Genetic Diversity and Gains from Selection for Fruit and Bean Physical Traits from the Conilon Coffee Genotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Fruit Collection and Analysis
2.3. Genetic Parameters
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, A.P.; Rakotonasolo, F. Six New Species of Coffee (Coffea) from Northern Madagascar. Kew Bull. 2021, 76, 497–511. [Google Scholar] [CrossRef]
- Salvador, H.P.; Berilli, A.P.C.G.; Rodrigues, W.P.; Mazzafera, P.; Partelli, F.L. A Climate Change Perspective on the Selection, Development, and Management of Coffea canephora Genotypes. Adv. Bot. Res. 2024, 10. [Google Scholar] [CrossRef]
- dos Santos, M.M.; Oliveira, M.G.; Cassol, D.; Rodrigues, W.P.; Falqueto, A.R.; Ramalho, J.C.; Partelli, F.L. Genotypic Diversity of Coffea canephora cv. Conilon Identified through Leaf Morpho- and Eco-Physiological Traits. Sci. Hortic. 2024, 324, 112603. [Google Scholar] [CrossRef]
- Silva, L.O.E.; Rodrigues, M.J.L.; Ferreira, M.F.d.S.; de Almeida, R.N.; Ramalho, J.C.; Rakocevic, M.; Partelli, F.L. Modifications in Floral Morphology of Coffea spp. Genotypes at Two Distinct Elevations. Flora 2024, 310, 152443. [Google Scholar] [CrossRef]
- Partelli, F.L.; Oliosi, G.; Farah, A.; Paula, J.d.; Oliveira, H.F.d.; Salvador, H. SALUTAR: First cultivar bred for soluble coffee production and health. Funct. Plant Breed. J. 2022, 4, 59–65. [Google Scholar] [CrossRef]
- Rocha, R.B.; Teixeira, A.L.; Ramalho, A.R.; Espindula, M.C.; Pereira Lunz, A.M.; Souza, F.D.F. Coffea canephora Breeding: Estimated and Achieved Gains from Selection in the Western Amazon, Brazil. Ciênc. Rural. 2021, 51, e20200713. [Google Scholar] [CrossRef]
- Conab, C.N.D.A. Acompanhamento da Safra Brasileira de Café; CONAB: Brasilia, Brazil, 2023; Volume 10. [Google Scholar]
- Damatta, F.M.; Ramalho, J.D.C. Impacts of Drought and Temperature Stress on Coffee Physiology and Production: A Review. Braz. J. Plant Physiol. 2006, 18, 55–81. [Google Scholar] [CrossRef]
- Charrier, A.; Eskes, A.B. Botany and Genetics of Coffee. In Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, Traders, and Researchers; Wintgens, J.N., Ed.; WILEY-VCH: Darmstadt, Germany, 2004; pp. 25–56. ISBN 9783527307319. [Google Scholar]
- de Souza, C.A.; Rocha, R.B.; Dos Santos, M.R.A.; Lopes, T.A.; Teixeira, A.L.; Espindula, M.C. In Vitro Pollination and Fluorescence Microscopy for Characterization of Gametophytic Self-Incompatibility of Coffea canephora Pierre Ex A. Froehner. Crop Breed. Appl. Biotechnol. 2021, 21, e37692142. [Google Scholar] [CrossRef]
- Ferrão, M.A.G.; Souza, E.M.R.; Da Fonseca, A.F.A.; Ferrão, R.G. Self-Incompatibility and Sustainable Production of Conilon Coffee. In Conilon Coffee; Ferrão, R.G., Fonseca, A.F.A.d., Ferrão, M.A.G., De Muner, L.H., Eds.; INCAPER: Vitória, Brazil, 2019; pp. 203–221. ISBN 978-85-89274-32-6. [Google Scholar]
