You are currently viewing a new version of our website. To view the old version click .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

23 December 2025

Trajectory Tracking and Stability Control of Distributed-Drive Heavy Trucks on High-Speed Curves with Large Curvature

,
,
and
Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China
*
Author to whom correspondence should be addressed.
World Electr. Veh. J.2026, 17(1), 10;https://doi.org/10.3390/wevj17010010 
(registering DOI)
This article belongs to the Section Propulsion Systems and Components

Abstract

To address the difficulty of balancing trajectory-tracking accuracy and yaw stability for distributed-drive four-axle heavy trucks under high-speed and large-curvature cornering conditions, this paper proposes a hierarchical cooperative control strategy. The upper layer employs Sliding Mode Control (SMC) to achieve precise trajectory tracking, while the lower layer integrates a sliding-mode-based Direct Yaw Moment Control (DYC) and a differential braking allocation strategy to enhance vehicle stability. TruckSim–Simulink co-simulation results demonstrate that, under large-curvature scenarios such as S-shaped paths, sharp lane changes, and single-lane transitions, the proposed strategy outperforms the conventional SMC method. Specifically, the maximum lateral deviation is reduced by 19.23–23.02%, the peak heading angle error decreases from 5.3° to 3.5°, the maximum yaw rate drops from 12.6°/s to 4.6°/s (a 63.49% reduction), and the peak sideslip angle at the vehicle’s center of mass converges from 4.6° to 3.8° (a 17.39% decrease). The results indicate that the proposed strategy achieves coordinated optimization of trajectory tracking and yaw stability under high-speed, large-curvature cornering conditions, providing both theoretical support and engineering value for high-dynamic control of distributed-drive heavy trucks.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.