# Design and Analysis of a Novel Adjustable SVAWT for Wind Energy Harvesting in New Energy Vehicle

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. System Design

#### 2.1. Energy Absorption Module

#### 2.2. Energy Recovery Module

#### 2.2.1. Inoperative Motor

#### 2.2.2. Motor Operation

#### 2.3. Energy Conversion Module

## 3. Modeling and Analysis

#### 3.1. Rotor Model

#### 3.1.1. Rotational Energy of Components

#### 3.1.2. Energy of Overlapping Damping Force of the Novel Adjustable SVAWT

#### 3.2. Generator Model

#### 3.3. Efficiency Analysis of the Novel Adjustable SVAWT

## 4. Results and Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Nomenclature

H | blade height | $\rho $ | air density |

d | blade diameter | A | blade area sweeping, |

${e}_{p}$ | blade thickness | m | area sweeping wind mass |

r | eccentric distance | v | wind speed |

D | SVAWT diameter | ${E}_{w}$ | blades kinetic energy |

$\xi $ | damping ratio | P | blades acquired power |

${k}_{g}$ | pair 1 and 2 mesh stiffness | ${c}_{p}$ | wind turbine airfoils |

${r}_{1}$ | mesh gears 1 radius | ${r}_{2}$ | mesh gears 2 radius |

${J}_{b}$ | board rotary inertia | ${\omega}_{b}$ | board angular velocity |

${J}_{r}$ | ring gear rotary inertia | ${\omega}_{r}$ | ring gear angular velocity |

${J}_{1}$ | mesh gears 1 rotary inertia | ${J}_{2}$ | mesh gears 2 rotary inertia |

${T}_{ge}$ | resistive torque | ${C}_{ge}$ | generator electromagnetic damping |

${k}_{t}$ | speed constants | ${k}_{e}$ | torque constants |

${R}_{i}$ | generator internal resistance | ${R}_{e}$ | generator external resistance |

${J}_{s}$ | blade rotary inertia | ${\omega}_{s}$ | blade angular velocity |

${J}_{ge}$ | DC generator rotary inertia | ${\omega}_{ge}$ | DC generator angular velocity |

${J}_{bgi}$ | bevel gear i rotary inertia | ${\omega}_{bgi}$ | bevel gear i angular velocity |

${J}_{gi}$ | gear i rotary inertia | ${\omega}_{gi}$ | gear i angular velocity |

${J}_{t}$ | shaft rotary inertia | ${\omega}_{t}$ | shaft angular velocity |

${C}_{1}$ | gears 2 and gears 6 mesh damping | ${C}_{3}$ | bevel gears 1 and 2 mesh damping |

${C}_{2}$ | gears 1 and gears 7 mesh damping | ${C}_{4}$ | bevel gears 2 and 3 mesh damping |