- Dubberstein, D.; Partelli, F.L.; Guilhen, J.H.S.; Rodrigues, W.P.; Ramalho, J.C.; Ribeiro-Barros, A.I. Biometric Traits as a Tool for the Identification and Breeding of Coffea canephora Genotypes. Genet. Mol. Res. 2020, 19, gmr18541. [Google Scholar] [CrossRef]
- Ferrão, M.A.G.; de Mendonça, R.F.; Fonseca, A.F.A.; Ferrão, R.G.; Senra, J.F.B.; Volpi, P.S.; Filho, A.C.V.; Comério, M. Characterization and Genetic Diversity of Coffea canephora Accessions in a Germplasm Bank in Espírito Santo, Brazil. Crop Breed. Appl. Biotechnol. 2021, 21, 36132123. [Google Scholar] [CrossRef]
- Oliveira, L.N.L.d.; Rocha, R.B.; Ferreira, F.M.; Spinelli, V.M.; Ramalho, A.R.; Teixeira, A.L. Selection of Coffea canephora Parents from the Botanical Varieties Conilon and Robusta for the Production of Intervarietal Hybrids. Ciênc. Rural. 2018, 48, 4. [Google Scholar] [CrossRef]
- Fonseca, A.F.A.d.; Sediyama, T.; Cruz, C.D.; Sakaiyama, N.S.; Gava Ferrão, M.A.; Ferrão, R.G.; Bragança, S.M. Divergência Genética Em Café Conilon. Pesqui. Agropecu. Bras. 2006, 41, 599–605. [Google Scholar] [CrossRef]
- Fonseca, A.F.A.d.; Ferrão, M.A.G.; Ferrão, R.G.; Verdin Filho, A.C.; Volpi, P.S.; Zucateli, F. ‘Conilon Vitória—Incaper 8142’: Improved Coffea canephora Var. Kouillou Clone Cultivar for the State of Espírito Santo. Crop Breed. Appl. Biotechnol. 2004, 4, 503–505. [Google Scholar] [CrossRef]
- Bragança, S.M.; De Carvalho, C.H.S.; Da Fonseca, A.F.A.; Ferrão, R.G. Variedades Clonais de Café Conilon Para o Estado Do Espírito Santo. Pesqui. Agropecu. Bras. 2001, 36, 765–770. [Google Scholar] [CrossRef]
- de Morais, J.A.; Rocha, R.B.; Alves, E.A.; Espindula, M.C.; Teixeira, A.L.; de Souza, C.A. Beverage Quality of Coffea canephora Genotypes in the Western Amazon, Brazil. Acta Sci. Agron. 2021, 43, e52095. [Google Scholar] [CrossRef]
- Moraes, M.S.; Rocha, R.B.; Teixeira, A.L.; Espindula, M.C.; Silva, C.A.; Lunz, A.M.P. Adaptability and Stability of Coffea canephora Pierre Ex Froehner Genotypes in the Western Amazon. Ciênc. Rural. 2020, 50, e20190087. [Google Scholar] [CrossRef]
- Partelli, F.L.; Golynski, A.; Ferreira, A.; Martins, M.Q.; Mauri, A.L.; Ramalho, J.C.; Vieira, H.D. Andina—First Clonal Cultivar of High-Altitude Conilon Coffee. Crop Breed. Appl. Biotechnol. 2019, 19, 476–480. [Google Scholar] [CrossRef]
- Teixeira, A.L.; Rocha, R.B.; Espindula, M.C.; Ramalho, A.R.; Júnior, J.R.V.; Alves, E.A.; Lunz, A.M.P.; Souza, F.d.F.; Costa, J.N.M.; Fernandes, C.d.F. Amazonian Robustas—New Coffea canephora Coffee Cultivars for the Western Brazilian Amazon. Crop Breed. Appl. Biotechnol. 2020, 20, 1–5. [Google Scholar] [CrossRef]
- Ferrão, R.G.; Ferrão, M.A.G.; Volpi, P.S.; Verdin Filho, A.C.; da Fonseca, A.F.A.; Senra, J.F.B.; Comério, M.; de Mendonça, R.F.; Ferrão, L.M.V. ES 8152-CONQUISTA: Cultivar de café conilon propagada por sementes para os produtores de base familiar e sua utilização no melhoramento genético para o estado do Espírito Santo. Multi-Sci. Res. 2019, 2, 2595–6590. [Google Scholar]
