Previous Issue
Volume 16, October
 
 

Microbiol. Res., Volume 16, Issue 11 (November 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 2222 KB  
Review
The Growing Antibiotic Resistance of Campylobacter Species: Is There Any Link with Climate Change?
by Eleni V. Geladari, Dimitris Kounatidis, Evangelia Margellou, Apostolos Evangelopoulos, Edison Jahaj, Andreas Adamou, Vassilios Sevastianos, Charalampia V. Geladari and Natalia G. Vallianou
Microbiol. Res. 2025, 16(11), 226; https://doi.org/10.3390/microbiolres16110226 - 22 Oct 2025
Abstract
Campylobacter spp. remain among the most common pathogens causing acute diarrhea worldwide. Campylobacter jejuni and Campylobacter coli are the main species that cause gastroenteritis. Campylobacteriosis is a food-borne disease, although this Gram-negative bacterium may be transmitted via water-borne outbreaks as well as direct [...] Read more.
Campylobacter spp. remain among the most common pathogens causing acute diarrhea worldwide. Campylobacter jejuni and Campylobacter coli are the main species that cause gastroenteritis. Campylobacteriosis is a food-borne disease, although this Gram-negative bacterium may be transmitted via water-borne outbreaks as well as direct contact with animals, emphasizing its zoonotic potential. Campylobacterisosis does not usually require hospitalization. Antimicrobials are warranted only for patients with severe disease, as well as patients who are at risk for severe disease, such as the elderly, pregnant women or immunocompromised patients. Nonetheless, the irrational use of antibiotics in human and veterinary medicine enhances antimicrobial resistance (AMR). Resistance of Campylobacter spp. to fluoroquinolones, macrolides and tetracyclines is a significant concern to the scientific community. Point mutations, horizontal gene transfer and efflux pumps are the main mechanisms for the development and transmission of AMR in Campylobacter spp. Emerging evidence suggests that climate change may indirectly contribute to the spread of AMR in Campylobacter, particularly through its influence on bacterial ecology, transmission pathways and antibiotic use patterns. Higher temperatures and extreme weather events accelerate bacterial growth, amplify the transfer of AMR genes and magnify disease transmission, including drug-resistant infections. Horizontal gene transfer, especially in the context of biofilm formation, may further perplex the situation. Excessive farming and overuse of antibiotics as growth promoters in animals may also contribute to increased AMR rates. Climate change and AMR are interconnected and pose a significant threat to global public health. Multidisciplinary strategies mitigating both phenomena are crucial in order to contain the spread of Campylobacter-related AMR. The aim of this review is to describe the molecular mechanisms that result in AMR of Campylobacter spp. and underscore the association between climate change and Campylobacteriosis. Novel methods to mitigate Campylobacter-related AMR will also be discussed. Full article
15 pages, 1253 KB  
Article
Isolation and Characterization of Microorganism Associated with Vanilla planifolia Produced in Different Production Systems in México
by Dannia Fernanda Garrido-Fernández, Lorena Jaqueline Gómez-Godínez, Delfino Reyes-López, Carlos Hugo Avendaño-Arrazate, Ramón Ignacio Arteaga-Garibay, José Martín Ruvalcaba-Gómez, Carmela Hernández-Dominguez and Fernando López-Morales
Microbiol. Res. 2025, 16(11), 225; https://doi.org/10.3390/microbiolres16110225 - 22 Oct 2025
Abstract
The microbiota associated with Vanilla planifolia grown in three production systems in Puebla, México, was evaluated: shade cloth, cocuite, and acahual. Rhizosphere and soil samples were analyzed, from which bacteria, fungi, yeasts, and actinomycetes were isolated. The bacterial and actinomycete isolates were characterized [...] Read more.
The microbiota associated with Vanilla planifolia grown in three production systems in Puebla, México, was evaluated: shade cloth, cocuite, and acahual. Rhizosphere and soil samples were analyzed, from which bacteria, fungi, yeasts, and actinomycetes were isolated. The bacterial and actinomycete isolates were characterized morphologically and biochemically, and their potential as growth promoters was evaluated. Morphological and microscopic characteristics identified the fungi. In parallel, agronomic variables were measured in five plants per system, and the data were analyzed using ANOVA and Tukey’s test (p ≤ 0.05). The results showed that the shade cloth favored a greater number of internodes, total leaves, and biomass, although with a higher incidence of diseased leaves. The cocuite presented intermediate values, while the acahual had lower leaf density but fewer leaf health problems. Microbial composition varied across systems, with potentially beneficial bacteria and actinomycetes, as well as both beneficial and pathogenic fungi, being prominent. These findings demonstrate the influence of the management system on the microbiota and health of V. planifolia, providing a basis for more sustainable production strategies for vanilla cultivation in Mexico. Full article
(This article belongs to the Topic New Challenges on Plant–Microbe Interactions)
Show Figures

Figure 1

17 pages, 5704 KB  
Article
Resolving Diaporthe Species Diversity Associated with Grapevine Propagation Material: An Emerging Threat to Grapevine Sustainability
by Christos Tsoukas, Georgios Stavrianos and Epaminondas Paplomatas
Microbiol. Res. 2025, 16(11), 224; https://doi.org/10.3390/microbiolres16110224 - 22 Oct 2025
Abstract
The genus Diaporthe consists of saprobes, endophytes, and important plant pathogens. Members of this genus are widely distributed and have a broad host range, including grapevines. This study aimed to establish a baseline survey to assess the diversity of Diaporthe species infecting propagation [...] Read more.
The genus Diaporthe consists of saprobes, endophytes, and important plant pathogens. Members of this genus are widely distributed and have a broad host range, including grapevines. This study aimed to establish a baseline survey to assess the diversity of Diaporthe species infecting propagation material and to explore their dynamics in disease development. Initially, a survey was conducted in a nursery field, and isolations were carried out from 2-month-old symptomatic grafted vines of cv. Agiorgitiko grafted onto rootstock Richter 110. The initial molecular identification of the isolated mycobiome at the genus level was carried out by sequencing the universal internal transcribed spacer (ITS) locus, while subsequent species-level identification of the Diaporthe isolates was performed through phylogenetic approaches coupled with morphological characterization. Based on the combined analysis, five phylogenetically distinct Diaporthe spp. were identified in this study, taxonomically assigned to D. ampelina, D. eres, D. foeniculina, D. serafiniae, and D. novem. Pathogenicity trials demonstrated that the most aggressive species were D. ampelina followed by D. eres, while the remaining species were classified as opportunistic or weak pathogens of grapevine. Overall, accurate identification and monitoring of Diaporthe species involved in propagation material infections are important in order to develop species-specific effective management strategies in grapevine nurseries. Full article
Show Figures

Graphical abstract

Previous Issue
Back to TopTop