Preclinical Assessment of a Metformin–Melatonin Combination: Antinociceptive Synergism
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs
2.3. Formalin-Induced Acute Nociception
2.4. Study Design
2.5. Data Analysis
2.6. Assessment of Motor Activity
3. Results
3.1. Antinociceptive Effect of Metformin and Melatonin
3.2. Antinociceptive Effect of Metformin–Melatonin Combination
3.3. Action Mechanisms of the Combination
4. Discussion
4.1. Neurogenic Phase of the Test
4.2. Antinociceptive Effect of Metformin
4.3. Antinociceptive Effect of Melatonin
4.4. Antinociception of the Metformin–Melatonin Combination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldberg, D.S.; McGee, S.J. Pain as a Global Public Health Priority. BMC Public Health 2011, 11, 770. [Google Scholar] [CrossRef]
- Tallarida, R.J. The Interaction Index: A Measure of Drug Synergism. Pain 2002, 98, 163–168. [Google Scholar] [CrossRef]
- Sica, D.A. Are There Pleiotropic Effects of Antihypertensive Medications or Is It All About the Blood Pressure in the Patient With Diabetes and Hypertension? J. Clin. Hypertens. 2011, 13, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Ambriz-Tututi, M.; Granados-Soto, V. Oral and Spinal Melatonin Reduces Tactile Allodynia in Rats via Activation of MT2 and Opioid Receptors. Pain 2007, 132, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Augusto, P.S.A.; Braga, A.V.; Rodrigues, F.F.; Morais, M.I.; Dutra, M.M.G.B.; Batista, C.R.A.; Melo, I.S.F.; Costa, S.O.A.M.; Goulart, F.A.; Coelho, M.M.; et al. Metformin Antinociceptive Effect in Models of Nociceptive and Neuropathic Pain Is Partially Mediated by Activation of Opioidergic Mechanisms. Eur. J. Pharmacol. 2019, 858, 172497. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.Z.; Wang, Y.; Urquhart, D.M.; Estee, M.M.; Wluka, A.E.; Heritier, S.; Cicuttini, F.M. Metformin for Knee Osteoarthritis with Obesity: Study Protocol for a Randomised, Double-Blind, Placebo-Controlled Trial. BMJ Open 2023, 13, e079489. [Google Scholar] [CrossRef]
- Malin, S.K.; Kashyap, S.R. Effects of Metformin on Weight Loss: Potential Mechanisms. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 323–329. [Google Scholar] [CrossRef]
- Saisho, Y. Metformin and Inflammation: Its Potential Beyond Glucose-Lowering Effect. Endocr. Metab. Immune Disord.-Drug Targets 2015, 15, 196–205. [Google Scholar] [CrossRef]
- Hasanvand, A. The Role of AMPK-Dependent Pathways in Cellular and Molecular Mechanisms of Metformin: A New Perspective for Treatment and Prevention of Diseases. Inflammopharmacology 2022, 30, 775–788. [Google Scholar] [CrossRef]
- Baeza-Flores, G.D.C.; Guzmán-Priego, C.G.; Parra-Flores, L.I.; Murbartián, J.; Torres-López, J.E.; Granados-Soto, V. Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Front. Pharmacol. 2020, 11, 558474. [Google Scholar] [CrossRef]
- Mahmood, D. Pleiotropic Effects of Melatonin. Drug Res. 2018, 69, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Brzȩczek, M.; Słonka, K.; Hyla-Klekot, L. Melatonina-Hormon o Plejotropowym Działaniu. Pediatr. I Med. Rodz. 2016, 12, 127–133. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; Abreu-Gonzalez, P.; Reiter, R.J. Melatonin and Cardioprotection in the Acute Myocardial Infarction: A Promising Cardioprotective Agent. Int. J. Cardiol. 2012, 158, 309–310. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Nabavi, S.F.; Sureda, A.; Xiao, J.; Dehpour, A.R.; Shirooie, S.; Silva, A.S.; Baldi, A.; Khan, H.; Daglia, M. Anti-Inflammatory Effects of Melatonin: A Mechanistic Review. Crit. Rev. Food Sci. Nutr. 2019, 59, S4–S16. [Google Scholar] [CrossRef]
