# Effects of the Incorporation of Electric Vehicles on Protection Coordination in Microgrids

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Electric Vehicle Characteristics

#### 2.1. Types of Electric Vehicles

#### 2.2. Plug-In Hybrid Electric Vehicle (PHEV) and Battery Electric Vehicle (BEV) Charging Methods

## 3. Effects of EVs under a Fault Condition

## 4. Overcurrent Protections

## 5. Methodology

## 6. Tests and Results

#### 6.1. Modifications in Short-Circuit Currents

#### 6.2. Effects on the Protection Coordination Scheme

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

${t}_{if}$ | Operating time of overcurrent protection i when fault f occurs |

$ipickup$ | Pickup current |

$m,n$ | Number of relays and faults, respectively |

${t}_{imin}$${t}_{imax}$ | Minimum operating time of overcurrent protection i |

${t}_{imax}$ | Maximum operating time of overcurrent protection i |

$TM{S}_{imin}$ | Minimum limit of time multiplier setting i |

$TM{S}_{imax}$ | Maximum limit of time multiplier setting i |

$ipicku{p}_{imin}$ | Minimum limit of pickup current i |

$ipicku{p}_{imax}$ | Maximum limit of pickup current i |

${I}_{fi}$ | Fault current of overcurrent protection i |

$BEV$ | Battery electric vehicle |

$BESS$ | Battery energy storage system |

$CTI$ | Coordination time interval |

$DG$ | Distributed generation |

$DOCR$ | Directional overcurrent relay |

$EV$ | Electric vehicle |

$EVCS$ | Electric vehicle charging station |

$FCEV$ | Fuel cell electric vehicle |

$HEV$ | Hybrid electric vehicle |

$ICEV$ | Internal combustion engine vehicle |

$OTI$ | Operation time index |

$PMS$ | Plug multiplier setting |

$PSI$ | Protection speed index |

$PHEV$ | Plug-in hybrid electric vehicle |

$PCI$ | Protection coordination index |

$PECs$ | Power electronic converters |

$TMS$ | Time multiplier setting |

$V2B$ | Vehicle to building |

$V2G$ | Vehicle to grid |

$V2H$ | Vehicle to home |

## References

- Tu, H.; Feng, H.; Srdic, S.; Lukic, S. Extreme fast charging of electric vehicles: A technology overview. IEEE Trans. Transp. Electrif.
**2019**, 5, 861–878. [Google Scholar] - Tong, L.; Zhao, S.; Jiang, H.; Zhou, J.; Xu, B. Multi-Scenario and Multi-Objective Collaborative Optimization of Distribution Network Considering Electric Vehicles and Mobile Energy Storage Systems. IEEE Access
**2021**, 9, 55690–55697. [Google Scholar] [CrossRef] - Tabatabaei, J.; Moghaddam, M.S.; Baigi, J.M. Rearrangement of Electrical Distribution Networks With Optimal Coordination of Grid-Connected Hybrid Electric Vehicles and Wind Power Generation Sources. IEEE Access
**2020**, 8, 219513–219524. [Google Scholar] [CrossRef] - Nour, M.; Chaves-Ávila, J.P.; Magdy, G.; Sánchez-Miralles, Á. Review of positive and negative impacts of electric vehicles charging on electric power systems. Energies
**2020**, 13, 4675. [Google Scholar] - Amjad, M.; Farooq-i-Azam, M.; Ni, Q.; Dong, M.; Ansari, E.A. Wireless charging systems for electric vehicles. Renew. Sustain. Energy Rev.
**2022**, 167, 112730. [Google Scholar] [CrossRef] - Connor, W.D.; Wang, Y.; Malikopoulos, A.A.; Advani, S.G.; Prasad, A.K. Impact of Connectivity on Energy Consumption and Battery Life for Electric Vehicles. IEEE Trans. Intell. Veh.
**2021**, 6, 14–23. [Google Scholar] [CrossRef] - Pieltain Fernández, L.; Gomez San Roman, T.; Cossent, R.; Mateo Domingo, C.; Frías, P. Assessment of the Impact of Plug-in Electric Vehicles on Distribution Networks. IEEE Trans. Power Syst.
**2011**, 26, 206–213. [Google Scholar] [CrossRef] - Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Integration of electric vehicles in the electric power system. Proc. IEEE
**2010**, 99, 168–183. [Google Scholar] - Dharmakeerthi, C.; Mithulananthan, N.; Saha, T. Impact of electric vehicle fast charging on power system voltage stability. Int. J. Electr. Power Energy Syst.
