Isolation and Characterization of Microorganism Associated with Vanilla planifolia Produced in Different Production Systems in México
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area and Sample Collection
2.2. Isolation of Microorganisms Associated with Vanilla planifolia
2.3. Colonial and Microscopic Characterization of Microorganisms Associated with Vanilla planifolia
2.4. Identification of Growth-Promoting Traits of Microorganisms Associated with Vanilla planifolia
2.5. Evaluation of Phenological Characteristics of Vanilla planifolia Grown in Three Production Systems
3. Results
3.1. Identification of Bacteria in Roots
3.2. Diversity of Fungi Associated with the Vanilla planifolia Root
3.3. Diversity of Fungi Associated with Vanilla planifolia Soil
3.4. Dual Confrontations of Pathogenic Fungi Against Beneficial Fungi
3.5. Evaluation of Agronomic Variables in Vanilla Plants from Three Production Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cribb, P.; Soto, M. A new infrageneric classification and synopsis of the genus Vanilla Plum. ex-Mill. (Orchidaceae: Vanillinae). Lankesteriana 2010, 9, 355–398. [Google Scholar]
- Soto, M.; Dressler, R. A revision of the Mexican and Central American species of Vanilla Plumier ex Miller with a characterization of their its region of the nuclear ribosomal DNA. Lankesteriana 2010, 9, 285–354. [Google Scholar]
- Reyes, D.; Flórez, A.; Huerta, M.; Kelso, H.; Avendaño, C.; Lobato, R.; Aragón, A.; López, J. Variación morfométrica de fruto y semillas en cuatro especies del género Vanilla. Ecosistemas Recur. Agropecu. 2014, 1, 205–218. [Google Scholar]
- Del Carmen Orozco-Mosqueda, M.; Glick, B.R.; Santoyo, G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol. Res. 2020, 235, 126439. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, Á.F.; López, D.R.; García, D.J.; Arenas, O.R.; Tapia, J.A.R.; Lara, M.H.; Silva, A.P. Diversidad de Vanilla spp. (Orchidaceae) y sus perfiles bioclimáticos en México. Rev. Biol. Trop. 2017, 65, 975–987. [Google Scholar] [CrossRef]
- Reyes López, D.; González Arnao, M.T.; Menchaca García, R.A.; Cruz Palacios, M.I.; Tovar Soto, A.; Kelso Bucio, H.A.; Barcenas Graniel, J. Rescate, conservación, investigación y utilización de la biodiversidad de la vainilla en México. In I Seminario Internacional de Vainilla; Instituto de Investigación y Servicios Forestales, Universidad Nacional: Heredia, Costa Rica, 2013. [Google Scholar]
- Hamdache, A.; Ezziyyani, M.; Lamarti, A. Evaluation of Strawberry Seed Treatments with Biological Control Agents Bacillus amyloliquefaciens. In Advanced Intelligent Systems for Sustainable Development (AI2SD’2019). AI2SD 2019. Advances in Intelligent Systems and Computing; Ezziyyani, M., Ed.; Springer: Cham, Switzerland, 2020; Volume 1103. [Google Scholar] [CrossRef]
- Gamboa-Gaitán, M.A. Colombian vanilla and its microbiota. I. First report of Fusarium taxa from both wild and cultivated species. Acta Bot. Hung. 2013, 55, 239–245. [Google Scholar] [CrossRef]
- Torres-De la Cruz, M.; Ortiz-García, C.F.; Bautista-Muñoz, C.; Ramírez-Pool, J.A.; Ávalos-Contreras, N.; Cappello-García, S.; De la Cruz-Pérez, A. Diversidad de Trichoderma en el agroecosistema cacao del estado de Tabasco, México. Rev. Mex. Biodivers. 2015, 86, 947–961. [Google Scholar] [CrossRef]
- Sharma, V.; Salwan, R.; Sharma, P. The comparative mechanistic aspects of Trichoderma and Probiotics: Scope for future research. Physiol. Mol. Plant Pathol. 2017, 100, 84–96. [Google Scholar] [CrossRef]
- De Aguiar, R.A.; da Cunha, M.G.; Junior, M.L. Management of white mold in processing tomatoes by Trichoderma spp. and chemical fungicides applied by drip irrigation. Biol. Control 2014, 74, 1–5. [Google Scholar] [CrossRef]
- Sandle, T. Trichoderma. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.-L., Eds.; Academic Press: London, UK, 2014; pp. 644–646. [Google Scholar]
