre, M.C.; Montoya-Rangel, C.A.; Bermejo, J.P.H. Three-Dimensional Printed Model and Virtual Reconstruction: An Extra Tool for Pediatric Solid Tumors Surgery. Eur. J. Pediatr. Surg. Rep. 2018, 6, e70. [Google Scholar] [CrossRef]
- Gavriilidis, P.; Edwin, B.; Pelanis, E.; Hidalgo, E.; de’Angelis, N.; Memeo, R.; Aldrighetti, L.; Sutcliffe, R.P. Navigated Liver Surgery: State of the Art and Future Perspectives. Hepatobiliary Pancreat. Dis. Int. 2022, 21, 226–233. [Google Scholar] [CrossRef]
- Lopez-Lopez, V.; Robles-Campos, R.; García-Calderon, D.; Lang, H.; Cugat, E.; Jiménez-Galanes, S.; Férnandez-Cebrian, J.M.; Sánchez-Turrión, V.; Fernández-Fernández, J.M.; Barrera-Gómez, M.Á.; et al. Applicability of 3D-Printed Models in Hepatobiliary Surgey: Results from “LIV3DPRINT” Multicenter Study. HPB 2021, 23, 675–684. [Google Scholar] [CrossRef]
- Pereira da Silva, N.; Abreu, I.; Serôdio, M.; Ferreira, L.; Alexandrino, H.; Donato, P. Advanced Hepatic Vasculobiliary Imaging Segmentation and 3D Reconstruction as an Aid in the Surgical Management of High Biliary Stenosis. BMC Med. Imaging 2020, 20, 120. [Google Scholar] [CrossRef]
- Park, S.; Ahn, J.; Kim, H.-J.; Choi, E.-J.; Kim, H.Y. Endotracheal Intubation Using a Three-Dimensional Printed Airway Model in a Patient with Pierre Robin Sequence and a History of Tracheostomy -a Case Report. Korean J. Anesthesiol. 2021, 74, 262–265. [Google Scholar] [CrossRef]
- Young, J.S.; McAllister, M.; Marshall, M.B. Three-Dimensional Technologies in Chest Wall Resection and Reconstruction. J. Surg. Oncol. 2023, 127, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Langridge, B.; Momin, S.; Coumbe, B.; Woin, E.; Griffin, M.; Butler, P. Systematic Review of the Use of 3-Dimensional Printing in Surgical Teaching and Assessment. J. Surg. Educ. 2018, 75, 209–221. [Google Scholar] [CrossRef]
- Chang, B.; Powell, A.; Ellsperman, S.; Wehrmann, D.; Landry, A.; Jabbour, N.; Goudy, S.; Zopf, D. Multicenter Advanced Pediatric Otolaryngology Fellowship Prep Surgical Simulation Course with 3D Printed High-Fidelity Models. Otolaryngol. Neck Surg. 2020, 162, 658–665. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Colon, R.; Nayak, V.V.; Parente, P.E.L.; Leucht, P.; Tovar, N.; Lin, C.C.; Rezzadeh, K.; Hacquebord, J.H.; Coelho, P.G.; Witek, L. The Presence of 3D Printing in Orthopedics: A Clinical and Material Review. J. Orthop. Res. 2023, 41, 601–613. [Google Scholar] [CrossRef]
- Wilcox, B.; Mobbs, R.J.; Wu, A.-M.; Phan, K. Systematic Review of 3D Printing in Spinal Surgery: The Current State of Play. J. Spine Surg. 2017, 3, 433–443. [Google Scholar] [CrossRef]
- Phan, K.; Sgro, A.; Maharaj, M.M.; D’Urso, P.; Mobbs, R.J. Application of a 3D Custom Printed Patient Specific Spinal Implant for C1/2 Arthrodesis. J. Spine Surg. 2016, 2, 314–318. [Google Scholar] [CrossRef]
