The Hidden Face of Danon Disease: Unique Challenges for Female Patients
Abstract
1. Introduction
2. Pathophysiology and Molecular Genetics
2.1. The LAMP Family
2.2. LAMP-2 Pathophysiology
3. Natural History and Clinical Features
3.1. Cardiac Manifestations
3.2. Extracardiac Manifestations
4. Diagnosis
4.1. Diagnostic Criteria
- LVH, defined as septal or posterior wall thickness ≥ 1.3 cm in adults (≥18 years) or z-score ≥2 in children/adolescents (<18 years);
- Left ventricular ejection fraction (LVEF) <50%;
- Presence of late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR);
- Basal ECG alterations, including pre-excitation, repolarization abnormalities, left or right ventricular hypertrophy;
- A positive history of atrial or ventricular arrhythmias, atrioventricular block, or sudden cardiac death.
4.2. Electrocardiography
4.3. Imaging
4.4. Skeletal Muscle or Endomyocardial Biopsy
4.5. Laboratory and Genetic Testing
5. Genotype–Phenotype Correlations
5.1. Role of X-Chromosome Inactivation (XCI) in Females
5.2. Additional Genetic and Epigenetic Modifiers
5.3. Influence of Age on Disease Progression
5.4. Other Potential Modifiers
6. Therapies
6.1. Heart Failure Management
6.2. Arrhythmias
6.3. Screening and Follow-Up
6.4. Socioeconomic Aspects
7. Future Perspectives
7.1. Biomarkers and Artificial Intelligence
7.2. Therapy
8. Limitations
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACC | American College of Cardiology |
| ACMG | American College of Medical Genetics |
| AF | atrial fibrillation |
| AFL | atrial flutter |
| AHA | American Heart Association |
| ALT | alanine aminotransferase |
| AR | androgen receptor |
| AST | aspartate transaminase |
| AV | atrioventricular |
| CK | creatine kinase |
| CIED | cardiac implantable electronic device |
| CMR | cardiac magnetic resonance |
| DD | Danon Disease |
| DCM | Dilated Cardiomyopathy |
| DNA | Deoxyribonucleic Acid |
| ECG | electrocardiogram |
| ECV | extracellular volume |
| ESC | Europea Society of Cardiology |
| GDMT | guideline-directed medical therapy |
| HCM | hypertrophic cardiomyopathy |
| HF | heart failure |
| HFpEF | heart failure with preserved ejection fraction |
| HFrEF | heart failure with reduced ejection fraction |
| HTx | heart transplantation |
| ICD | Implantable Cardioverter Defibrillator |
| LAMP | lysosome-associated membrane protein |
| LAMP-1 | lysosome-associated membrane protein 1 |
| LAMP-2 | lysosome-associated membrane protein 2 |
| LAMP-2A | isoform 2A of lysosome-associated membrane protein 2 |
| LAMP-2B | isoform 2B of lysosome-associated membrane protein 2 |
| LAMP-2C | isoform 2C of lysosome-associated membrane protein 2 |
| LAMP-3 | lysosome-associated membrane protein 3 |
| LAMP-5 | lysosome-associated membrane protein 5 |
| LDH | lactate dehydrogenase |
| LGE | late gadolinium enhancement |
| LV | left ventricle |
| LVAD | left ventricular assist device |
| LVEF | left ventricular ejection fraction |
| LVH | left ventricular hypertrophy |
| MLPA | multiplex ligation-dependent probe amplification |
| NGS | Next-generation sequencing |
| NT-proBNP | N-terminal pro-Brain Natriuretic Peptide |
| RNA | ribonucleic acid |
| VF | ventricular fibrillation |
| VT | ventricular tachycardia |
| VUS | Variants of Uncertain Significance |
| WPW | Wolf–Parkinson–White |
| XCI | X-chromosome inactivation |
References
- Takahashi, M.; Yamamoto, A.; Takano, K.; Sudo, A.; Wada, T.; Goto, Y.-I.; Nishino, I.; Saitoh, S. Germline Mosaicism of a Novel Mutation in Lysosome-Associated Membrane Protein-2 Deficiency (Danon Disease). Ann. Neurol. 2002, 52, 122–125. [Google Scholar] [CrossRef]
- Tanaka, Y.; Guhde, G.; Suter, A.; Eskelinen, E.-L.; Hartmann, D.; Lüllmann-Rauch, R.; Janssen, P.M.L.; Blanz, J.; Von Figura, K.; Saftig, P. Accumulation of Autophagic Vacuoles and Cardiomyopathy LAMP-2-Deficient Mice. Nature 2000, 406, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Orphanet: Danon Disease. Available online: https://www.orpha.net/en/disease/detail/34587 (accessed on 26 January 2025).