${T}_{m}$ | generator input torque | ${E}_{C}$ | damping force energy |

${E}_{T}$ | components rotate energy | $\eta $ | energy transfer efficiency |

## Abbreviations

BEVs | battery electric vehicles | VAWT | vertical axis wind turbine |

PHEVs | plug-in hybrid electric vehicles | HAWT | horizontal axis wind turbine |

CFD | computational fluid dynamics | AC | alternating current |

SVAWT | savonius vertical axis wind turbine | DC | direct current |

## References

- United Nations General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 23 November 2022).
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Minx, J.C. Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Sector by Sector: Where do Global Greenhouse Gas Emissions Come from? Our World in Data n.d. Available online: https://ourworldindata.org/ghg-emissions-by-sector (accessed on 2 November 2022).
- Hardman, S.; Tal, G. Understanding discontinuance among California’s electric vehicle owners. Nat. Energy
**2021**, 6, 538–545. [Google Scholar] [CrossRef] - Rezvani, Z.; Jansson, J.; Bodin, J. Advances in consumer electric vehicle adoption research: A review and research agenda. Transp. Res. Part D-Transp. Environ.
**2015**, 34, 122–136. [Google Scholar] [CrossRef] [Green Version] - Jabbari, P.; Chernicoff, W.; MacKenzie, D. Analysis of Electric Vehicle Purchaser Satisfaction and Rejection Reasons. Transp. Res. Board
**2017**, 2628, 110–119. [Google Scholar] [CrossRef] - Adepetu, A.; Keshav, S. The relative importance of price and driving range on electric vehicle adoption: Los Angeles case study. Transportation
**2017**, 44, 353–373. [Google Scholar] [CrossRef] - She, Z.-Y.; Sun, Q.; Ma, J.-J.; Xie, B.-C. What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China. Transp. Policy
**2017**, 56, 29–40. [Google Scholar] [CrossRef] - Vassileva, L.; Campillo, J. Adoption barriers for electric vehicles: Experiences from early adopters in Sweden. Energy
**2017**, 120, 632–641. [Google Scholar] [CrossRef] - Franke, T.; Neumann, I.; Buehler, F.; Cocron, P.; Krems, J.F. Experiencing Range in an Electric Vehicle: Understanding Psychological Barriers. Appl. Psychol.
**2012**, 61, 368–391. [Google Scholar] [CrossRef] - Dumortier, J.; Siddiki, S.; Carley, S.; Cisney, J.; Krause, R.M.; Lane, B.W.; Rupp, J.A.; Graham, J.D. Effects of providing total cost of ownership information on consumers’ intent to purchase a hybrid or plug-in electric vehicle. Transp. Res. Part A-Policy Pract.
**2015**, 72, 71–86. [Google Scholar] [CrossRef] [Green Version] - Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption? n.d. Available online: https://ideas.repec.org/a/gam/jsusta/v9y2017i10p1783-d113883.html (accessed on 2 November 2022).
- Zheng, P.; Fang, Z.; Li, H.; Pan, Y.; Luo, D.; Zhang, Z. Multi-objective optimization of hybrid energy management system for expressway chargers. J. Energy Storage
**2022**, 54, 105233. [Google Scholar] [CrossRef] - Tan, C.; Geng, S.; Tan, Z.; Wang, G.; Pu, L.; Guo, X. Integrated energy system–Hydrogen natural gas hybrid energy storage system optimization model based on cooperative game under carbon neutrality. J. Energy Storage
**2021**, 38, 102539. [Google Scholar] [CrossRef] - Electricity. Great River Energy n.d. Available online: https://greatriverenergy.com/electricity-sources/ (accessed on 2 November 2022).
- Dong, L.; Yang, F.; He, A.; Guo, Z.; Yu, J.; Zuo, J. Investigation on energy-regenerative shock absorber with adjustable damping and power for freight wagons. Energy Convers. Manag.
**2022**, 254, 115228. [Google Scholar] [CrossRef] - Yu, W.; Wang, R. Development and performance evaluation of a comprehensive automotive energy recovery system with a refined energy management strategy. Energy
**2019**, 189, 116365. [Google Scholar] [CrossRef] - Duan, C.; Tao, H.; Wang, C.; Chen, J.; Zhao, X.; Zhou, X. An Electric Vehicle Battery Modular Balancing System Based on Solar Energy Harvesting. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019. [Google Scholar]
- Quartey, G. Generation of Electrical Power by a Wind Turbine for Charging Moving Electric Cars. J. Energy Technol. Policy
**2014**, 4, 19–29. [Google Scholar] - Awal, M.R.; Jusoh, M.; Sakib, M.D.; Hossain, F.; Rashidi, M.; Beson, C.; Aljunid, S.A. Design and implementation of Vehicle Mounted Wind Turbine. ARPN J. Eng. Appl. Sci.
**2015**, 10, 8699–8706. [Google Scholar] - Fathabadi, H. Possibility of Utilizing Wind Turbine to Recover a Portion of the Kinetic Energy Losses of a Car. IEEE Trans. Veh. Technol.
**2019**, 68, 8663–8670. [Google Scholar] [CrossRef] - Battisti, L. Relevance of Icing for Wind Turbines. Wind Turbines in Cold Climates; Springer International Publishing: Cham, Switzerland, 2015; pp. 43–111. [Google Scholar] [CrossRef]
- Alom, N.; Saha, U.K. Influence of blade profiles on Savonius rotor performance: Numerical simulation and experimental validation. Energy Convers. Manag.