- Vargas-Hoyos, H.A.; Gilchrist-Ramelli, E. Producción de enzimas hidrolíticas y actividad antagónica de Trichoderma asperellum sobre dos cepas de Fusarium aisladas de cultivos de tomate (Solanum lycopersicum). Rev. Mex. Micol. 2015, 42, 9–16. [Google Scholar]
- Marcello, C.M.; Steindorff, A.S.; da Silva, S.P.; Silva, R.D.N.; Bataus, L.A.M.; Ulhoa, C.J. Expression analysis of the exo-β-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiol. Res. 2010, 165, 75–81. [Google Scholar] [CrossRef]
- García-Espejo, C.N.; Mamani-Mamani, M.M.; Chávez-Lizárraga, G.A.; Álvarez-Aliaga, M.T. Evaluación de la actividad enzimática del Trichoderma inhamatum (BOL-12 QD) como posible biocontrolador. J. Selva Andin. Res. Soc. 2016, 7, 20–32. [Google Scholar] [CrossRef]
- Romero-Cortes, T.; López-Pérez, P.A.; Ramírez-Lepe, M.; Cuervo-Parra, J.A. Modelado cinético del micoparasitismo por Trichoderma harzianum contra Cladosporium cladosporioides aislado de frutos de cacao (Theobroma cacao). Chil. J. Agric. Anim. Sci. 2016, 31, 32–45. [Google Scholar] [CrossRef]
- Argumedo-Delira, R.; Alarcón, A.; Ferrera-Cerrato, R.; Peña-Cabriales, J.J. El género fúngico Trichoderma y su relación con contaminantes orgánicos e inorgánicos. Rev. Int. Contam. Ambient. 2009, 25, 257–269. [Google Scholar]
- Ramos, E.Y.A.; Navarro, R.I.Z.; Zumaqué, L.E.O.; Violeth, J.L.B. Evaluación de sustratos y procesos de fermentación sólida para la producción de esporas de Trichoderma sp. Rev. Colomb. Biotecnol. 2008, 10, 23–34. [Google Scholar]
- Banerjee, G.; Chattopadhyay, P. Vanillin biotechnology: The perspectives and future. J. Sci. Food Agric. 2018, 99, 499–506. [Google Scholar] [CrossRef]
- Mahadeo, K.; Taïbi, A.; Meile, J.-C.; Côme, B.; Gauvin-Bialecki, A.; Boubakri, H.; Herrera-Belaroussi, A.; Kodja, H. Exploring endophytic bacteria communities of Vanilla planifolia. BMC Microbiol. 2024, 24, 1–15. [Google Scholar] [CrossRef]
- INEGI. Anuario Estadístico Federativa 2006; PAOT. Available online: http://centro.paot.org.mx/documentos/inegi/anuario_esta_federativa_2006.pdf (accessed on 1 March 2025).
- Pardo, I.M.G.; Rodríguez, J.M.M.; Díaz, A.M.S. Guía de Muestreo de Suelo Para Análisis Microbiológico; Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA): Bogotá, Colombia, 2020. [CrossRef]
- Gram, C. Sobre la coloración aislada de esquizomicetos en preparaciones de corte y secas. Fortschritte Med. 1884, 2, 185–189. [Google Scholar]
- Cowan, S.T.; Steel, K.J. Manual for the Identification of Medical Bacteria, 2nd ed.; Cambridge University Press: Cambridge, UK, 1965. [Google Scholar]
- Corrales Ramírez, L.C.; Caycedo Lozano, L. Principios Fisicoquímicos de los Colorantes Utilzados en Microbiología; NOVA Publicación Científica Cienc: Biomédicas, Spain, 2020. [Google Scholar]
- Bell, D.K.; Wells, H.D.; Markham, C.R. In vitro antagonism of Trichoderma spp. against six fungal plant pathogens. Phytopathology 1982, 72, 379–382. [Google Scholar] [CrossRef]
- Quiroz-Martínez, B.; Álvarez, F.; Espinosa, H.; Salgado-Maldonado, G. Concordant Biogeographic Patterns among Multiple Taxonomic Groups in the Mexican Freshwater Biota. PLoS ONE 2014, 9, e105510. [Google Scholar] [CrossRef] [PubMed]
- Álvarez López, C.L. Identificación Y Caracterización Bioquímica, Morfológica Y Molecular de Microorganismos Cultivables Asociados a la Rizosfera Y Al Sustrato de Plantas de Vainilla. Ph.D. Thesis, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia, 2012. [Google Scholar]
- Adame-García, J.; Luna-Rodríguez, M.; Iglesias-Andreu, L.G. Vanilla Rhizobacteria as Antagonists against Fusarium oxysporum f. sp. vanillae. Int. J. Agric. Biol. 2015, 18, 23–30. [Google Scholar] [CrossRef]
