# Research on Regenerative Braking Control Strategy for Single-Pedal Pure Electric Commercial Vehicles

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Formulation of Single-Pedal Control Strategy

#### 2.1. Overall Framework of Single-Pedal Control Strategy

#### 2.2. Driver Intention Recognition

#### 2.3. Braking Classification Based on the Single Pedal

## 3. Formulation of Single-Pedal Regenerative Braking Strategy

#### 3.1. Regenerative Braking Principle

#### 3.2. Formulated Based on the Single-Pedal Braking Strategy

#### 3.3. Hybrid Braking

## 4. Simulation and Real Vehicle Validation

#### 4.1. Simulink Simulation Validation

#### 4.2. Real Vehicle Verification with a Constant-Speed Car-Following Experiment

#### 4.2.1. Design of Constant-Speed Car-Following Experiment Scheme

#### 4.2.2. Analysis of the Constant-Speed Car-Following Experiment Results

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

$v$ | The value of velocity |

${v}_{max}$ | The maximum threshold of velocity |

${m}^{1},{m}^{2}$ | The characteristic coefficient |

$pel$ | The value of pedal aperture |

$pe{l}_{am}$, $pe{l}_{cm}$, and $pe{l}_{bm}$ | The maximum value of the pedal aperture corresponding to the acceleration interval, the cruise interval, and the deceleration interval, respectively |

$pel$ | The value of the single-pedal aperture |

$pe{l}_{emer}$ | The emergency braking pedal aperture, |

SOC | The battery state of charge |

${x}_{pel}$ | The difference between the current pedal aperture and the previous pedal aperture |

${x}_{pel\_max}$ | The given threshold of ${x}_{pel}$ |

${v}_{pel}$ | The displacement change rate of the pedal aperture |

${v}_{pel\_max}$ | The given threshold of ${v}_{pel}$ |

$sl$ | The road gradient |

$s{l}_{max}$ | The given threshold of $sl$ |

${T}_{m}$ | The current regenerative braking torque |

α | The road gradient conversion coefficient |

β | The pedal displacement rate conversion coefficient |

γ | The pedal displacement conversion coefficient, |

${x}_{max}$ | The threshold pedal displacement for increasing the brake pedal displacement |