**2019**, 186, 267–277. [Google Scholar] [CrossRef] - Akbari, V.; Naghashzadegan, M.; Kouhikamali, R.; Afsharpanah, F.; Yaïci, W. Multi-Objective Optimization and Optimal Airfoil Blade Selection for a Small Horizontal-Axis Wind Turbine (HAWT) for Application in Regions with Various Wind Potential. Machines
**2022**, 10, 687. [Google Scholar] [CrossRef] - Eltayesh, A.; Castellani, F.; Burlando, M.; Hanna, M.B.; Huzayyin, A.; El-Batsh, H.M.; Becchetti, M. Experimental and numerical investigation of the effect of blade number on the aerodynamic performance of a small-scale horizontal axis wind turbine. Alex. Eng. J.
**2021**, 60, 3931–3944. [Google Scholar] [CrossRef] - Chaudhry, H.N.; Calautit, J.K.; Hughes, B.R. Computational Analysis to Factor Wind into the Design of an Architectural Environment. Model. Simul. Eng.
**2015**, 2015, e234601. [Google Scholar] [CrossRef] [Green Version] - Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K. Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renew. Energy
**2015**, 75, 560–571. [Google Scholar] [CrossRef] - Aslam Bhutta, M.M.; Hayat, N.; Farooq, A.U.; Ali, Z.; Jamil, S.h.R.; Hussain, Z. Vertical axis wind turbine—A review of various configurations and design techniques. Renew. Sustain. Energy Rev.
**2012**, 16, 1926–1939. [Google Scholar] [CrossRef] - Pranta, M.H.; Rabbi, M.S.; Roshid, M.M. A computational study on the aerodynamic performance of modified savonius wind turbine. Results Eng.
**2021**, 10, 100237. [Google Scholar] [CrossRef] - Al-Faruk, A.; Sharifian, A. Geometrical optimization of a swirling Savonius wind turbine using an open jet wind tunnel. Alex. Eng. J.
**2016**, 55, 2055–2064. [Google Scholar] [CrossRef] [Green Version] - Ricci, R.; Vitali, D.; Montelpare, S. An innovative wind-solar hybrid street light: Development and early testing of a prototype. Int. J. Low-Carbon Technol.
**2015**, 10, 420–429. [Google Scholar] [CrossRef] [Green Version] - Ricci, R.; Romagnoli, R.; Montelpare, S.; Vitali, D. Experimental study on a Savonius wind rotor for street lighting systems. Appl. Energy
**2016**, 161, 143–152. [Google Scholar] [CrossRef] - Renewable Energy Resources | John Twidell, Tony Weir | Taylor & Franci n.d. Available online: https://www.taylorfrancis.com/books/mono/10.4324/9781315766416/renewable-energy-resources-john-twidell-tony-weir (accessed on 2 November 2022).
- Alam, F.; Golde, S. An Aerodynamic Study of a Micro Scale Vertical Axis Wind Turbine. Procedia Eng.
**2013**, 56, 568–572. [Google Scholar] [CrossRef] [Green Version] - Torres, S.; Marulanda, A.; Montoya, M.F.; Hernandez, C. Geometric design optimization of a Savonius wind turbine. Energy Convers. Manag.
**2022**, 262, 115679. [Google Scholar] [CrossRef] - Marinić-Kragić, I.; Vučina, D.; Milas, Z. Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model. Energy
**2022**, 241, 122841. [Google Scholar] [CrossRef] - Sofian, M.; Nurhayati, R.; Rexca, A.J.; Syariful, S.S.; Aslam, A. An Evaluation of Drag Coefficient of Wind Turbine System Installed on Moving Car. Appl. Mech. Mater.
**2014**, 660, 689–693. [Google Scholar] [CrossRef] [Green Version] - Chaudhary, Y.; Bangi, V.; Guduru, R.; Aung, K.; Reddy, G. Preliminary Investigation on Generation of Electricity Using Micro Wind Turbines Placed on A Car. Int. J. Renew. Energy Dev.
**2017**, 6, 75–81. [Google Scholar] [CrossRef] [Green Version] - Abdullah, M.S.; Ishak, M.H.H.; Ismail, F. Numerical study of the 3D Savonius turbine under stationary conditions. Eng. Fail. Anal.
**2022**, 136, 106199. [Google Scholar] [CrossRef] - Wei, W.; Xu, J. Lateral and Longitudinal Overlap Ratio on Starting Performance of Savonius Wind Turbine. Ind. Control. Comput.
**2017**, 30, 52–54. [Google Scholar] - Morshed, K.N.; Rahman, M.; Molina, G.; Ahmed, M. Wind tunnel testing and numerical simulation on aerodynamic performance of a three-bladed Savonius wind turbine. Int. J. Energy Environ. Eng.
**2013**, 4, 18. [Google Scholar] [CrossRef] [Green Version] - Wang, H.; He, C.; Lv, S.; Sun, H. A new electromagnetic vibrational energy harvesting device for swaying cables. Appl. Energy
**2018**, 228, 2448–2461. [Google Scholar] [CrossRef] - Lin, T.; Pan, Y.; Chen, S.; Zuo, L. Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting. Appl. Energy
**2018**, 213, 219–226. [Google Scholar] [CrossRef] - Pan, Y.; Lin, T.; Qian, F.; Liu, C.; Yu, J.; Zuo, J.; Zuo, L. Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation. Appl. Energy
**2019**, 247, 309–321. [Google Scholar] [CrossRef] - Hussain, M.Z.; Anbalagan, R.; Jayabalakrishnan, D.; Muruga, D.N.; Prabhahar, M.; Bhaskar, K.; Sendilvelan, S. Charging of car battery in electric vehicle by using wind energy. Mater. Today Proc.
**2021**, 45, 5873–5877. [Google Scholar] [CrossRef]