- Bergo, C.L.; Miqueloni, D.P.; Lunz, A.M.P.; de Assis, G.M.L. Estimation of Genetic Parameters and Selection of Coffea canephora Progenies Evaluated in Brazilian Western Amazon. Coffee Sci. 2020, 15, e151663. [Google Scholar] [CrossRef]
- Caixeta, E.T.; Pestana, K.N.; Pestana, R.K.N. Melhoramento Do Cafeeiro: Ênfase Na Aplicação Dos Marcadores Moleculares. In Tópicos Especiais em Produção Vegetal V; Garcia, G.d.O., dos Reis, E.F., Lima, J.S.d.S., Xavier, A.C., Rodrigues, W.N., Eds.; CAUFES: Alegre, Brazil, 2015; Volume 5, pp. 154–179. ISBN 978-85-61890-69-8. [Google Scholar]
- Verdin Filho, A.C.; Volpi, P.S.; Colodetti, T.V.; Rodrigues, W.N.; Tomaz, M.A.; Martins, L.D.; Brinate, S.V.B.; Ferrao, R.G.; Fonseca, A.F.A.d.; Ferrao, M.A.G.; et al. The Permanence in the Plantation after Harvest Damages Physical Characteristics of Conilon Coffee Grains. Afr. J. Agric. Res. 2018, 13, 911–917. [Google Scholar] [CrossRef]
- Cruz, C.D.; Carneiro, P.C.S.; Regazzi, A.J. Modelos Biométricos Aplicados Ao Melhoramento Genético, 3rd ed.; UFV: Viçosa, Brazil, 2004; ISBN 8572691510. [Google Scholar]
- Souza, C.A.d.; Rocha, R.B.; Alves, E.A.; Teixeira, A.L.; Dalazen, J.R.; Fonseca, A.F.A.d. Characterization of Beverage Quality in Coffea canephora Pierre Ex A. Froehner. Coffee Sci. 2018, 13, 210–218. [Google Scholar] [CrossRef]
- Ramalho, A.R.; Rocha, R.B.; Souza, F.F.; Veneziano, W.; Teixeira, A.L. Progresso Genético Da Produtividade de Café Beneficiado Com a Seleção de Clones de Cafeeiro ‘Conilon.’ ver. Ciênc. Agron. 2016, 47, 516–523. [Google Scholar] [CrossRef]
- Vacarelli, V.N.; Medina Filho, H.P.; Fazuoli, L.C. Avaliacao de Frutos Chochos e de Sementes Do Tipo Moca No Rendimento de Hibridos Arabustas Tetraploides (Coffea crabica x C. canephora). Biosci. J. 2003, 19, 155–165. [Google Scholar]
- Ferreira, A.; Cecon, P.R.; Cruz, C.D.; Ferrão, R.G.; Da Silva, M.F.; Da Fonseca, A.F.A.; Ferrão, E.M.A.G. Seleção Simultânea de Coffea canephora Por Meio da Combinação de Análise de Fatores e Índices de Seleção. Pesqui. Agropecu. Bras. 2005, 40, 1189–1195. [Google Scholar] [CrossRef]
- Smith, H.F. A Discriminant Function for Plant Selection. Ann. Eugen. 1936, 7, 240–250. [Google Scholar] [CrossRef]
- Gonçalves, G.M.; Viana, A.P.; Neto, F.V.B.; Pereira, M.G.; Pereira, T.N.S. Seleção e Herdabilidade Na Predição de Ganhos Genéticos Em Maracujá-Amarelo. Pesqui. Agropecu. Bras. 2007, 42, 193–198. [Google Scholar] [CrossRef]
- Lessa, L.S.; Ledo, C.A.d.S.; Santos, V.d.S.; Silva, S.d.O.E.; Peixoto, C.P. Seleção de Híbridos Diplóides (AA) de Bananeira Com Base Em Três Índices Não Paramétricos. Bragantia 2010, 69, 525–534. [Google Scholar] [CrossRef]
- Mulamba, N.N.; Mock, J. Improvement of Yield Potential of the ETO Blanco Maize (Zea mays L.) Population by Breeding for Plant Traits [Mexico]. Egypt. J. Genet. Cytol. 1978. [Google Scholar]