- Charron, P.; Villard, E.; Sébillon, P.; Laforêt, P.; Maisonobe, T.; Duboscq-Bidot, L.; Romero, N.; Drouin-Garraud, V.; Frébourg, T.; Richard, P.; et al. Danon’s Disease as a Cause of Hypertrophic Cardiomyopathy: A Systematic Survey. Heart 2004, 90, 842. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; McMahon, C.J.; Smith, L.R.; Bersola, J.; Adesina, A.M.; Breinholt, J.P.; Kearney, D.L.; Dreyer, W.J.; Denfield, S.W.; Price, J.F.; et al. Danon Disease as an Underrecognized Cause of Hypertrophic Cardiomyopathy in Children. Circulation 2005, 112, 1612–1617. [Google Scholar] [CrossRef] [PubMed]
- Brambatti, M.; Caspi, O.; Maolo, A.; Koshi, E.; Greenberg, B.; Taylor, M.R.G.; Adler, E.D. Danon Disease: Gender Differences in Presentation and Outcomes. Int. J. Cardiol. 2019, 286, 92–98. [Google Scholar] [CrossRef]
- Sugie, K.; Nishino, I. History and Perspective of LAMP-2 Deficiency (Danon Disease). Biomolecules 2024, 14, 1272. [Google Scholar] [CrossRef]
- Eskelinen, E.L. Roles of LAMP-1 and LAMP-2 in Lysosome Biogenesis and Autophagy. Mol. Asp. Med. 2006, 27, 495–502. [Google Scholar] [CrossRef]
- D’souza, R.S.; Levandowski, C.; Slavov, D.; Graw, S.L.; Allen, L.A.; Adler, E.; Mestroni, L.; Taylor, M.R.G. Danon Disease: Clinical Features, Evaluation, and Management. Circ. Hear. Fail. 2014, 7, 843–849. [Google Scholar] [CrossRef]
- McNally, E.M.; Spencer, M.J. Genetic Medicine for Danon Disease. N. Engl. J. Med. 2025, 392, 1028–1032. [Google Scholar] [CrossRef]
- Hashem, S.I.; Perry, C.N.; Bauer, M.; Han, S.; Clegg, S.D.; Ouyang, K.; Deacon, D.C.; Spinharney, M.; Panopoulos, A.D.; Izpisua Belmonte, J.C.; et al. Brief Report: Oxidative Stress Mediates Cardiomyocyte Apoptosis in a Human Model of Danon Disease and Heart Failure. Stem Cells 2015, 33, 2343–2350. [Google Scholar] [CrossRef]
- Hashem, S.I.; Murphy, A.N.; Divakaruni, A.S.; Klos, M.L.; Nelson, B.C.; Gault, E.C.; Rowland, T.J.; Perry, C.N.; Gu, Y.; Dalton, N.D.; et al. Impaired Mitophagy Facilitates Mitochondrial Damage in Danon Disease. J. Mol. Cell. Cardiol. 2017, 108, 86–94. [Google Scholar] [CrossRef]
- Chi, C.; Leonard, A.; Knight, W.E.; Beussman, K.M.; Zhao, Y.; Cao, Y.; Londono, P.; Aune, E.; Trembley, M.A.; Small, E.M.; et al. LAMP-2B Regulates Human Cardiomyocyte Function by Mediating Autophagosome–Lysosome Fusion. Proc. Natl. Acad. Sci. USA 2019, 116, 556–565. [Google Scholar] [CrossRef]
- Di Blasi, C.; Jarre, L.; Blasevich, F.; Dassi, P.; Mora, M. Danon Disease: A Novel LAMP2 Mutation Affecting the Pre-MRNA Splicing and Causing Aberrant Transcripts and Partial Protein Expression. Neuromuscul. Disord. 2008, 18, 962–966. [Google Scholar] [CrossRef] [PubMed]
