DSP-Based 40 GB/s Lane Rate Next-Generation Access Networks †
Abstract
:1. Introduction
2. System Architecture and Simulation Parameters
3. Simulation Results
3.1. Optimization of Transceiver Bandwidth
3.2. Transmission Performance
3.3. Link Power Budget
3.4. DSP Complexity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ITU-T G.989 Series of Recommendations. Available online: https://www.itu.int/rec/T-REC-G.989/en (accessed on 18 September 2018).
- Houtsma, V.; Veen, D.V. Demonstration of symmetrical 25 Gbps TDM-PON with 31.5 dB optical power budget using only 10 Gbps optical components. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015. [Google Scholar]
- Houtsma, V.; Veen, D.V.; Gnauck, A.; Iannone, P. APD-Based Duobinary Direct Detection Receiver for 40 Gb/s TDM-PON. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015. [Google Scholar]
- Yin, S.; Houtsma, V.; Veen, D.V.; Vetter, P. Optical Amplified 40-Gbps Symmetrical TDM-PON Using 10-Gbps Optics and DSP. J. Lightwave Technol. 2017, 35, 1067–1074. [Google Scholar] [CrossRef]
- Torres-Ferrera, P.; Ferrero, V.; Valvo, M.; Gaudino, R. Impact of the Overall Electrical Filter Shaping in Next-Generation 25 and 50 Gb/s PONs. J. Opt. Commun. Netw. 2018, 10, 493–505. [Google Scholar] [CrossRef]
- Houtsma, V.; Veen, D.V. A Study of Options for High-Speed TDM-PON Beyond 10G. J. Lightwave Technol. 2017, 4, 1059–1066. [Google Scholar] [CrossRef]
- Ye, Z.; Li, S.; Cheng, N.; Liu, X. Demonstration of high-performance cost-effective 100-Gb/s TWDM-PON using 4 × 25-Gb/s optical Duobinary channels with 16-GHz APD and receiver-side post-equalization. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015. [Google Scholar]
- Wei, J.L.; Eiselt, N.; Griesser, H.; Grobe, K.; Eiselt, M.; Vegas-Olmos, J.J.; Monroy, I.T.; Elbers, J.-P. First Demonstration of Real-Time End-to-End 40 Gb/s PAM-4 System using 10-G Transmitter for Next Generation Access Applications. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015. [Google Scholar]
- Wei, J.L.; Giacoumidis, E. Multi-band CAP for next generation optical access networks using 10-G optics. J. Lightwave Technol. 2018, 36, 551–559. [Google Scholar] [CrossRef]
- Tang, J.M.; Cao, B.; Deng, M.L.; Giddings, R.; Duan, X.; Zhang, Q.; Wang, M. RSOA intensity modulator frequency chirp-enabled 40 Gb/s over 25 km IMDD PON systems. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, LA, USA, 22–26 March 2015. [Google Scholar]
- Wei, J.L.; Grobe, K.; Sánches, C.; Giacoumidis, E.; Griesser, H. Comparison of Cost- and Energy-Efficient Signal Modulations for Next Generation Passive Optical Networks. Opt. Express 2015, 23, 28271–28281. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.L.; Grobe, K.; Wagner, C.; Giacoumidis, E.; Griesser, H. 40 Gb/s Lane Rate NG-PON using Electrical/Optical Duobinary, PAM-4 and Low Complex Equalizations. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016. [Google Scholar]
- Proakis, J.G. Digital Communications, 4th ed.; McGraw-Hill Book Co.: New York, NY, USA, 2001. [Google Scholar]