${T}_{m-max}$ | The peak torque of the motor. |

z | Braking intensity |

k | The regenerative braking proportional coefficient |

## References

- Bonsu, N.O. Towards a Circular and Low-Carbon Economy: Insights from the Transitioning to Electric Vehicles and Net Zero Economy. J. Clean. Prod.
**2020**, 256, 120659. [Google Scholar] [CrossRef] - Montazeri, M.; Fotouhi, A.; Naderpour, A. Driving Segment Simulation for Determination of the Most Effective Driving Features for Hev Intelligent Control. Veh. Syst. Dyn.
**2012**, 50, 229–246. [Google Scholar] [CrossRef] - Lv, C.; Liu, Y.; Hu, X.; Guo, H.; Cao, D.; Wang, F.Y. Simultaneous Observation of Hybrid States for Cyber-Physical Systems: A Case Study of Electric Vehicle Powertrain. IEEE Trans. Cybern.
**2018**, 48, 2357–2367. [Google Scholar] [PubMed] - Lv, C.; Xing, Y.; Lu, C.; Liu, Y.; Guo, H.; Gao, H.; Cao, D. Hybrid-Learning-Based Classification and Quantitative Inference of Driver Braking Intensity of an Electrified Vehicle. IEEE Trans. Veh. Technol.
**2018**, 67, 5718–5729. [Google Scholar] [CrossRef] - Hamada, A.T.; Orhan, M.F. An Overview of Regenerative Braking Systems. J. Energy Storage
**2022**, 52, 105033. [Google Scholar] [CrossRef] - Qi, J.; Liu, L.; Shen, Z.; Xu, B.; Leung, K.S.; Sun, Y. Low-Carbon Community Adaptive Energy Management Optimization toward Smart Services. IEEE Trans. Ind. Inform.
**2019**, 16, 3587–3596. [Google Scholar] [CrossRef] - Yang, H.; Ji, F.; Yang, S. Research of Braking Energy Recovery System Based on Simulink-Cruise Combined Simulation. Control Eng. China
**2018**, 25, 1086–1090. [Google Scholar] - Yang, X.; Wang, Y.; Liu, D. The Series Control Strategy of Regenerative Braking for Range Extender Electric Vehicles. Control Eng. China
**2018**, 25, 238–244. [Google Scholar] - Liang, J.; Walker, P.D.; Ruan, J.; Yang, H.; Wu, J.; Zhang, N. Gearshift and Brake Distribution Control for Regenerative Braking in Electric Vehicles with Dual Clutch Transmission. Mech. Mach. Theory
**2019**, 133, 1–22. [Google Scholar] [CrossRef] - Li, Z.; Khajepour, A.; Song, J. A Comprehensive Review of the Key Technologies for Pure Electric Vehicles. Energy
**2019**, 182, 824–839. [Google Scholar] [CrossRef] - Zhang, Z.; Dong, Y.; Han, Y. Dynamic and Control of Electric Vehicle in Regenerative Braking for Driving Safety and Energy Conservation. J. Vib. Eng. Technol.
**2020**, 8, 179–197. [Google Scholar] [CrossRef] - Yang, Y.; He, Q.; Chen, Y.; Fu, C. Efficiency Optimization and Control Strategy of Regenerative Braking System with Dual Motor. Energies
**2020**, 13, 711. [Google Scholar] [CrossRef] - Li, S.; Yu, B.; Feng, X. Research on Braking Energy Recovery Strategy Of Electric Vehicle Based on ECE Regulation and I Curve. Sci. Prog.
**2020**, 103, 0036850419877762. [Google Scholar] [CrossRef] [PubMed] - Li, Q.; Huang, W.; Chen, W.; Yan, Y.; Shang, W.; Li, M. Regenerative Braking Energy Recovery Strategy Based on Pontryagin’s Minimum Principle for Fell Cell/Supercapacitor Hybrid Locomotive. Int. J. Hydrogen Energy
**2019**, 44, 5454–5461. [Google Scholar] [CrossRef] - Zhou, M.; Gao, Z.; Zhang, H. Research on Regenerative Braking Control Strategy of Hybrid Electric Vehicle. In Proceedings of the 6th International Forum on Strategic Technology, Harbin, China, 22–24 August 2011; pp. 300–303. [Google Scholar]
- Li, L.; Zhang, Y.; Yang, C.; Yan, B.; Martinez, C.M. Model Predictive Control-Based Efficient Energy Recovery Control Strategy for Regenerative Braking System of Hybrid Electric Bus. Energy Convers. Manag.
**2016**, 111, 299–314. [Google Scholar] [CrossRef] - Guo, J.; Li, W.; Wang, J.; Luo, Y.; Li, K. Safe and Energy-Efficient Car-Following Control Strategy for Intelligent Electric Vehicles Considering Regenerative Braking. IEEE Trans. Intell. Transp. Syst.
**2021**, 23, 7070–7081. [Google Scholar] [CrossRef] - Santini, S.; Albarella, N.; Arricale, V.M.; Brancati, R.; Sakhnevych, A. On-Board Road Friction Estimation Technique for Autonomous Driving Vehicle-Following Maneuvers. Appl. Sci.
**2021**, 11, 2197. [Google Scholar] [CrossRef] - Arricale, V.M.; Genovese, A.; Tomar, A.S.; Kural, K.; Sakhnevych, A. Non-Linear Model of Predictive Control-Based Slip Control ABS Including Tyre Tread Thermal Dynamics. Appl. Mech.
**2022**, 3, 855–888. [Google Scholar] [CrossRef] - Hellgren, J.; Jonasson, E. Maximisation of Brake Energy Regeneration in a Hybrid Electric Parallel Car. Int. J. Electr. Hybrid Veh.
**2007**, 1, 95–121. [Google Scholar] [CrossRef] - Siddiqui, O.; Simacek, D.; Hoang, R.; Famiglietti, N.; Nguyen, B.; Landerville, J. Characterizing Regenerative Coast-Down Deceleration in Tesla Model 3, S, and X. SAE Tech. Pap.
**2020**, 1, 0883. [Google Scholar] - Wen, H.; Chen, W.; Hui, J. A Single-Pedal Reg12enerative Braking Control Strategy of Accelerator Pedal for Electric Vehicles Based on Adaptive Fuzzy Control Algorithm. Energy Procedia
**2018**, 152, 624–629. [Google Scholar] [CrossRef] - Shi, Q.; He, Z.; Wei, Y.; Wang, M.; Zheng, X.; He, L. Single Pedal Control of Battery Electric Vehicle by Pedal Torque Demand with Dynamic Zero Position. IEEE Trans. Intell. Transp. Syst.
**2022**, 23, 21608–21619. [Google Scholar] [CrossRef] - Liu, W.; Qi, H.; Liu, X.; Wang, Y. Evaluation of Regenerative Braking Based on Single-Pedal Control for Electric Vehicles. Front. Mech. Eng.
**2020**, 15, 166–179. [Google Scholar] [CrossRef] - Zhao, Z. Research on Single Pedal Control Strategy of Electric Drive Loader. Master’s Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- He, H.; Lou, J. Research on Single Pedal Regenerative Braking Control. Veh. Power Technol.
**2022**, 2, 1–6. [Google Scholar] - Qi, W. Fuzzy Control Strategy of Pure Electric Vehicle Based on Driving Intention Recognition. J. Intell. Fuzzy Syst.
**2020**, 39, 5131–5139. [Google Scholar] [CrossRef]

