# Design and Analysis of a Permanent Magnet Brushless DC Motor in an Automotive Cooling System

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design and Simulation Analysis

#### 2.1. Main Parameters of the Design

_{peak}represents the maximum electromagnetic torque under a continuous duty; D

_{a}is the outer diameter of the stator core, m; and L

_{ef}denotes the calculated length of the stator core, m.

_{a}and L

_{ef}are determined as follows [27]:

_{i}is the magnet pole-arc ratio; K

_{Nm}is the armature winding coefficient; K

_{dp}is the air gap magnetic flux coefficient; A is the armature line load, A/m; B

_{δ}is the amplitude of air gap magnetic density, T; and n is the rated speed, r/min.

#### 2.2. Electromagnetic Field Finite Element Simulation

#### 2.2.1. Characteristic Simulation in the No-Load Condition

#### 2.2.2. Characteristic Simulation in the Loaded Condition

## 3. Load Capacity Simulation

## 4. Prototype Manufacturing and Bench Test

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

DC | Direct current |

NEV | New electric vehicles |

BLDC | Brushless direct current |

PMBLDC | Permanent magnet brushless direct current |

FFT | Fast Fourier transform |

RMS | Root mean square |

FOC | Field oriented control |

## References

- Gao, J.B.; Chen, H.B.; Tian, G.H.; Ma, C.C.; Zhu, F. An analysis of energy flow in a turbocharged diesel engine of a heavy truck and potentials of improving fuel economy and reducing exhaust emissions. Energy Conv. Manag.
**2019**, 184, 456–465. [Google Scholar] [CrossRef] - Guo, H.; Li, J.; Zhu, Z.; Lv, P. Numerical investigation on thermal performance of battery module with LCP-AFC cooling system applied in electric vehicle. Energy Sci. Eng.
**2022**, 10, 4431–4446. [Google Scholar] [CrossRef] - Li, Q.; Xu, Y.; Bu, S.; Yang, J. Smart vehicle path planning based on modified PRM algorithm. Sensors
**2022**, 22, 6581. [Google Scholar] [CrossRef] - Song, S.; Zhou, H.; Jia, Z.; Xu, L.; Zhang, C.; Shi, M.; Hu, G. Effects of cutting parameters on the ultimate shear stress and specific cutting energy of sisal leaves. Biosyst. Eng.
**2022**, 218, 189–199. [Google Scholar] [CrossRef] - Zheng, W.; Sun, J.; Ma, C.; Yu, Q. Percolation interpretation of film pressure forming mechanism of mechanical seal and calculation method of film pressure coefficient. Tribol. Int.
**2022**, 173, 107664. [Google Scholar] [CrossRef] - Lu, S.M. A review of high-efficiency motors: Specification, policy, and technology. Renew. Sust. Energ. Rev.
**2016**, 59, 1–12. [Google Scholar] [CrossRef] - Ntawiheba, J.D.; Qiao, L.; Niyonteze, J.D.D. Design and performance analysis of a high-efficiency Y3 induction motor. J. Phys. Conf. Ser.
**2022**, 2345, 012010. [Google Scholar] [CrossRef] - Cipollone, R.; Di Battista, D. Sliding vane rotary pump in engine cooling system for automotive sector. Appl. Therm. Eng.
**2015**, 76, 157–166. [Google Scholar] [CrossRef] - Zhu, G.; Liu, X.; Li, L.; Chen, H.; Tong, W.; Zhu, J. Cooling System Design of a High-Speed PMSM Based on a Coupled Fluidic-Thermal Model. IEEE Trans. Appl. Supercond.
**2019**, 29, 1–5. [Google Scholar] [CrossRef] - Tang, R.Y. Modern Permanent Magnet Machines—Theory and Design; China Machine Press: Beijing, China, 1997. [Google Scholar]
- Zhu, G.J.; Jia, N.; Li, L.; Liu, T.; Xue, M.; Li, M.J. Cooling System Design Optimization of a High Power Density PM Traction Motor for Electric Vehicle Applications. J. Electr. Eng. Technol.