- Wricke, G.; Weber, E. Quantitative Genetics and Selection in Plant Breeding; De Gruyter: Berlin, Germany, 1986; ISBN 978-3-11-007561-8. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Zeitsch. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; Araújo Filho, J.C.d.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; ISBN 9788570358004. [Google Scholar]
- Ferrão, R.G.; da Fonseca, A.F.A.; Ferrão, M.A.G.; De Muner, L.H. Café Conilon, 2nd ed.; Incaper: Vitória, Brazil, 2017; Volume 2, ISBN 978-85-89274-26-5. [Google Scholar]
- Prezotti, L.C.; Gomes, J.A.; Dadalto, G.G.; Oliveira, J.A. Manual de Recomendação de Calagem e Adubação Para o Estado Do Espírito Santo—5° Aproximação; SEEA/INCAPER/CEDAGRO: Vitória, Brazil, 2007. [Google Scholar]
- Partelli, F.L.; Pereira, L.L.; Oliosi, G.; Campanharo, A.; Covre, A.M.; Alberto, N.J.; Salvador, H.P. Research and Development in Conilon and Robusta Coffee; Khas Editora: São Mateus, Brazil, 2024. [Google Scholar]
- Moreira, S.M.C.; Chaves, M.A.; Oliveira, L.M. Comparacao Da Eficiencia de Liquidos Na Determinacao Da Massa Especifica Aparente de Graos Agricolas. Ver. Bras. Armazen. 1985, 9–10, 22–24. [Google Scholar]
- Cruz, C.D.; Regazzi, A.; Carneiro, P.C.S. Modelos Biométricos Aplicados Ao Melhoramento Genético, 4th ed.; UFV: Viçosa, Brazil, 2012; Volume 1, ISBN 8572694331. [Google Scholar]
- De Resende, M.D.V. Biometric Genetics and Statistics in the Breeding of Perennial Crops (Portuguese); Embrapa Informação Tecnológica; Embrapa Florestas: Brasilia, Brazil, 2002; ISBN 85-7383-161-8. [Google Scholar]
- Partelli, F.L.; Oliosi, G.; Dalazen, J.R.; da Silva, C.A.; Vieira, H.D.; Espindula, M.C. Proportion of Ripe Fruit Weight and Volume to Green Coffee: Differences in 43 Genotypes of Coffea canephora. Agron. J. 2021, 113, 1050–1057. [Google Scholar] [CrossRef]
- Cecon, P.R.; Silva, F.F.; Ferreira, A.; Ferrão, R.G.; Carneiro, A.P.S.; Detmann, E.; Faria, P.N.; Morais, T.S.D.S. Análise de Medidas Repetidas Na Avaliação de Clones de Café “Conilon”. Pesqui. Agropecu. Bras. 2008, 43, 1171–1176. [Google Scholar] [CrossRef]
- Silva, D.O.d.; Ferreira, F.M.; Rocha, R.B.; Espindula, M.C.; Spinelli, V.M. Genetic Progress with Selection of Coffea canephora Clones of Superior Processed Coffee Yield. Ciênc. Rural 2018, 48, e20170443. [Google Scholar] [CrossRef]
- De Resende, M.D.V.; Furlani-Júnior, E.; de Moraes, M.L.T.; Fazuoli, L.C. Estimativas de Parâmetros Genéticos e Predição de Valores Genotípicos No Melhoramento Do Cafeeiro Pelo Procedimento Reml/Blup. Bragantia 2001, 60, 185–193. [Google Scholar] [CrossRef]
- Boote, K.J.; Hopf, N.; Jones, J.W.; Tsuji, G.Y.; White, J.W.; Singh, U.; Hwang, S.Y. Modeling Crop Growth and Yield as Affected by Temperature, Water, and Nutrients. Crop Sci. 2022, 62, 171–185. [Google Scholar]