- Yamaki, V.N.; Cancelliere, N.M.; Nicholson, P.; Rodrigues, M.; Radovanovic, I.; Sungur, J.-M.; Krings, T.; Pereira, V.M. Biomodex Patient-Specific Brain Aneurysm Models: The Value of Simulation for First in-Human Experiences Using New Devices and Robotics. J. Neurointerventional Surg. 2021, 13, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Soliński, D.; Celer, M.; Dyś, K.; Witkiewicz, W.; Wiewiora, M. 3D Printing in the Endovascular Treatment of Visceral Artery Aneurysms. Medicine 2023, 102, e35844. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Schiavina, R.; Barbaresi, U.; Angiolini, A.; Pultrone, C.V.; Manferrari, F.; Bortolani, B.; Cercenelli, L.; Borghesi, M.; Chessa, F.; et al. 3D Reconstruction and Physical Renal Model to Improve Percutaneous Punture during PNL. Int. Braz. J. Urol. 2019, 45, 1281–1282. [Google Scholar] [CrossRef]
- Mahendru, S.; Jain, R.; Aggarwal, A.; Aulakh, H.S.; Jain, A.; Khazanchi, R.K.; Sarin, D. CAD-CAM vs conventional technique for mandibular reconstruction with free fibula flap: A comparison of outcomes. Surg. Oncol. 2020, 34, 284–291. [Google Scholar] [CrossRef]
- Gouin, F.; Paul, L.; Odri, G.A.; Cartiaux, O. Computer-Assisted Planning and Patient-Specific Instruments for Bone Tumor Resection within the Pelvis: A Series of 11 Patients. Sarcoma 2014, 2014, 842709. [Google Scholar] [CrossRef]
- Docquier, P.-L.; Paul, L.; Cartiaux, O.; Delloye, C.; Banse, X. Computer-Assisted Resection and Reconstruction of Pelvic Tumor Sarcoma. Sarcoma 2010, 2010, 125162. [Google Scholar] [CrossRef][Green Version]
- Pereira, H.R.; Barzegar, M.; Hamadelseed, O.; Esteve, A.V.; Munuera, J. 3D Surgical Planning of Pediatric Tumors: A Review. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Souzaki, R.; Kinoshita, Y.; Ieir, S.; Kawakubo, N.; Obata, S.; Jimbo, T.; Koga, Y.; Hashizume, M.; Taguchi, T. Preoperative Surgical Simulation of Laparoscopic Adrenalectomy for Neuroblastoma Using a Three-Dimensional Printed Model Based on Preoperative CT Images—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/26440294/ (accessed on 31 October 2024).
- Girón-Vallejo, Ó.; García-Calderón, D.; Ruiz-Pruneda, R.; Cabello-Laureano, R.; Doménech-Abellán, E.; Fuster-Soler, J.L.; Ruiz-Jiménez, J.I.; Girón-Vallejo, Ó.; García-Calderón, D.; Ruiz-Pruneda, R.; et al. Three-Dimensional Printed Model of Bilateral Wilms Tumor: A Useful Tool for Planning Nephron Sparing Surgery. Pediatr. Blood Cancer 2018, 65, e26894. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, J.; Chen, Q.; Li, T.; Chen, K.; Yu, Q.; Lin, X. Three-Dimensional Printing Technology for Localised Thoracoscopic Segmental Resection for Lung Cancer: A Quasi-Randomised Clinical Trial. World J. Surg. Oncol. 2020, 18, 223. [Google Scholar] [CrossRef] [PubMed]
- Santiago, L.; Adrada, B.E.; Caudle, A.S.; Clemens, M.W.; Black, D.M.; Arribas, E.M. The Role of Three-Dimensional Printing in the Surgical Management of Breast Cancer. J. Surg. Oncol. 2019, 120, 897–902. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Zhang, Q.; Zhao, C.; Li, J.; Li, X.; Li, G.; Chen, J.; Peng, D.; Wang, Y.; et al. Total Thyroidectomy for Giant Nodular Goiter Guided by Pre-Operative 3D Computed Tomography Reconstruction and 3D Printing: A Case Report. Medicine 2022, 101, e32456. [Google Scholar] [CrossRef]