**2014**, 57, 241–249. [Google Scholar] - Deb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Impact of electric vehicle charging station load on distribution network. Energies
**2018**, 11, 178. [Google Scholar] - Suwanapingkarl, P.; Prakobkit, S.; Srivallop, K.; Boonthienthong, M. Reviews: The Impacts of Electric Vehicles (EVs) and Renewable Energy Resources (REs) on The Distribution Power Network. In Proceedings of the 2020 International Conference on Power, Energy and Innovations (ICPEI), Chiangmai, Thailand, 14–16 October 2020; pp. 93–96. [Google Scholar] [CrossRef]
- Aghajan-Eshkevari, S.; Azad, S.; Nazari-Heris, M.; Ameli, M.T.; Asadi, S. Charging and discharging of electric vehicles in power systems: An updated and detailed review of methods, control structures, objectives, and optimization methodologies. Sustainability
**2022**, 14, 2137. [Google Scholar] [CrossRef] - Sadeghian, O.; Nazari-Heris, M.; Abapour, M.; Taheri, S.S.; Zare, K. Improving reliability of distribution networks using plug-in electric vehicles and demand response. J. Mod. Power Syst. Clean Energy
**2019**, 7, 1189–1199. [Google Scholar] - Dulău, L.I.; Bică, D. Effects of electric vehicles on power networks. Procedia Manuf.
**2020**, 46, 370–377. [Google Scholar] - Al-Hanahi, B.; Ahmad, I.; Habibi, D.; Masoum, M.A.S. Charging Infrastructure for Commercial Electric Vehicles: Challenges and Future Works. IEEE Access
**2021**, 9, 121476–121492. [Google Scholar] [CrossRef] - Turan, M.T.; Gökalp, E. Integration Analysis of Electric Vehicle Charging Station Equipped with Solar Power Plant to Distribution Network and Protection System Designs. J. Electr. Eng. Technol.
**2022**, 17, 903–912. [Google Scholar] [CrossRef] - Abo-Khalil, A.G.; Abdelkareem, M.A.; Sayed, E.T.; Maghrabie, H.M.; Radwan, A.; Rezk, H.; Olabi, A.G. Electric vehicle impact on energy industry, policy, technical barriers, and power systems. Int. J. Thermofluids
**2022**, 13, 100134. [Google Scholar] [CrossRef] - Lin, S.; He, Z.; Zang, T.; Qian, Q. Impact of plug-in hybrid electric vehicles on distribution systems. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010; pp. 1–5. [Google Scholar]
- Kumar, R.; Saxena, D. Fault analysis of a distribution system embedded with plug-in electric vehicles. In Proceedings of the 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 26–27 October 2017; pp. 230–234. [Google Scholar]
- Saleh, S.A.; Ozkop, E.; Valdes, M.E.; Yuksel, A.; Haj-ahmed, M.A.; Sanchez, Z.; Mardegan, C.S. On The Factors Affecting Battery Unit Contributions to Fault Currents in Grid-connected Battery Storage Systems. IEEE Trans. Ind. Appl.
**2022**, 58, 3019–3028. [Google Scholar] - IEEE. IEEE 946–2020-IEEE Recommended Practice for the Design of DC Power Systems for Stationary Applications; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- IEEE. IEEE Guide for the Protection of Stationary Battery Systems; Institute of Electrical and Electronics Engineers: New York, NY, USA, 1998. [Google Scholar]
- IEEE. IEEE Recommended Practice for Conducting Short-Circuit Studies and Analysis of Industrial and Commercial Power Systems; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2018. [Google Scholar]
- Wang, L.; Qin, Z.; Slangen, T.; Bauer, P.; Van Wijk, T. Grid impact of electric vehicle fast charging stations: Trends, standards, issues and mitigation measures-an overview. IEEE Open J. Power Electron.
**2021**, 2, 56–74. [Google Scholar] - Shaukat, N.; Khan, B.; Ali, S.; Mehmood, C.; Khan, J.; Farid, U.; Majid, M.; Anwar, S.; Jawad, M.; Ullah, Z. A survey on electric vehicle transportation within smart grid system. Renew. Sustain. Energy Rev.
**2018**, 81, 1329–1349. [Google Scholar] - Falvo, M.C.; Sbordone, D.; Bayram, I.S.; Devetsikiotis, M. EV charging stations and modes: International standards. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 18–20 June 2014; pp. 1134–1139. [Google Scholar]
- Yilmaz, M.; Krein, P.T. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron.