- Vatta, M.; Yang, Z.; Funke, B.H.; Cripe, L.H.; Vick, G.W.; Mancini-Dinardo, D.; Peña, L.S.; Kanter, R.J.; Wong, B.; Westerfield, B.H.; et al. LAMP2 Microdeletions in Patients with Danon Disease. Circ. Cardiovasc. Genet. 2010, 3, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Lines, M.A.; Hewson, S.; Halliday, W.; Sabatini, P.J.B.; Stockley, T.; Dipchand, A.I.; Bowdin, S.; Siriwardena, K. Danon Disease Due to a Novel LAMP2 Microduplication. JIMD Rep. 2014, 14, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.N.; Eshraghian, E.A.; Arad, M.; Argirò, A.; Brambatti, M.; Bui, Q.; Caspi, O.; de Frutos, F.; Greenberg, B.; Ho, C.Y.; et al. International Consensus on Differential Diagnosis and Management of Patients with Danon Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 82, 1628–1647. [Google Scholar] [CrossRef]
- Lotan, D.; Salazar-Mendiguchía, J.; Mogensen, J.; Rathore, F.; Anastasakis, A.; Kaski, J.; Garcia-Pavia, P.; Olivotto, I.; Charron, P.; Biagini, E.; et al. Clinical Profile of Cardiac Involvement in Danon Disease: A Multicenter European Registry. Circ. Genom. Precis. Med. 2020, 13, E003117. [Google Scholar] [CrossRef]
- Cenacchi, G.; Papa, V.; Pegoraro, V.; Marozzo, R.; Fanin, M.; Angelini, C. Review: Danon Disease: Review of Natural History and Recent Advances. Neuropathol. Appl. Neurobiol. 2020, 46, 303–322. [Google Scholar] [CrossRef]
- Fanin, M.; Nascimbeni, A.C.; Fulizio, L.; Spinazzi, M.; Melacini, P.; Angelini, C. Generalized Lysosome-Associated Membrane Protein-2 Defect Explains Multisystem Clinical Involvement and Allows Leukocyte Diagnostic Screening in Danon Disease. Am. J. Pathol. 2006, 168, 1309–1320. [Google Scholar] [CrossRef]
- Hedberg Oldfors, C.; Máthé, G.; Thomson, K.; Tulinius, M.; Karason, K.; Östman-Smith, I.; Oldfors, A. Early Onset Cardiomyopathy in Females with Danon Disease. Neuromuscul. Disord. 2015, 25, 493–501. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, Y.; Ke, H.P.; Liu, W.T.; Du, Z.F.; Zhang, X.N. Detection of Somatic and Germline Mosaicism for the LAMP2 Gene Mutation c.808dupG in a Chinese Family with Danon Disease. Gene 2012, 507, 174–176. [Google Scholar] [CrossRef] [PubMed]
- López-Sainz, Á.; Salazar-Mendiguchía, J.; García-Álvarez, A.; Campuzano Larrea, O.; López-Garrido, M.Á.; García-Guereta, L.; Fuentes Cañamero, M.E.; Climent Payá, V.; Peña-Peña, M.L.; Zorio-Grima, E.; et al. Clinical Findings and Prognosis of Danon Disease. An Analysis of the Spanish Multicenter Danon Registry. Rev. Esp. Cardiol. 2019, 72, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Boucek, D.; Jirikowic, J.; Taylor, M. Natural History of Danon Disease. Genet. Med. 2011, 13, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.N.; Eshraghian, E.; Khedro, T.; Argirò, A.; Attias, J.; Storm, G.; Tsotras, M.; Bloks, T.; Jackson, I.; Ahmad, E.; et al. An International Longitudinal Natural History Study of Patients with Danon Disease: Unique Cardiac Trajectories Identified Based on Sex and Heart Failure Outcomes. J. Am. Heart Assoc. 2025, 14, 38394. [Google Scholar] [CrossRef]