- Fukumitsu, K.; Ishii, T.; Ogiso, S.; Yoh, T.; Uchida, Y.; Ito, T.; Seo, S.; Hata, K.; Uemoto, S.; Hatano, E. Impact of Patient-Specific Three-Dimensional Printed Liver Models on Hepatic Surgery Safety: A Pilot Study. HPB 2023, 25, 1083–1092. [Google Scholar] [CrossRef]
- Ishii, T.; Fukumitsu, K.; Ogawa, E.; Okamoto, T.; Uemoto, S. Living Donor Liver Transplantation in Situs Inversus Totalis with a Patient-Specific Three-Dimensional Printed Liver Model. Pediatr. Transplant. 2020, 24, e13675. [Google Scholar] [CrossRef]
- Stramiello, J.A.; Saddawi-Konefka, R.; Ryan, J.; Brigger, M.T. The Role of 3D Printing in Pediatric Airway Obstruction: A Systematic Review. Int. J. Pediatr. Otorhinolaryngol. 2020, 132, 109923. [Google Scholar] [CrossRef]
- Hatachi, G.; Matsumoto, K.; Miyazaki, T.; Tsuchiya, T.; Taniguchi, D.; Doi, R.; Watanabe, H.; Nakatsukasa, T.; Matsuo, N.; Nagayasu, T. Enhanced Airway Stenting Using a Preoperative, Three-Dimensionally Printed Airway Model Simulation. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 1591–1593. [Google Scholar] [CrossRef]
- Huang, L.; Wang, L.; He, J.; Zhao, J.; Zhong, D.; Yang, G.; Guo, T.; Yan, X.; Zhang, L.; Li, D.; et al. Tracheal suspension by using 3-dimensional printed personalized scaffold in a patient with tracheomalacia. J. Thorac. Dis. 2016, 8, 3323–3328. [Google Scholar] [CrossRef]
- Les, A.S.; Ohye, R.G.; Filbrun, A.G.; Ghadimi Mahani, M.; Flanagan, C.L.; Daniels, R.C.; Kidwell, K.M.; Zopf, D.A.; Hollister, S.J.; Green, G.E. 3D-printed, externally-implanted, bioresorbable airway splints for severe tracheobronchomalacia. Laryngoscope 2019, 129, 1763–1771. [Google Scholar] [CrossRef]
- Morrison, R.J.; Hollister, S.J.; Niedner, M.F.; Mahani, M.G.; Park, A.H.; Mehta, D.K.; Ohye, R.G.; Green, G.E. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci. Transl. Med. 2015, 7, 285ra64. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Yi, J.; Wu, Y.; Wang, S.; Qu, Y.; Cai, Q. Precise Location of the Ventricular Catheter Tip in Ventriculoperitoneal Shunt Placement Guided by 3D Printed Individualized Guide. Clin. Neurol. Neurosurg. 2023, 229, 107730. [Google Scholar] [CrossRef] [PubMed]
- Louvrier, A.; Marty, P.; Barrabé, A.; Euvrard, E.; Chatelain, B.; Weber, E.; Meyer, C. How Useful Is 3D Printing in Maxillofacial Surgery? J. Stomatol. Oral Maxillofac. Surg. 2017, 118, 206–212. [Google Scholar] [CrossRef]
- Tan, D.; Yao, J.; Hua, X.; Li, J.; Xu, Z.; Wu, Y.; Wu, W. Application of 3D modeling and printing technology in accurate resection of complicated thoracic tumors. Ann. Transl. Med. 2020, 8, 1342. [Google Scholar] [CrossRef]
- Bečulić, H.; Spahić, D.; Begagić, E.; Pugonja, R.; Skomorac, R.; Jusić, A.; Selimović, E.; Mašović, A.; Pojskić, M. Breaking Barriers in Cranioplasty: 3D Printing in Low and Middle-Income Settings—Insights from Zenica, Bosnia and Herzegovina. Medicina 2023, 59, 1732. [Google Scholar] [CrossRef] [PubMed]