- Choi, W.-J.; Bond, A.E.; Kim, J.; Zhang, J.; Jambunathan, R.; Foulk, H.; O’Brien, S.; Norman, J.V.; Vandegrift, D.; Wanamaker, C.; et al. Lower insertion loss and low dispersion penalty InGaAsP quantum-well high-speed electroabsorption modulator for 40-Gb/s very-short-reach, long-reach, and long-haul applications. J. Lightwave Technol. 2002, 20, 2052. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Chung, Y. Transmission of 51.56-Gb/s OOK signal using 1.55-μm directly modulated laser and duobinary electrical equalizer. Opt. Express 2016, 24, 22555–22562. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.P. Fiber Optic Communication Systems, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Wei, J.L.; Giacoumidis, E. 40 Gb/s/λ optical amplified PAM-4 PON with transmission over 30 km SMF using 10-G Optics and simple DSP. In Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017. [Google Scholar]
- Wei, J.L.; Tang, J.M.; Cheng, Q.; Penty, R.V.; White, I.H.; Griesser, H. Optimization of Transceiver Bandwidths of 40 Gb/s NG-PONs using Electrical Three-Level Duobinary. In Proceedings of the Asia Communications and Photonics Conference, Hongkong, China, 19–23 November 2015. [Google Scholar]
- Rosenkranz, W.; Xia, C. Electrical Equalization for Advanced Optical Communication Systems. AEÜ Int. J. Electron. Commun. 2006, 51, 153–157. [Google Scholar] [CrossRef]
- Wei, J.L.; Cheng, Q.; Penty, R.V.; White, I.H.; Cunningham, D.G. 400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation. IEEE Commun. Mag. 2015, 53, 182–189. [Google Scholar] [CrossRef]
- Wei, J.L.; Sanchez, C.; Giacoumidis, E. Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects. Opt. Lett. 2017, 42, 3860–3863. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Li, Z.; Peng, J.; Tan, A.; Song, Y.; Li, Y.; Chen, J.; Wang, M. Decoding of 10-G Optics-Based 50-Gb/s PAM-4 Signal Using Simplified MLSE. Photonics J. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Myburgh, H.C.; Olivier, J.C. Low Complexity MLSE Equalization in Highly Dispersive Rayleigh Fading Channels. Eur. J. Adv. Signal. Process. 2010. [Google Scholar] [CrossRef]
- Wei, J.L.; Lam, C.F.; Giacoumidis, E.; Cheng, Q.; Penty, R.V.; White, I.H. Towards Ultra-Low Cost and Power Next Generation Optical Access Networking. Nat. Commun. 2018. submitted. [Google Scholar]
- Stark, A.; Detwiler, T. Equalization Strategies for 25G PON. In Proceedings of the Optical Fiber Communication Conference on OSA Technical Digest (Online) (Optical Society of America, 2017), Los Angeles, VA, USA, 19–23 March 2017. [Google Scholar]
DSP Algorithm | Modulation | Multiplications | Sums |
---|---|---|---|
Linear FFE–DFE (M = 7, N = 5) | Opt./Electr. Duobinary, PAM-4 | M + N 12 | M + N − 1 11 |
(Non)linear FFE–DFE (M = 7, N = 5) | Opt./Electr. Duobinary, PAM-4 | 61 | 49 |
(Non)linear FFE–DFE–MLSE (K = 2, L = 2) | Opt./Electr. Duobinary | 85 | + 49 81 |
(Non)linear FFE–DFE–MLSE (K = 4, L = 1) | PAM-4 | 93 | + 49 97 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zhou, J.; Giacoumidis, E.; Haigh, P.A.; Tang, J. DSP-Based 40 GB/s Lane Rate Next-Generation Access Networks. Future Internet 2018, 10, 118. https://doi.org/10.3390/fi10120118
Wei J, Zhou J, Giacoumidis E, Haigh PA, Tang J. DSP-Based 40 GB/s Lane Rate Next-Generation Access Networks. Future Internet. 2018; 10(12):118. https://doi.org/10.3390/fi10120118
Chicago/Turabian StyleWei, Jinlong, Ji Zhou, Elias Giacoumidis, Paul A. Haigh, and Jianming Tang. 2018. "DSP-Based 40 GB/s Lane Rate Next-Generation Access Networks" Future Internet 10, no. 12: 118. https://doi.org/10.3390/fi10120118
APA StyleWei, J., Zhou, J., Giacoumidis, E., Haigh, P. A., & Tang, J. (2018). DSP-Based 40 GB/s Lane Rate Next-Generation Access Networks. Future Internet, 10(12), 118. https://doi.org/10.3390/fi10120118