- Gandaeva, L.; Sonicheva-Paterson, N.; McKenna, W.J.; Savostyanov, K.; Myasnikov, R.; Pushkov, A.; Zhanin, I.; Barskiy, V.; Zharova, O.; Silnova, I.; et al. Clinical Features of Pediatric Danon Disease and the Importance of Early Diagnosis. Int. J. Cardiol. 2023, 389, 131189. [Google Scholar] [CrossRef]
- Samad, F.; Jain, R.; Jan, M.F.; Sulemanjee, N.Z.; Menaria, P.; Kalvin, L.; Bush, M.; Jahangir, A.; Khandheria, B.K.; Tajik, A.J. Malignant Cardiac Phenotypic Expression of Danon Disease (LAMP2 Cardiomyopathy). Int. J. Cardiol. 2017, 245, 201–206. [Google Scholar] [CrossRef]
- Hong, K.N.; Battikha, C.; John, S.; Lin, A.; Bui, Q.M.; Brambatti, M.; Storm, G.; Boynton, K.; Medina-Hernandez, D.; Garcia-Alvarez, A.; et al. Cardiac Transplantation in Danon Disease. J. Card. Fail. 2022, 28, 664–669. [Google Scholar] [CrossRef]
- Jhaveri, S.; Herber, J.; Zahka, K.; Boyle, G.J.; Saarel, E.V.; Aziz, P.F. Arrhythmias and Fasciculoventricular Pathways in Patients with Danon Disease: A Single Center Experience. J. Cardiovasc. Electrophysiol. 2019, 30, 1932–1938. [Google Scholar] [CrossRef]
- Sugie, K.; Komaki, H.; Eura, N.; Shiota, T.; Onoue, K.; Tsukaguchi, H.; Minami, N.; Ogawa, M.; Kiriyama, T.; Kataoka, H.; et al. A Nationwide Survey on Danon Disease in Japan. Int. J. Mol. Sci. 2018, 19, 3507. [Google Scholar] [CrossRef]
- Yardeni, M.; Weisman, O.; Mandel, H.; Weinberger, R.; Quarta, G.; Salazar-Mendiguchía, J.; Garcia-Pavia, P.; Lobato-Rodríguez, M.J.; Simon, L.F.; Dov, F.; et al. Psychiatric and Cognitive Characteristics of Individuals with Danon Disease (LAMP2 Gene Mutation). Am. J. Med. Genet. A 2017, 173, 2461–2466. [Google Scholar] [CrossRef]
- Prall, F.R.; Drack, A.; Taylor, M.; Ku, L.; Olson, J.L.; Gregory, D.; Mestroni, L.; Mandava, N. Ophthalmic Manifestations of Danon Disease. Ophthalmology 2006, 113, 1010–1013. [Google Scholar] [CrossRef] [PubMed]
- Schorderet, D.F.; Cottet, S.; Lobrinus, J.A.; Borruat, F.X.; Balmer, A.; Munier, F.L. Retinopathy in Danon Disease. Arch. Ophthalmol. 2007, 125, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, M.; Inoue, T.; Miyai, T.; Obata, R. Retinal Dystrophy Associated with Danon Disease and Pathogenic Mechanism Through LAMP2-Mutated Retinal Pigment Epithelium. Eur. J. Ophthalmol. 2020, 30, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Kousal, B.; Majer, F.; Vlaskova, H.; Dvorakova, L.; Piherova, L.; Meliska, M.; Langrova, H.; Palecek, T.; Kubanek, M.; Krebsova, A.; et al. Pigmentary Retinopathy Can Indicate the Presence of Pathogenic LAMP2 Variants Even in Somatic Mosaic Carriers with No Additional Signs of Danon Disease. Acta Ophthalmol. 2021, 99, 61–68. [Google Scholar] [CrossRef]
- Bui, Q.M.; Hong, K.N.; Kraushaar, M.; Ma, G.S.; Brambatti, M.; Kahn, A.M.; Bougault, C.; Boynton, K.; Mestroni, L.; Taylor, M.R.G.; et al. Apical Sparing Strain Pattern in Danon Disease: Insights From a Global Registry. JACC Cardiovasc. Imaging 2020, 13, 2689–2691. [Google Scholar] [CrossRef]