- Kyriacou, M.C.; Rouphael, Y. Seasonal Variations and Environmental Effects on Crop Quality Traits: A Review of Horticultural Applications. J. Hort. Sci. 2018, 45, 489–500. [Google Scholar]
- Montillet, J.L.; Rumeau, D.; Leonhardt, N.; Rey, P. Abiotic Stress and Morphological Adaptations in Crop Plants: Implications for Fruit Development. Plant Cell Environ. 2021, 44, 1417–1435. [Google Scholar] [CrossRef]
Chemical Property | Depth (cm) | |||||
---|---|---|---|---|---|---|
0–10 | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | |
K (mg dm−3) | 110 | 95 | 74 | 57 | 52 | 46 |
S (mg dm−3) | 15 | 11 | 29 | 15 | 15 | 17 |
Ca (cmol dm−3) | 3.8 | 3.4 | 1.9 | 1 | 0.7 | 0.6 |
Mg (cmol dm3) | 1 | 0.9 | 0.4 | 0.3 | 0.1 | 0.1 |
Al (cmol dm−3) | 0 | 0 | 0.3 | 0.7 | 0.8 | 0.8 |
H+Al | 1.6 | 1.8 | 2.4 | 2.9 | 3.1 | 3.1 |
pH-H2O | 6.6 | 6.5 | 5.3 | 4.8 | 4.8 | 4.8 |
Organic matter (dag dm−3) | 2.1 | 1.7 | 1.1 | 0.8 | 0.7 | 0.5 |
Fe (mg dm−3) | 140 | 138 | 126 | 94 | 88 | 87 |
Zn (mg dm−3) | 10.2 | 4.5 | 2.9 | 1.1 | 0.6 | 0.5 |
Cu (mg dm−3) | 3.4 | 4.3 | 3 | 1.9 | 1.2 | 1 |
Mn (mg dm−3) | 207 | 174 | 104 | 46 | 44 | 40 |
B (mg dm−3) | 0.81 | 0.83 | 0.58 | 0.55 | 0.56 | 0.61 |
Na (mg dm−3) | 11 | 37 | 8 | 6 | 5 | 4 |
Particle size (g kg−1) | ||||||
Sand | 434 | 352 | 188 | 368 | 366 | 376 |
Silt | 86 | 168 | 212 | 32 | 74 | 124 |
Clay | 480 | 480 | 600 | 600 | 560 | 500 |
Identification | Name | Identification | Name | Identification | Name |
---|---|---|---|---|---|
1 | Verdim R | 15 | Bamburral | 29 | Tardio C |
2 | B01 | 16 | Pirata | 30 | A1 |
3 | Bicudo | 17 | Peneirão | 31 | Cheique |
4 | Alecrim | 18 | Z39 | 32 | P2 |
5 | 700 | 19 | Z35 | 33 | Emcapa 02 |
6 | CH1 | 20 | Z40 | 34 | Emcapa 153 |
7 | Imbigudinho | 21 | Z29 | 35 | P1 |
8 | AD1 | 22 | Z38 | 36 | LB1 |
9 | Graudão HP | 23 | Z18 | 37 | 122 |
10 | Valcir P | 24 | Z37 | 38 | Verdim D |
11 | Beira Rio 8 | 25 | Z21 | 39 | Emcapa 143 |
12 | Tardio V | 26 | Z36 | 40 | Ouro negro 1 |
13 | AP | 27 | Ouro Negro | 41 | Ouro negro 2 |
14 | L80 | 28 | 18 | 42 | Clementino |
Fruit Traits | ||||||
Genetic Parameter | DMF | DFV | FL | FWG | FWS | DMH |
0.006 | 0.020 | 0.013 | 0.007 | 0.003 | 0.002 | |
0.004 | 0.014 | 0.004 | 0.010 | 0.002 | 0.001 | |
0.001 | 0.005 | 0.001 | 0.474 | 0.001 | 0.001 | |
0.011 | 0.039 | 0.018 | 0.490 | 0.005 | 0.003 | |
0.56 ± 0.12 | 0.51 ± 0.11 | 0.71 ± 0.13 | 0.01 ± 0.02 | 0.53 ± 0.11 | 0.62 ± 0.12 | |
0.91 ± 0.15 | 0.88 ± 0.15 | 0.94 ± 0.15 | 0.04 ± 0.03 | 0.87 ± 0.14 | 0.88 ± 0.15 | |
0.36 | 0.37 | 0.23 | 0.02 | 0.34 | 0.26 | |
0.75 | 0.72 | 0.85 | 0.09 | 0.74 | 0.81 | |
Overall Mean | 0.51 | 1.01 | 1.37 | 1.23 | 1.01 | 0.22 |
Bean Traits | ||||||
Genetic Parameter | DMB | DBV | LHB | GW | SW | |
0.001 | 0.001 | 0.003 | 0.001 | 0.001 | ||
0.001 | 0.001 | 0.002 | 0.001 | 0.001 | ||
0.001 | 0.001 | 0.001 | 0.001 | 0.001 | ||
0.001 | 0.001 | 0.005 | 0.002 | 0.001 | ||