**2021**, 16, 3061–3068. [Google Scholar] [CrossRef] - Wang, W.; Yu, K.Y.; Huang, Q.L. Modeling and simulation of control strategy of engine multi-loop cooling system. Ferroelectrics
**2021**, 579, 33–43. [Google Scholar] [CrossRef] - Iora, P.; Tribioli, L. Effect of Ambient Temperature on Electric Vehicles’ Energy Consumption and Range: Model Definition and Sensitivity Analysis Based on Nissan Leaf Data. World Electr. Veh. J.
**2019**, 10, 2. [Google Scholar] [CrossRef] - Lombardi, S.; Villani, M.; Chiappini, D.; Tribioli, L. Cooling System Energy Consumption Reduction through a Novel All-Electric Powertrain Traction Module and Control Optimization. Energies
**2021**, 14, 33. [Google Scholar] [CrossRef] - Wang, T.W.; Wagner, J. Advanced automotive thermal management—Nonlinear radiator fan matrix control. Control Eng. Pract.
**2015**, 41, 113–123. [Google Scholar] [CrossRef] - Feng, L.; Wikander, J.; Li, Z.W. Fuel Minimization of the Electric Engine Cooling System With Active Grille Shutter by Iterative Quadratic Programming. IEEE Trans. Veh. Technol.
**2020**, 69, 2621–2635. [Google Scholar] [CrossRef] - Lajunen, A.; Yang, Y.Y.; Emadi, A. Recent Developments in Thermal Management of Electrified Powertrains. IEEE Trans. Veh. Technol.
**2018**, 67, 11486–11499. [Google Scholar] [CrossRef] - Lelkes, A.; Bufe, M. IEEE BLDC motor for fan application with automatically optimized commutation angle. In Proceedings of the 35th Annual IEEE Power Electronics Specialists Conference (PESC 04), IEEE, Aachen, Germany, 20–25 June 2004; pp. 2277–2281. [Google Scholar]
- Chakkarapani, K.; Thangavelu, T.; Dharmalingam, K.; Thandavarayan, P. Multiobjective design optimization and analysis of magnetic flux distribution for slotless permanent magnet brushless DC motor using evolutionary algorithms. J. Magn. Magn. Mater.
**2019**, 476, 524–537. [Google Scholar] [CrossRef] - Tang, Z.H.; Chen, Y.T.; Jiang, L.L.; Liang, R.H. Analysis and Design of a Smart Startup Method for a Single-Phase BLDC Fan Motor. Electr. Power Compon. Syst.
**2018**, 46, 1844–1856. [Google Scholar] [CrossRef] - Mayer, J.S.; Wasynczuk, O. Analysis and modeling of a single-phase brushless DC motor drive system. IEEE Trans. Energy Convers.
**1989**, 4, 473–479. [Google Scholar] [CrossRef] - Jeon, K.; Yoo, D.; Park, J.; Lee, K.D.; Lee, J.J.; Kim, C.W. Reliability-Based Robust Design Optimization for Maximizing the Output Torque of Brushless Direct Current (BLDC) Motors Considering Manufacturing Uncertainty. Machines
**2022**, 10, 797. [Google Scholar] [CrossRef] - Bharanigha, V.; Shuaib, Y.M. Minimization of torque ripples with optimized controller based four quadrant operation & control of BLDC motor. Adv. Eng. Softw.
**2022**, 172, 103192. [Google Scholar] - Krzysztof, S.; Anna, F.; Sławomir, W. Comparison of the Design of 3-Pole BLDC Actuators/Motors with a Rotor Based on a Single Permanent Magnet. Sensors
**2022**, 22, 3759. [Google Scholar] - Murat, T. Comparatıve analysis of the magnet effects on the permanent magnet BLDC motor performance used in electric vehicles. Electr. Eng.
**2022**, 104, 3411–3423. [Google Scholar] - Nejat, S.; Stefan, L.; Felix, K.; Annette, M. Noise and vibration characteristics of sub-fractional horsepower single-phase BLDC drives. E & I Elektrotechnik und Informationstechnik
**2022**, 139, 260–270. [Google Scholar] - Wang, X.H. Permanent-Magnet Machine; China Electric Power Press: Beijing, China, 2007. [Google Scholar]
- Hendershort, J.R.; Miller, T.J.E. Design of Brushless Permanent-Magnet Motors; Magana Physics/Clarendon: Oxford, UK, 1994. [Google Scholar]
- El-Refaie, A.M.; Shah, M.R.; Alexander, J.P.; Galioto, S.; Huh, K.K.; Gerstler, W.D. Rotor End Losses in Multi-Phase Fractional-Slot Concentrated-Winding Permanent Magnet Synchronous Machines. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, USA, 12–16 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1312–1320. [Google Scholar]
- Shi, Z.; Sun, X.D.; Cai, Y.F.; Tian, X.; Chen, L. Design optimisation of an outer-rotor permanent magnet synchronous hub motor for a low-speed campus patrol EV. IET Electr. Power Appl.
**2020**, 14, 2111–2118. [Google Scholar] [CrossRef]