- Rigolli, M.; Kahn, A.M.; Brambatti, M.; Contijoch, F.J.; Adler, E.D. Cardiac Magnetic Resonance Imaging in Danon Disease Cardiomyopathy. JACC Cardiovasc. Imaging 2021, 14, 514–516. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, R.; Yuan, Y.; Yu, Y.; Liu, B.; Li, X. Clinical Manifestations and MRI Features of Danon Disease: A Case Series. BMC Cardiovasc. Disord. 2023, 23, 397. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, L.; Xie, J.; Liu, Y.; Du, Z.; Zhong, X.; Ye, W.; Wang, Y.; Chen, Y.; Lu, M.; et al. Cardiac Phenotype Characterization at MRI in Patients with Danon Disease: A Retrospective Multicenter Case Series. Radiology 2021, 299, 303–310. [Google Scholar] [CrossRef]
- Nucifora, G.; Miani, D.; Piccoli, G.; Proclemer, A. Cardiac Magnetic Resonance Imaging in Danon Disease. Cardiology 2012, 121, 27–30. [Google Scholar] [CrossRef]
- Taylor, M.R.; Adler, E.D. Danon Disease. Front. Lysosomal Storage Dis. (LSD) Treat. 2024, 7, 269–276. [Google Scholar] [CrossRef]
- Bottillo, I.; Giordano, C.; Cerbelli, B.; D’Angelantonio, D.; Lipari, M.; Polidori, T.; Majore, S.; Bertini, E.; D’Amico, A.; Giannarelli, D.; et al. A Novel LAMP2 Mutation Associated with Severe Cardiac Hypertrophy and Microvascular Remodeling in a Female with Danon Disease: A Case Report and Literature Review. Cardiovasc. Pathol. 2016, 25, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Van Der Kooi, A.J.; Van Langen, I.M.; Aronica, E.; Van Doorn, P.A.; Wokke, J.H.J.; Brusse, E.; Langerhorst, C.T.; Bergin, P.; Dekker, L.R.C.; Lekanne Dit Deprez, R.H.; et al. Extension of the Clinical Spectrum of Danon Disease. Neurology 2008, 70, 1358–1359. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Shi, Z.; Zhang, W.; Wang, Z.; Yuan, Y. Danon Disease Caused by Two Novel Mutations of the LAMP2 Gene: Implications for Two Ends of the Clinical Spectrum. Clin. Neuropathol. 2012, 31, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Sivitskaya, L.; Vaikhanskaya, T.; Danilenko, N.; Liaudanski, A.; Davydenko, O.; Zhelev, N. New Deletion in LAMP2 Causing Familial Danon Disease. Effect of X-Chromosome Inactivation. Folia Med. 2022, 64, 853–862. [Google Scholar] [CrossRef]
- Brand, B.A.; Blesson, A.E.; Smith-Hicks, C.L. The Impact of X-Chromosome Inactivation on Phenotypic Expression of X-Linked Neurodevelopmental Disorders. Brain Sci. 2021, 11, 904. [Google Scholar] [CrossRef]
- Ng, K.M.; Mok, P.Y.; Butler, A.W.; Ho, J.C.Y.; Choi, S.W.; Lee, Y.K.; Lai, W.H.; Au, K.W.; Lau, Y.M.; Wong, L.Y.; et al. Amelioration of X-Linked Related Autophagy Failure in Danon Disease with DNA Methylation Inhibitor. Circulation 2016, 134, 1373–1389. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, M.; Zhang, P.; Peng, Y.; Chen, Z.; He, Z.; Xu, J.; Zhu, Y.; Yan, D.; Wang, R.; et al. Identification and Functional Analysis of a Novel de Novo Missense Mutation Located in the Initiation Codon of LAMP2 Associated with Early Onset Female Danon Disease. Mol. Genet. Genom. Med. 2023, 11, e2216. [Google Scholar] [CrossRef]