- Sansinenea, E. Bacillus spp.: As plant growth-promoting bacteria. In Secondary Metabolites of Plant Growth-Promoting Rhizomicroorganisms: Discovery and Applications; Singh, H.B., Keswani, C., Reddy, M.S., Sansinenea, E., García-Estrada, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 225–237. [Google Scholar]
- Lalanne-Tisné, G.; Barral, B.; Taibi, A.; Coulibaly, Z.K.; Burguet, P.; Rasoarahona, F.; Quinton, L.; Meile, J.-C.; Boubakri, H.; Kodja, H. Exploring the Phytobeneficial and Biocontrol Capacities of Endophytic Bacteria Isolated from Hybrid Vanilla Pods. Microorganisms 2023, 11, 1754. [Google Scholar] [CrossRef]
- Bakker, P.A.; Berendsen, R.L.; Van Pelt, J.A.; Vismans, G.; Yu, K.; Li, E.; Van Bentum, S.; Poppeliers, S.W.; Gil, J.J.S.; Zhang, H.; et al. The Soil-Borne Identity and Microbiome-Assisted Agriculture: Looking Back to the Future. Mol. Plant 2020, 13, 1394–1401. [Google Scholar] [CrossRef]
- Osorio, A.; Gómez, N.; Arango, D.; Moreno, F.; Díez, M.; Osorio, W. Establecimiento y manejo del cultivo de vainilla. In Cultivo de Vainilla: Contribuciones Para el Desarrollo de su Cadena Productiva en Colombia; Moreno, F., Díez, M.C., Eds.; Universidad Nacional de Colombia: Bogotá, Colombia, 2011; pp. 45–58. [Google Scholar]
- Romero-Cortes, T.; España, V.H.P.; Pérez, P.A.L.; Rodríguez-Jimenes, G.D.C.; Robles-Olvera, V.J.; Burgos, J.E.A.; Cuervo-Parra, J.A. Antifungal activity of vanilla juice and vanillin against Alternaria alternata. CyTA-J. Food 2019, 17, 375–383. [Google Scholar] [CrossRef]
- Koyyappurath, S.; Conéjéro, G.; Dijoux, J.B.; Lapeyre-Montès, F.; Jade, K.; Chiroleu, F.; Gatineau, F.; Verdeil, J.L.; Besse, P.; Grisoni, M. Differential Responses of Vanilla Accessions to Root Rot and Colonization by Fusarium oxysporum f. sp. radicis-vanillae. Front. Plant Sci. 2015, 6, 1125. [Google Scholar] [CrossRef]
- Carbajal-Valenzuela, I.A.; Muñoz-Sanchez, A.H.; Hernández-Hernández, J.; Barona-Gómez, F.; Truong, C.; Cibrián-Jaramillo, A. Microbial Diversity in Cultivated and Feral Vanilla Vanilla planifolia Orchids Affected by Stem and Rot Disease. Microb. Ecol. 2021, 84, 821–833. [Google Scholar] [CrossRef]
- Murphy, B.R.; Jadwiszczak, M.J.; Soldi, E.; Hodkinson, T.R. Endophytes from the crop wild relative Hordeum secalinum L. improve agronomic traits in unstressed and salt-stressed barley. Cogent Food Agric. 2018, 4, 1549195. [Google Scholar] [CrossRef]
- Scott, M.; Rani, M.; Samsatly, J.; Charron, J.-B.; Jabaji, S. Endófitos de cultivares de cáñamo industrial (Cannabis sativa L.): Identificación de bacterias y hongos cultivables en hojas, pecíolos y semillas. Can. J. Microbiol. 2018, 64, 664–680. [Google Scholar] [CrossRef]
- Webster, J.; Weber, R. Introduction to Fungi; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Franco-Galindo, L.S.; Mosquera-Espinosa, A.T. Biocontrol de Fusarium spp. en el cultivo de vainilla: Un nuevo modelo de estudio. Temas Agrar. 2023, 28, 95–114. [Google Scholar] [CrossRef]
- Meliani, A.; Bensoltane, A.; Mederbel, K. Microbial Diversity and Abundance in Soil: Related to Plant and Soil Type. Am. J. Plant Nutr. Fertil. Technol. 2012, 2, 10–18. [Google Scholar] [CrossRef]
- Micallef, S.A.; Channer, S.; Shiaris, M.P.; Colón-Carmona, A. Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal. Behav. 2009, 4, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Suseela Bhai, R.; Remya, B.; Danesh, J.; Eapen, J.S. In vitro and in planta assays for biological control of Fusarium root rot disease of vanilla. J. Biol. Control 2009, 23, 83–86. [Google Scholar]
- Jayasekhar, M.; Manonmani, K.; Justin, C.; Gailce, L. Development of integrated biocontrol strategy for the management of stem rot disease (Fusarium oxysporum f. sp. vanillae) of vanilla. Agric. Sci. Dig. 2008, 28, 109–111. Available online: https://arccarticles.s3.amazonaws.com/webArticle/articles/asd282008.pdf (accessed on 11 September 2025).