**2012**, 28, 2151–2169. [Google Scholar] - Su, J.; Lie, T.T.; Zamora, R. Integration of Electric Vehicles in Distribution Network Considering Dynamic Power Imbalance Issue. IEEE Trans. Ind. Appl.
**2020**, 56, 5913–5923. [Google Scholar] [CrossRef] - Jaramillo Serna, J.d.J.; López-Lezama, J.M. Alternative Methodology to Calculate the Directional Characteristic Settings of Directional Overcurrent Relays in Transmission and Distribution Networks. Energies
**2019**, 12, 3379. [Google Scholar] [CrossRef] - Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal coordination of over-current relays in microgrids considering multiple characteristic curves. Alex. Eng. J.
**2021**, 60, 2093–2113. [Google Scholar] [CrossRef] - Clarke, A.D.; Bihani, H.A.; Makram, E.B.; Corzine, K.A. Analysis of the impact of different PEV battery chargers during faults. J. Power Energy Eng.
**2014**, 2014, 8. [Google Scholar] [CrossRef] - Jaramillo Serna, J.d.J.; López-Lezama, J.M. Calculation of Distance Protection Settings in Mutually Coupled Transmission Lines: A Comparative Analysis. Energies
**2019**, 12, 1290. [Google Scholar] [CrossRef] - Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Adaptive protection coordination scheme in microgrids using directional over-current relays with non-standard characteristics. Heliyon
**2021**, 7, e06665. [Google Scholar] [CrossRef] - Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. An Approach for Optimal Coordination of Over-Current Relays in Microgrids with Distributed Generation. Electronics
**2020**, 9, 1740. [Google Scholar] [CrossRef] - IEEE. IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems: Approved September 19, 1985, Reaffirmed June 27, 1991 IEEE Standards Board: Approved February 28, 1986, Reaffirmed December 9, 1991, American National Standards Institute; IEEE: Piscataway, NJ, USA, 1986. [Google Scholar]
- Al-Roomi, A.R. Optimal Coordination of Power Protective Devices with Illustrative Examples; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Belbachir, N.; Zellagui, M.; Settoul, S.; El-Bayeh, C.Z. Multi-objective optimal renewable distributed generator integration in distribution systems using grasshopper optimization algorithm considering overcurrent relay indices. In Proceedings of the 2021 9th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 16–17 June 2021; pp. 1–6. [Google Scholar]
- Zeineldin, H.H.; Mohamed, Y.A.R.I.; Khadkikar, V.; Pandi, V.R. A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems. IEEE Trans. Smart Grid.
**2013**, 4, 1523–1532. [Google Scholar] [CrossRef] - Khanbabapour, S.; Golshan, M.H. Synchronous DG planning for simultaneous improvement of technical, overcurrent, and timely anti-islanding protection indices of the network to preserve protection coordination. IEEE Trans. Power Deliv.
**2016**, 32, 474–483. [Google Scholar] [CrossRef] - Kar, S.; Samantaray, S.; Zadeh, M.D. Data-mining model based intelligent differential microgrid protection scheme. IEEE Syst. J.
**2015**, 11, 1161–1169. [Google Scholar] [CrossRef] - Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal Coordination of Over-Current Relays in Microgrids Using Unsupervised Learning Techniques. Appl. Sci.
**2021**, 11, 1241. [Google Scholar] [CrossRef] - Saad, S.M.; El-Naily, N.; Mohamed, F.A. A new constraint considering maximum PSM of industrial over-current relays to enhance the performance of the optimization techniques for microgrid protection schemes. Sustain. Cities Soc.
**2019**, 44, 445–457. [Google Scholar] [CrossRef] - El-Naily, N.; Saad, S.M.; Hussein, T.; Mohamed, F.A. A novel constraint and non-standard characteristics for optimal over-current relays coordination to enhance microgrid protection scheme. IET Gener. Transm. Distrib.
**2019**, 13, 780–793. [Google Scholar] [CrossRef] - Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal coordination of overcurrent relays in microgrids considering a non-standard characteristic. Energies
**2020**, 13, 922. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Basic structure of different electric vehicles (EVs) types. (