- Olivotto, I.; D’Amati, G.; Basso, C.; Van Rossum, A.; Patten, M.; Emdin, M.; Pinto, Y.; Tomberli, B.; Camici, P.G.; Michels, M. Defining Phenotypes and Disease Progression in Sarcomeric Cardiomyopathies: Contemporary Role of Clinical Investigations. Cardiovasc. Res. 2015, 105, 409–423. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Baumbach, A.; Böhm, M.; Burri, H.; Čelutkiene, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, E895–E1032. [Google Scholar] [CrossRef]
- Limongelli, G.; Adorisio, R.; Baggio, C.; Bauce, B.; Biagini, E.; Castelletti, S.; Favilli, S.; Imazio, M.; Lioncino, M.; Merlo, M.; et al. Diagnosis and Management of Rare Cardiomyopathies in Adult and Paediatric Patients. A Position Paper of the Italian Society of Cardiology (SIC) and Italian Society of Paediatric Cardiology (SICP). Int. J. Cardiol. 2022, 357, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Konrad, T.; Sonnenschein, S.; Schmidt, F.P.; Mollnau, H.; Bock, K.; Ocete, B.Q.; Münzel, T.; Theis, C.; Rostock, T. Cardiac Arrhythmias in Patients with Danon Disease. Europace 2017, 19, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Darden, D.; Hsu, J.C.; Tzou, W.S.; von Alvensleben, J.C.; Brooks, M.; Hoffmayer, K.S.; Brambatti, M.; Sauer, W.H.; Feld, G.K.; Adler, E. Fasciculoventricular and Atrioventricular Accessory Pathways in Patients with Danon Disease and Preexcitation: A Multicenter Experience. Heart Rhythm 2021, 18, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, C.; Jichi, F.; Pavlou, M.; Monserrat, L.; Anastasakis, A.; Rapezzi, C.; Biagini, E.; Gimeno, J.R.; Limongelli, G.; McKenna, W.J.; et al. A Novel Clinical Risk Prediction Model for Sudden Cardiac Death in Hypertrophic Cardiomyopathy (HCM Risk-SCD). Eur. Heart J. 2014, 35, 2010–2020. [Google Scholar] [CrossRef]
- Miron, A.; Lafreniere-Roula, M.; Steve Fan, C.P.; Armstrong, K.R.; Dragulescu, A.; Papaz, T.; Manlhiot, C.; Kaufman, B.; Butts, R.J.; Gardin, L.; et al. A Validated Model for Sudden Cardiac Death Risk Prediction in Pediatric Hypertrophic Cardiomyopathy. Circulation 2020, 142, 217–229. [Google Scholar] [CrossRef]
- Kaski, J.P.; Norrish, G.; Ding, T.; Field, E.; Ziółkowska, L.; Olivotto, I.; Limongelli, G.; Anastasakis, A.; Weintraub, R.; Biagini, E.; et al. Development of a Novel Risk Prediction Model for Sudden Cardiac Death in Childhood Hypertrophic Cardiomyopathy (HCM Risk-Kids). JAMA Cardiol. 2019, 4, 918–927. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; De Boer, R.A.; et al. 2023 ESC Guidelines for the Management of Cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Wiethoff, I.; Goversen, B.; Michels, M.; van der Velden, J.; Hiligsmann, M.; Kugener, T.; Evers, S.M.A.A. A Systematic Literature Review of Economic Evaluations and Cost-of-Illness Studies of Inherited Cardiomyopathies. Neth. Heart J. 2023, 31, 226–237. [Google Scholar] [CrossRef]