0.60 ± 0.12 | 0.51 ± 0.11 | 0.59 ± 0.12 | 0.61 ± 0.12 | 0.60 ± 0.12 | ||
0.88 ± 0.14 | 0.73 ± 0.13 | 0.89 ± 0.15 | 0.89 ± 0.15 | 0.84 ± 0.14 | ||
0.28 | 0.21 | 0.30 | 0.28 | 0.24 | ||
0.79 | 0.79 | 0.78 | 0.80 | 0.81 | ||
Overall Mean | 0.15 | 0.12 | 0.82 | 0.63 | 0.41 |
Estimate of Genetic Progress (i = 14%) | |||||||||
Indices | DMB | DMF | LHB | GW | SW | FL | FWS | DMH | GS |
Genotype-Ideotype | 28.34 | 24.07 | 10.03 | 7.94 | 9.04 | 8.78 | 8.97 | 22.88 | 55.36 |
Smith and Razel | 27.49 | 25.97 | 13.14 | 7.06 | 6.59 | 13.54 | 9.06 | 29.85 | 54.27 |
Mulamba and Mock | 26.95 | 21.99 | 8.30 | 8.31 | 10.16 | 8.23 | 8.28 | 19.18 | 53.72 |
Direct Selection (DMB) | 28.34 | 24.07 | 10.03 | 7.94 | 9.04 | 8.78 | 8.97 | 22.88 | 55.36 |
Estimate of Genetic Progress with Direct Selection for DMB | |||||||||
Genotype | DMB | DMF | LHB | GW | SW | FL | FWS | DMH | GS |
27 | 45.58 | 52.70 | 10.63 | 16.57 | 13.20 | 12.86 | 22.74 | 60.02 | 85.97 |
9 | 39.15 | 23.17 | 14.62 | 8.08 | 9.77 | 14.58 | 8.26 | 15.83 | 71.62 |
8 | 24.23 | 16.03 | 0.33 | 7.68 | 14.38 | −2.68 | 9.47 | 5.99 | 46.62 |
5 | 21.10 | 15.68 | 11.50 | 10.43 | 7.19 | 10.31 | 1.99 | 5.48 | 50.21 |
3 | 20.27 | 20.60 | 14.07 | 3.15 | 0.42 | 7.97 | 6.85 | 25.77 | 37.92 |
30 | 19.70 | 16.22 | 9.04 | 1.76 | 9.31 | 9.62 | 4.49 | 24.17 | 39.81 |
11 # | 19.12 | 27.43 | 18.98 | 2.36 | −0.37 | 25.88 | 10.01 | 47.84 | 40.09 |
35 $ | 11.95 | 8.15 | 3.66 | 5.37 | 7.10 | 4.67 | 2.71 | 3.59 | 28.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalazen, J.R.; Rocha, R.B.; Oliosi, G.; de Araújo, L.F.B.; Espindula, M.C.; Rodrigues, W.P.; Partelli, F.L. Genetic Diversity and Gains from Selection for Fruit and Bean Physical Traits from the Conilon Coffee Genotype. Int. J. Plant Biol. 2024, 15, 1266-1276. https://doi.org/10.3390/ijpb15040087
Dalazen JR, Rocha RB, Oliosi G, de Araújo LFB, Espindula MC, Rodrigues WP, Partelli FL. Genetic Diversity and Gains from Selection for Fruit and Bean Physical Traits from the Conilon Coffee Genotype. International Journal of Plant Biology. 2024; 15(4):1266-1276. https://doi.org/10.3390/ijpb15040087
Chicago/Turabian StyleDalazen, Jessica Rodrigues, Rodrigo Barros Rocha, Gleison Oliosi, Larissa Fatarelli Bento de Araújo, Marcelo Curitiba Espindula, Weverton Pereira Rodrigues, and Fabio Luiz Partelli. 2024. "Genetic Diversity and Gains from Selection for Fruit and Bean Physical Traits from the Conilon Coffee Genotype" International Journal of Plant Biology 15, no. 4: 1266-1276. https://doi.org/10.3390/ijpb15040087
APA StyleDalazen, J. R., Rocha, R. B., Oliosi, G., de Araújo, L. F. B., Espindula, M. C., Rodrigues, W. P., & Partelli, F. L. (2024). Genetic Diversity and Gains from Selection for Fruit and Bean Physical Traits from the Conilon Coffee Genotype. International Journal of Plant Biology, 15(4), 1266-1276. https://doi.org/10.3390/ijpb15040087