**a**) Hybrid electric vehicle (HEV); (

**b**) plug-in hybrid electric vehicle (PHEV); (

**c**) battery electric vehicle (BEV); and (

**d**) fuel cell electric vehicle (FCEV).

**Figure 3.**Structure of a fast-charger station: (

**a**) with AC distribution network (

**b**) with DC distribution network.

Charging Levels | Level 1 | Level 2 | Level 3 |
---|---|---|---|

Phase | 1 phase AC | 1/3 phase AC | 3 phase AC or DC |

Voltage | 120 V | 240 V | 208 V–600 V |

Current | 11 A, 16 A | 16 A, 32 A, 80 A | 240 A, 480 A |

Power | 1.4 kW, 1.9 kW | 4 kW, 8 kW, 19.2 kW | 50 kW, 100 kW |

Installation | Domestic location | Domestic/Public location | Public location |

**Table 2.**Minimum CTIs [35].

Downstream | Fuse Upstream | CBs Upstream | EMR Upstream | SR Upstream |
---|---|---|---|---|

Fuse | CS | CS | 0.22 s | 0.12 s |

CBs | CS | CS | 0.22 s | 0.12 s |

EMR | 0.2 s | 0.20 s | 0.30 s | 0.20 s |

SR | 0.2 s | 0.20 s | 0.30 s | 0.20 s |

Scenario | DG | EVCS 1 | EVCS 2 | EVCS 3 | EVCS 4 | EVCS 5 | EVCS 6 | Total EVs |
---|---|---|---|---|---|---|---|---|

BC | OFF | 0 EVs | 0 EVs | 0 EVs | 0 EVs | 0 EVs | 0 EVs | 0 EVs |

EV1 | OFF | 1 EVs | 1 EVs | 1 EVs | 1 EVs | 1 EVs | 1 EVs | 6 EVs |

EV2 | OFF | 3 EVs | 3 EVs | 3 EVs | 3 EVs | 3 EVs | 3 EVs | 18 EVs |

BC DG | ON | 0 EVs | 0 EVs | 0 EVs | 0 EVs | 0 EVs | 0 EVs | 0 EVs |

EV1 DG | ON | 1 EVs | 1 EVs | 1 EVs | 1 EVs | 1 EVs | 1 EVs | 6 EVs |

EV2 DG | ON | 3 EVs | 3 EVs | 3 EVs | 3 EVs | 3 EVs | 3 EVs | 18 EVs |

Relay | $\mathit{RCT}$ | ${\mathit{i}}_{\mathit{pickup}}$ | $\mathit{TMS}$ without DG | $\mathit{TMS}$ with DG |
---|---|---|---|---|