- Jovanovic, A.; Miller-Hodges, E.; Castriota, F.; Takyar, S.; Howitt, H.; Ayodele, O. A Systematic Literature Review on the Health-Related Quality of Life and Economic Burden of Fabry Disease. Orphanet J. Rare Dis. 2024, 19, 181. [Google Scholar] [CrossRef]
- Piscopo, P.; Bellenghi, M.; Manzini, V.; Crestini, A.; Pontecorvi, G.; Corbo, M.; Ortona, E.; Carè, A.; Confaloni, A. A Sex Perspective in Neurodegenerative Diseases: MicroRNAs as Possible Peripheral Biomarkers. Int. J. Mol. Sci. 2021, 22, 4423. [Google Scholar] [CrossRef]
- Carrasco-Rozas, A.; Fernández-Simón, E.; Lleixà, M.C.; Belmonte, I.; Pedrosa-Hernandez, I.; Montiel-Morillo, E.; Nuñez-Peralta, C.; Llauger Rossello, J.; Segovia, S.; De Luna, N.; et al. Identification of Serum MicroRNAs as Potential Biomarkers in Pompe Disease. Ann. Clin. Transl. Neurol. 2019, 6, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Semeraro, M.; Sacchetti, E.; Deodato, F.; Coşkun, T.; Lay, I.; Catesini, G.; Olivieri, G.; Rizzo, C.; Boenzi, S.; Dionisi-Vici, C. A New UHPLC-MS/MS Method for the Screening of Urinary Oligosaccharides Expands the Detection of Storage Disorders. Orphanet J. Rare Dis. 2021, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Patrascanu, O.S.; Tutunaru, D.; Musat, C.L.; Dragostin, O.M.; Fulga, A.; Nechita, L.; Ciubara, A.B.; Piraianu, A.I.; Stamate, E.; Poalelungi, D.G.; et al. Future Horizons: The Potential Role of Artificial Intelligence in Cardiology. J. Pers. Med. 2024, 14, 656. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Huang, G.; Wu, L.; Wang, M.; He, X.; Wang, J.R.; Zhou, B.; Liu, Y.; Lin, Y.; Liu, D.; et al. Deep Learning Assessment of Left Ventricular Hypertrophy Based on Electrocardiogram. Front. Cardiovasc. Med. 2022, 9, 952089. [Google Scholar] [CrossRef]
- Cau, R.; Pisu, F.; Suri, J.S.; Montisci, R.; Gatti, M.; Mannelli, L.; Gong, X.; Saba, L. Artificial Intelligence in the Differential Diagnosis of Cardiomyopathy Phenotypes. Diagnostics 2024, 14, 156. [Google Scholar] [CrossRef]
- Krittanawong, C.; Johnson, K.W.; Choi, E.; Kaplin, S.; Venner, E.; Murugan, M.; Wang, Z.; Glicksberg, B.S.; Amos, C.I.; Schatz, M.C.; et al. Artificial Intelligence and Cardiovascular Genetics. Life 2022, 12, 279. [Google Scholar] [CrossRef]
- Chandra Sekar, P.K.; Veerabathiran, R. The Future of Artificial Intelligence and Genetic Insights in Precision Cardiovascular Medicine: A Comprehensive Review. Cardiol. Discov. 2024, 4, 300–308. [Google Scholar] [CrossRef]
- Greenberg, B.; Taylor, M.; Adler, E.; Colan, S.; Ricks, D.; Yarabe, P.; Battiprolu, P.; Shah, G.; Patel, K.; Coggins, M.; et al. Phase 1 Study of AAV9.LAMP2B Gene Therapy in Danon Disease. N. Engl. J. Med. 2024, 392, 972–983. [Google Scholar] [CrossRef]