- Radjacommare, A.; Sengoda-Gounder, V.; Ramasamy, S. Control biológico de hongos fitopatógenos de vainilla mediante la acción lítica de especies de Trichoderma y Pseudomonas fluorescens. Arch. Phytopathol. Plant Prot. 2010, 43, 1–17. [Google Scholar] [CrossRef]
Grade | Antagonistic Capacity |
---|---|
1 | Trichoderma grows completely on the pathogen and covers the surface of the culture medium. |
2 | Trichoderma grows on two-thirds of the culture medium. |
3 | Both organisms colonize half of the culture medium. |
4 | The pathogen grows on two-thirds of the culture medium. |
5 | The pathogen completely covers Trichoderma and almost the entire surface of the culture medium |
Confrontation | RCB | RCP | %PICR | Class Antagonism |
---|---|---|---|---|
SC1*SM2 | 4.5 | 4.5 | 48.889 | 4 |
SC1*SM7 | 4.5 | 4.5 | 50.370 | 3 |
SC1*SC2 | 4.5 | 4.5 | 55.556 | 2 |
SM1*SM2 | 2.23 | 4.5 | 77.578 | 1 |
SM1*SM7 | 2.23 | 4.5 | 79.073 | 2 |
SM1*SC2 | 2.23 | 4.5 | 86.547 | 1 |
CT9*SM2 | 4.5 | 4.5 | 85.195 | 1 |
CT9*SM7 | 4.5 | 4.5 | 86.667 | 1 |
CT9*SC2 | 4.5 | 4.5 | 90.370 | 1 |
System | LM (m) | DT (cm) | NE | HT | HE | LH (cm) | AH (cm) | PF (gr) | PS (gr) |
---|---|---|---|---|---|---|---|---|---|
Malla shadow | 2.0 | 0.7 a | 29 a | 30 a | 9.0 a | 17.88 a | 5.42 a | 375.8 a | 32.1 a |
Cocuite | 2.0 | 0.7 a | 25 b | 26 b | 6.0 b | 14.76 b | 6.26 a | 360.6 b | 22 b |
Acahual | 2.0 | 0.7 a | 24 c | 25 c | 1.0 c | 18.36 a | 5.68 a | 301.6 c | 20.8 c |
CV (%) | 15.4303 | 2.1924 | 2.3081 | 21.6506 | 2.3828 | 8.6232 | 0.2681 | 4.1813 | |
DMS | 0.1822 | 0.9741 | 1.0671 | 1.9483 | 0.6854 | 0.8419 | 1.5653 | 1.7623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Fernández, D.F.; Gómez-Godínez, L.J.; Reyes-López, D.; Avendaño-Arrazate, C.H.; Arteaga-Garibay, R.I.; Ruvalcaba-Gómez, J.M.; Hernández-Dominguez, C.; López-Morales, F. Isolation and Characterization of Microorganism Associated with Vanilla planifolia Produced in Different Production Systems in México. Microbiol. Res. 2025, 16, 225. https://doi.org/10.3390/microbiolres16110225
Garrido-Fernández DF, Gómez-Godínez LJ, Reyes-López D, Avendaño-Arrazate CH, Arteaga-Garibay RI, Ruvalcaba-Gómez JM, Hernández-Dominguez C, López-Morales F. Isolation and Characterization of Microorganism Associated with Vanilla planifolia Produced in Different Production Systems in México. Microbiology Research. 2025; 16(11):225. https://doi.org/10.3390/microbiolres16110225
Chicago/Turabian StyleGarrido-Fernández, Dannia Fernanda, Lorena Jaqueline Gómez-Godínez, Delfino Reyes-López, Carlos Hugo Avendaño-Arrazate, Ramón Ignacio Arteaga-Garibay, José Martín Ruvalcaba-Gómez, Carmela Hernández-Dominguez, and Fernando López-Morales. 2025. "Isolation and Characterization of Microorganism Associated with Vanilla planifolia Produced in Different Production Systems in México" Microbiology Research 16, no. 11: 225. https://doi.org/10.3390/microbiolres16110225
APA StyleGarrido-Fernández, D. F., Gómez-Godínez, L. J., Reyes-López, D., Avendaño-Arrazate, C. H., Arteaga-Garibay, R. I., Ruvalcaba-Gómez, J. M., Hernández-Dominguez, C., & López-Morales, F. (2025). Isolation and Characterization of Microorganism Associated with Vanilla planifolia Produced in Different Production Systems in México. Microbiology Research, 16(11), 225. https://doi.org/10.3390/microbiolres16110225