R1 | 400 | 0.50 | 0.1370 | |

R2 | 400 | 0.50 | 0.05 | 0.050 |

R3 | 400 | 0.50 | 0.050 | |

R4 | 400 | 0.50 | 0.1787 | 0.1891 |

R5 | 400 | 0.50 | 0.1148 | |

R6 | 400 | 0.50 | 0.3223 | 0.3198 |

R7 | 1200 | 1.00 | 0.2060 | 0.2439 |

R8 | 400 | 0.50 | 0.1911 | |

R9 | 400 | 0.50 | 0.050 | |

R10 | 400 | 0.50 | 0.050 | 0.050 |

R11 | 400 | 0.65 | 0.2175 | |

R12 | 400 | 0.50 | 0.050 | 0.050 |

R13 | 400 | 0.88 | 0.1669 | |

R14 | 400 | 0.65 | 0.0998 | |

R15 | 400 | 0.55 | 0.1359 |

Scenarios | $\mathit{T}\left[\mathbf{seg}\right]$ | V |
---|---|---|

BC | 4.99 | 0 |

EV1 | 11.65 | 2 |

EV2 | 7.48 | 3 |

Scenarios | $\mathit{T}\left[\mathbf{seg}\right]$ | V |
---|---|---|

BC DG | 13.66 | 0 |

EV1 DG | 18.36 | 0 |

EV2 DG | 18.62 | 2 |

Index | BC vs. EV1 | BC vs. EV2 | BC GD vs. EV1 DG | BC GD vs. EV2 DG |
---|---|---|---|---|

PSI | −1.33 | −0.49 | −0.34 | −0.36 |

PCI | 25.55 | 58.87 | 130.71 | 71.82 |

Relay | BC vs. EV1 | BC vs. EV2 | BC GD vs. EV1 DG | BC GD vs. EV2 DG |
---|---|---|---|---|

R1 | 0.90 | 0.76 | ||

R2 | 0.94 | 0.86 | 0.98 | 0.91 |

R3 | 0.76 | 0.60 | ||

R4 | 0.93 | 0.84 | 0.98 | 0.91 |

R5 | 0.94 | 0.94 | ||

R6 | 1.02 | 1.00 | 1.04 | 1.03 |

R7 | ||||

R8 | 0.84 | 0.65 | ||

R9 | 0.61 | 0.54 | ||

R10 | 0.94 | 0.86 | 0.93 | 0.90 |

R11 | ||||

R12 | 1.02 | 1.01 | 1.07 | 1.06 |

R13 | ||||

R14 | ||||

R15 |

CTI | BC | EV1 | EV2 | BC DG | EV1 DG | EV2 DG |
---|---|---|---|---|---|---|

R3–R1 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

R4–R2 | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ |

R1–R3 | ✓ | ✗ | ✗ | ✓ | ✓ | ✗ |

R6–R4 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

R15–R4 | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ |

R15–R5 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

R7–R6 | ✓ | ✗ | ✓ | ✓ | ✓ | ✓ |

R8–R6 | ✓ | ✓ | ✗ | ✓ | ✓ | ✓ |

R11–R8 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

R14–R9 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

R6–R10 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

R15–R10 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

R5–R12 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

R7–R12 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Zuluaga Ríos, C.D.; Villa Jaramillo, A.
Effects of the Incorporation of Electric Vehicles on Protection Coordination in Microgrids. *World Electr. Veh. J.* **2022**, *13*, 163.
https://doi.org/10.3390/wevj13090163

**AMA Style**

Saldarriaga-Zuluaga SD, López-Lezama JM, Zuluaga Ríos CD, Villa Jaramillo A.
Effects of the Incorporation of Electric Vehicles on Protection Coordination in Microgrids. *World Electric Vehicle Journal*. 2022; 13(9):163.
https://doi.org/10.3390/wevj13090163

**Chicago/Turabian Style**

Saldarriaga-Zuluaga, Sergio D., Jesús M. López-Lezama, Carlos David Zuluaga Ríos, and Alejandro Villa Jaramillo.
2022. "Effects of the Incorporation of Electric Vehicles on Protection Coordination in Microgrids" *World Electric Vehicle Journal* 13, no. 9: 163.
https://doi.org/10.3390/wevj13090163