| Feature | Males | Females |
|---|---|---|
| Age at onset | Childhood/adolescence (median ~12–15 years) | Later onset (median ~17–35 years); progression to advanced cardiomyopathy ~10 years later than males |
| Predominant cardiac phenotype | HCM, often severe and rapidly progressive | More variable: HCM in younger patients; DCM more frequent at later stages |
| Arrhythmias | High prevalence of pre-excitation (WPW up to ~68%), supraventricular and ventricular arrhythmias; sudden cardiac death may occur early | Arrhythmias are also frequent, but WPW less common (~27–32%); risk of sudden cardiac death remains relevant though often at older age |
| Extracardiac manifestations | Frequent skeletal myopathy, cognitive impairment (up to 80%), ophthalmologic involvement, hepatomegaly | Extracardiac signs are generally milder. Myopathy, occasional cognitive impairment (6–47%), visual abnormalities less frequent |
| Imaging findings | Early and marked left ventricular hypertrophy, usually concentric; rapid progression to systolic dysfunction; fibrosis evident at CMR | More heterogeneous: LV hypertrophy, usually asymmetric, or LV dilation; fibrosis develops later; slower progression to systolic dysfunction |
| Heart failure presentation | More frequently HFpEF at initial stages, progressing rapidly to HFrEF | HFrEF more common (linked to DCM phenotype) |
| Treatment | High rate of advanced therapies (LVAD, HTx) required at young age (~20–21 years) | Advanced therapies required later (controverse); post-HTx outcomes similar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torlai Triglia, L.; Barocelli, F.; Ambrosini, E.; Bettella, A.; Gurgoglione, F.L.; Bianconcini, M.; Guidorossi, A.; Russo, F.; Percesepe, A.; Niccoli, G. The Hidden Face of Danon Disease: Unique Challenges for Female Patients. Cardiogenetics 2025, 15, 32. https://doi.org/10.3390/cardiogenetics15040032
Torlai Triglia L, Barocelli F, Ambrosini E, Bettella A, Gurgoglione FL, Bianconcini M, Guidorossi A, Russo F, Percesepe A, Niccoli G. The Hidden Face of Danon Disease: Unique Challenges for Female Patients. Cardiogenetics. 2025; 15(4):32. https://doi.org/10.3390/cardiogenetics15040032
Chicago/Turabian StyleTorlai Triglia, Laura, Federico Barocelli, Enrico Ambrosini, Alberto Bettella, Filippo Luca Gurgoglione, Michele Bianconcini, Angela Guidorossi, Francesca Russo, Antonio Percesepe, and Giampaolo Niccoli. 2025. "The Hidden Face of Danon Disease: Unique Challenges for Female Patients" Cardiogenetics 15, no. 4: 32. https://doi.org/10.3390/cardiogenetics15040032
APA StyleTorlai Triglia, L., Barocelli, F., Ambrosini, E., Bettella, A., Gurgoglione, F. L., Bianconcini, M., Guidorossi, A., Russo, F., Percesepe, A., & Niccoli, G. (2025). The Hidden Face of Danon Disease: Unique Challenges for Female Patients. Cardiogenetics, 15(4), 32. https://doi.org/10.3390/cardiogenetics15040032