- Leme, J.C.; Spinosa, R.M.d.O.; Leal, S.O.; Hirsch, A.B.B.; Lodovico, A.; Stramandinoli-Zanicotti, R.T.; Kunkel, M.E.; Moura, F.A. Development of Low-Cost and Personalized External Silicone Breast Prosthesis Produced by Additive Manufacturing for Women Who Have Undergone Mastectomy: A Pilot Study. Clin. Biomech. 2023, 110, 106123. [Google Scholar] [CrossRef]
- Di-Luciano, A.; Gómez-Nuñez, R.; Acosta, F.; Rivas-Vega, L.; Morales-Cantón, V.; Trujillo-Alvarez, M.; Cernichiaro-Espinosa, L. Trocar Shortening for Pediatric Vitreoretinal Surgery with a 3D Printed Trocar Spacer: Report of Two Cases. Arch. Soc. Española Oftalmol. 2022, 97, 473–476. [Google Scholar] [CrossRef]
- Iqbal, N.; Fletcher, J.; Bassett, P.; Hart, A.; Lung, P.; Tozer, P. Exploring Methods of Improving Patient Understanding and Communication in a Complex Anal Fistula Clinic: Results from a Randomized Controlled Feasibility Study. Colorectal. Dis. 2024, 26, 518–526. [Google Scholar] [CrossRef]
- Rizzo, M.L.; Turco, S.; Spina, F. 3D Printing and 3D Bioprinting Technology in Medicine: Ethical and Legal Issues. Clin. Ter. 2023, 174, 80–84. [Google Scholar] [CrossRef]
- Deane, A.S.; Byers, K.T. A Review of the Ethical Considerations for the Use of 3D Printed Materials in Medical and Allied Health Education and a Proposed Collective Path Forward. Anat. Sci. Educ. 2024, 17, 1164–1173. [Google Scholar] [CrossRef]
- Hellman, S.; Frisch, P.; Platzman, A.; Booth, P. 3D Printing in a hospital: Centralized clinical implementation and applications for comprehensive care. Digital Health 2023, 9, 20552076231221899. [Google Scholar] [CrossRef]
- Awuah, W.A.; Tenkorang, P.O.; Adebusoye, F.T.; Ng, J.C.; Wellington, J.; Abdul-Rahman, T.; Nazir, A.; Mustapha, M.J.; Bulut, H.; Papadakis, M. 3D Printing in Surgery: Revolutionizing Trauma and Fracture Care in Low and Middle-Income Countries. Postgrad. Med. J. 2024, 100, 1–3. [Google Scholar] [CrossRef]
- Beroza, A. 3D Printing in Low Resource Healthcare Settings: Analysis of Potential Implementations. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2019. [Google Scholar] [CrossRef]
- Thorn, C.; Ballard, J.; Lockhart, C.; Crone, A.; Aarvold, A. The Perioperative Utility of 3D Printed Models in Complex Surgical Care: Feedback from 106 Cases. Ann. R. Coll. Surg. Engl. 2023, 105, 747–753. [Google Scholar] [CrossRef]
- Bastawrous, S. Utility and Costs Benchmarked in a New 3D Printing Service—Optimizing the Path Forward. J. Am. Coll. Radiol. 2023, 20, 205–206. [Google Scholar] [CrossRef] [PubMed]
- Valverde, I.; Gomez-Ciriza, G.; Hussain, T.; Suarez-Mejias, C.; Velasco-Forte, M.N.; Byrne, N.; Ordoñez, A.; Gonzalez-Calle, A.; Anderson, D.; Hazekamp, M.G.; et al. Three-Dimensional Printed Models for Surgical Planning of Complex Congenital Heart Defects: An International Multicentre Study European Journal of Cardio-Thoracic Surgery Oxford Academic. Available online: https://academic.oup.com/ejcts/article/52/6/1139/3925909 (accessed on 21 October 2024).