**Figure 6.**Simulation results graph under the NEDC driving cycle. (

**a**) Torque comparison graph. (

**b**) Comparison graph of charge and discharge currents. (

**c**) Comparison graph of battery state of charge (SOC).

**Figure 10.**Data plot of the single-pedal control section. (

**a**) Pedal aperture input graph. (

**b**) Torque output follow-up graph. (

**c**) Vehicle speed output graph.

**Figure 11.**Partial energy consumption test data graphs. (

**a**) Vehicle speed graph. (

**b**) Battery SOC graph.

Parameter | Numerical Value |
---|---|

Normal vehicle speed | 40–60 km/h |

Maximum speed | 90 km/h |

Maximum output torque of rear axle | 8000 N·m |

Rated voltage | 540 VDC |

Rated power | 50 kW |

Peak power | 85 kW |

Battery capacity | 100 kWh |

Rated speed | 5800 r/min |

Peak speed | 12000 r/min |

Rated torque | 170 N·m |

Peak torque | 320 N·m |

Gradient L | Gradient M | Gradient H | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

k | v | k | v | k | v | ||||||||||||

L | M | H | VH | L | M | H | VH | L | M | H | VH | ||||||

z | L | VL | VL | L | M | z | L | VL | L | M | H | z | L | VL | L | M | H |

M | VL | L | M | H | M | L | M | H | H | M | L | M | H | H | |||

H | L | M | H | H | H | M | H | H | VH | H | M | H | H | VH | |||

VH | M | H | H | VH | VH | H | H | VH | VH | VH | H | H | VH | VH |

Parameter | Regenerative Braking Strategy of Look-Up Table Method | Based on Single-Pedal Regenerative Braking Strategy |
---|---|---|

Whole vehicle energy consumption/kJ | 6078 | 6058 |

Total braking energy/kJ | 1015 | 1026 |

Battery recycling/kJ | 310 | 521 |

Brake energy recovery rate/% | 30.5 | 50.8 |

Effective braking energy recovery rate/% | 5.1 | 8.6 |

Experiment Number | Control Strategy | Remaining SOC Value/% | Charging Capacity /kWh | Energy Consumption Optimization Rate/% |
---|---|---|---|---|

1 | The strategy of this article | 18 | 79.9 | 3.73 |

Original vehicle strategy | 12 | 83.0 | ||

2 | The strategy of this article | 20 | 78.8 | 3.45 |

Original vehicle strategy | 15 | 81.6 | ||

3 | The strategy of this article | 21 | 77.8 | 5.81 |

Original vehicle strategy | 13 | 82.6 | ||

4 | The strategy of this article | 20 | 78.9 | 4.48 |

Original vehicle strategy | 13 | 82.6 | ||

5 | The strategy of this article | 21 | 77.6 | 4.20 |

Original vehicle strategy | 15 | 81.0 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, Z.; Shi, Z.; Gao, J.; Xi, J.
Research on Regenerative Braking Control Strategy for Single-Pedal Pure Electric Commercial Vehicles. *World Electr. Veh. J.* **2023**, *14*, 229.
https://doi.org/10.3390/wevj14080229

**AMA Style**

Li Z, Shi Z, Gao J, Xi J.
Research on Regenerative Braking Control Strategy for Single-Pedal Pure Electric Commercial Vehicles. *World Electric Vehicle Journal*. 2023; 14(8):229.
https://doi.org/10.3390/wevj14080229

**Chicago/Turabian Style**

Li, Zhe, Zhenning Shi, Jianping Gao, and Jianguo Xi.
2023. "Research on Regenerative Braking Control Strategy for Single-Pedal Pure Electric Commercial Vehicles" *World Electric Vehicle Journal* 14, no. 8: 229.
https://doi.org/10.3390/wevj14080229