**Figure 2.**Blades of the energy absorption module. (

**a**) Two blades with drag forces in the proposed SVAWT. (

**b**) Shape of the blade.

**Figure 3.**Energy recovery principle of the SVAWT. (

**a**) Installation position of the novel adjustable SVAWT. (

**b**) Motion transmission of the novel adjustable SVAWT when the motor is not in operation. (

**c**) Motion transmission of the novel adjustable SVAWT when the motor is in operation.

**Figure 5.**Components of the energy conversion module. (

**a**) DC generator. (

**b**) Voltage regulator module.

**Figure 7.**Variation curve of vehicle speed. (

**a**) Operating condition 1. (

**b**) Operating condition 2. (

**c**) Operating condition 3. (

**d**) Operating condition 4.

**Figure 9.**Power of the blades absorbing the wind under four operating conditions. (

**a**) Power of the blades under operating condition 1. (

**b**) Power of the blades under operating condition 2. (

**c**) Power of the blades under operating condition 3. (

**d**) Power of the blades under operating condition 4.

**Figure 10.**Angular velocity of the generator under four operating conditions. (

**a**) Angular velocity under operating condition 1. (

**b**) Power of the blades under operating condition 2. (

**c**) Power of the blades under operating condition 3. (

**d**) Power of the blades under operating condition 4.

Parameters | Tooth Number | Parameters | Tooth Number |
---|---|---|---|

gear 1 | 44 | gear 6 | 67 |

gear 2 | 67 | gear 7 | 88 |

gear 3 | 27 | bevel gear 1 | 51 |

gear 4 | 27 | bevel gear 2 | 29 |

gear 5 | 27 | bevel gear 3 | 51 |

Parameters | Value |
---|---|

Diameter of input shaft | 8 mm |

Length | 89 mm |

Outer diameter | 68 mm |

Rated voltage | 12 V |

Rated speed | 2000~4000 rpm |

No-load current | 0.2~3 A |

Rated power | 100 W |

Rotor inertia | 0.436 kg·cm^{2} |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhao, Z.; Li, Y.; Zhang, B.; Wang, C.; Yan, Z.; Wang, Q.
Design and Analysis of a Novel Adjustable SVAWT for Wind Energy Harvesting in New Energy Vehicle. *World Electr. Veh. J.* **2022**, *13*, 242.
https://doi.org/10.3390/wevj13120242

**AMA Style**

Zhao Z, Li Y, Zhang B, Wang C, Yan Z, Wang Q.
Design and Analysis of a Novel Adjustable SVAWT for Wind Energy Harvesting in New Energy Vehicle. *World Electric Vehicle Journal*. 2022; 13(12):242.
https://doi.org/10.3390/wevj13120242

**Chicago/Turabian Style**

Zhao, Zhen, Yongxin Li, Baifu Zhang, Changhong Wang, Zhangwei Yan, and Qingcheng Wang.
2022. "Design and Analysis of a Novel Adjustable SVAWT for Wind Energy Harvesting in New Energy Vehicle" *World Electric Vehicle Journal* 13, no. 12: 242.
https://doi.org/10.3390/wevj13120242