**Figure 1.**The structure of the proposed PMBLDC motor in the automotive cooling system: (

**a**) sectional view and (

**b**) the winding configuration.

**Figure 2.**(

**a**) The magnetic flux density, and (

**b**) the magnetic lines of force of the proposed PMBLDC motor model in the no-load condition.

**Figure 3.**(

**a**) Simulated cogging torque waveform, (

**b**) simulated air gap flux density waveform, and (

**c**) FFT result of the air gap flux density of the proposed PMBLDC motor.

**Figure 4.**(

**a**) The control circuit, (

**b**) simulated start-up torque waveform, (

**c**) simulated start-up speed waveform of the proposed PMBLDC motor, and (

**d**) simulated start-up torque-speed waveform.

**Figure 5.**(

**a**) The calculated electromagnetic torque waveform, (

**b**) the Busbar current waveform, (

**c**) the three-phase flux linkage diagram of the proposed PMBLDC motor, and (

**d**) the iron loss waveform.

**Figure 6.**(

**a**) Variable current control circuit diagram, (

**b**) electromagnetic torque at different resistances, and (

**c**) line current at different resistances of the proposed PMBLDC motor.

**Figure 8.**(

**a**) Simulated and experimental current-torque curves, (

**b**) temperature change diagram, and (

**c**) efficiency waveform.

Parameters. | Value | Parameters | Value |
---|---|---|---|

Stator outer diameter | 91 mm | Rated speed | 2200 rpm |

Stator inner diameter | 28.3 mm | Coil pitch | 1 |

Rotor outer diameter | 108.4 mm | Number of strands | 1 |

Rotor inner diameter | 93.6 mm | Winding layers | 2 |

Stator length | 18 mm | Parallel branches | 1 |

Rotor length | 31.2 mm | Conductors per slot | 22 |

Magnet thickness | 5.2 mm | Magnet material | Ferrite (BAOSTEEL) |

Winding type | Whole-coiled | Steel material | 50AW800 (MASTEEL) |

Nominal voltage | 12 V | Output power | 415 W |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ren, K.; Chen, H.; Sun, H.; Wang, Q.; Sun, Q.; Jin, B.
Design and Analysis of a Permanent Magnet Brushless DC Motor in an Automotive Cooling System. *World Electr. Veh. J.* **2023**, *14*, 228.
https://doi.org/10.3390/wevj14080228

**AMA Style**

Ren K, Chen H, Sun H, Wang Q, Sun Q, Jin B.
Design and Analysis of a Permanent Magnet Brushless DC Motor in an Automotive Cooling System. *World Electric Vehicle Journal*. 2023; 14(8):228.
https://doi.org/10.3390/wevj14080228

**Chicago/Turabian Style**

Ren, Kai, Hongxuan Chen, Haiyang Sun, Qin Wang, Qingyun Sun, and Bo Jin.
2023. "Design and Analysis of a Permanent Magnet Brushless DC Motor in an Automotive Cooling System" *World Electric Vehicle Journal* 14, no. 8: 228.
https://doi.org/10.3390/wevj14080228