- Paessler, A.; Forman, C.; Minhas, K.; Patel, P.A.; Carmichael, J.; Smith, L.; Jaradat, F.; Assia-Zamora, S.; Arslan, Z.; Calder, F.; et al. 3D Printing: A Useful Tool for Safe Clinical Practice in Children with Complex Vasculature—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/38627026/ (accessed on 21 October 2024).
- Zhang, K.; Fu, Q.; Yoo, J.; Chen, X.; Chandra, P.; Mo, X.; Song, L.; Atala, A.; Zhao, W. 3D Bioprinting of Urethra with PCL/PLCL Blend and Dual Autologous Cells in Fibrin Hydrogel: An in Vitro Evaluation of Biomimetic Mechanical Property and Cell Growth Environment. Acta Biomater. 2017, 50, 154–164. [Google Scholar] [CrossRef]
- Booth, D.; Afshari, R.; Ghovvati, M.; Shariati, K.; Sturm, R.; Annabi, N. Advances in 3D Bioprinting for Urethral Tissue Reconstruction. Trends Biotechnol. 2024, 42, 544–559. [Google Scholar] [CrossRef] [PubMed]
- Klak, M.; Wszoła, M.; Berman, A.; Filip, A.; Kosowska, A.; Olkowska-Truchanowicz, J.; Rachalewski, M.; Tymicki, G.; Bryniarski, T.; Kołodziejska, M.; et al. Bioprinted 3D Bionic Scaffolds with Pancreatic Islets as a New Therapy for Type 1 Diabetes—Analysis of the Results of Preclinical Studies on a Mouse Model. J. Funct. Biomater. 2023, 14, 371. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Vahabi, H.; Kumaravel, V. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections. ACS Biomater. Sci. Eng. 2023, 9, 4020–4044. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Qiao, Y.; Deng, H.; Zhang, Y.; Lu, S.; Zhao, Y.; Yang, X.; Wang, Z.; Li, M.; et al. Light-weight Triangular Mesh Deformable Reconstruction for Low-Cost 3D Surface Imaging in Minimally Invasive Surgery. Comput. Methods Programs Biomed. 2025, 241, 107152. [Google Scholar]
Simulation Method | Evaluation Technique | Analysis Approach | Key Findings | Corresponding Reports |
---|---|---|---|---|
Virtual Reality (Virtual Surgery Simulation) | Preoperative imaging Comparison | Quantitative Qualitative | Improved surgical planning and precision | [5,6] |
3D Model Printing | Model accuracy Assessment | Analysis | Enhanced visualization of critical structures | [3,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] |
Surgical Simulation Models | Surgeon feedback and performance | Time and Error Reduction Metrics | Increased preparedness and confidence level | [3,4,7,9,30] |
Category | Key Points |
---|---|
Opportunities |
|
Clinical Benefits |
|
Challenges |
|
Future Directions |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopeć, J.; Kukulska, J.; Lewandowska, M. 3D-Printed Models Are an Innovation Becoming Standard in Surgical Practice—Review. Surg. Tech. Dev. 2025, 14, 33. https://doi.org/10.3390/std14030033
Kopeć J, Kukulska J, Lewandowska M. 3D-Printed Models Are an Innovation Becoming Standard in Surgical Practice—Review. Surgical Techniques Development. 2025; 14(3):33. https://doi.org/10.3390/std14030033
Chicago/Turabian StyleKopeć, Jakub, Justyna Kukulska, and Magdalena Lewandowska. 2025. "3D-Printed Models Are an Innovation Becoming Standard in Surgical Practice—Review" Surgical Techniques Development 14, no. 3: 33. https://doi.org/10.3390/std14030033
APA StyleKopeć, J., Kukulska, J., & Lewandowska, M. (2025). 3D-Printed Models Are an Innovation Becoming Standard in Surgical Practice—Review. Surgical Techniques Development, 14(3), 33. https://doi.org/10.3390/std14030033