- Srinivasan, V.; Lauterbach, E.C.; Yu Ho, K.; Acuna-Castroviejo, D.; Zakaria, R.; Brzezinski, A. Melatonin in Antinociception: Its Therapeutic Applications. Curr. Neuropharmacol. 2012, 10, 167–178. [Google Scholar] [CrossRef]
- Ambriz-Tututi, M.; Rocha-González, H.I.; Castañeda-Corral, G.; Araiza-Saldaña, C.I.; Caram-Salas, N.L.; Cruz, S.L.; Granados-Soto, V. Role of Opioid Receptors in the Reduction of Formalin-Induced Secondary Allodynia and Hyperalgesia in Rats. Eur. J. Pharmacol. 2009, 619, 25–32. [Google Scholar] [CrossRef]
- Quinõnez-Bastidas, G.N.; Pineda-Farias, J.B.; Flores-Murrieta, F.J.; Rodriguez-Silverio, J.; Reyes-Garcia, J.G.; Godínez-Chaparro, B.; Granados-Soto, V.; Rocha-Gonzalez, H.I. Antinociceptive Effect of (−)-Epicatechin in Inflammatory and Neuropathic Pain in Rats. Behav. Pharmacol. 2018, 29, 270–279. [Google Scholar] [CrossRef]
- Harton, L.R.; Richardson, J.R.; Armendariz, A.; Nazarin, A. Dissociation of Morphine Analgesic Effects in the Sensory and Affective. Brain Res. 2017, 1, 36–41. [Google Scholar] [CrossRef]
- Zimmermann, M. Guest Editorial Ethical Guidelines for Investigations of Experimental Pain in Conscious Animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999; Especificaciones Técnicas Para La Producción, Cuidado y Uso de Los Animales de Laboratorio. SAGARPA: Mexico City, Mexico, 2001.
- du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The Arrive Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol. 2020, 18, e3000410. [Google Scholar] [CrossRef]
- Hickman, D.L. Wellbeing of Mice Euthanized with Carbon Dioxide in Their Home Cage as Compared with an Induction Chamber. J. Am. Assoc. Lab. Anim. Sci. 2021, 60, 72–76. [Google Scholar] [CrossRef]
- Dubuisson, D.; Dennis, S.G. The Formalin Test: A Quantitative Study of the Analgesic Effects of Morphine, Meperidine, and Brain Stem Stimulation in Rats and Cats. Pain 1977, 4, 161–174. [Google Scholar] [CrossRef]
- Wheeler-Aceto, H.; Porreca, F.; Cowan, A. The Rat Paw Formalin Test: Comparison of Noxious Agents. Pain 1990, 40, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Durán, C.; Sánchez-Serrano, E.; Gauthereau-Torres, M.Y.; Ortega-Varela, L.F. Evaluation of Antinociceptive Effect of the Ketorolac-Topiramate Combination in the Rat Formalin Test. Bull. Pharm. Sci. Assiut 2021, 44, 253–263. [Google Scholar] [CrossRef]
- Kuthati, Y.; Lin, S.H.; Chen, I.J.; Wong, C.S. Melatonin and Their Analogs as a Potential Use in the Management of Neuropathic Pain. J. Formos. Med. Assoc. 2019, 118, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Arreola-Espino, R.; Urquiza-Marín, H.; Ambriz-Tututi, M.; Araiza-Saldaña, C.I.; Caram-Salas, N.L.; Rocha-González, H.I.; Mixcoatl-Zecuatl, T.; Granados-Soto, V. Melatonin Reduces Formalin-Induced Nociception and Tactile Allodynia in Diabetic Rats. Eur. J. Pharmacol. 2007, 577, 203–210. [Google Scholar] [CrossRef]
- Suarez-Mendez, S.; Tovilla-Zarate, C.A.; Ortega-Varela, L.F.; Bermudez-Ocaña, D.Y.; Blé-Castillo, J.L.; González-Castro, T.B.; Zetina-Esquivel, A.M.; Diaz-Zagoya, J.C.; Esther Juárez-Rojop, I. Isobolographic Analyses of Proglumide–Celecoxib Interaction in Rats with Painful Diabetic Neuropathy. Drug Dev. Res. 2017, 78, 116–123. [Google Scholar] [CrossRef]
- Tallarida, R. Drug Synergism: Its Detection and Applications. J. Pharmacol. Exp. Ther. 2001, 298, 865–872. [Google Scholar] [CrossRef]
- Tallarida, R.J. Drug Synergism and Dose-Effect Data Analysis; Chapman and Hall/CRC: New York, NY, USA, 2000; pp. 1–72. [Google Scholar]
- Ortega-Varela, L.F.; Herrera, J.E.; Caram-Salas, N.L.; Rocha-González, H.I.; Granados-Soto, V. Isobolographic Analyses of the Gabapentin-Metamizol Combination after Local Peripheral, Intrathecal and Oral Administration in the Rat. Pharmacology 2007, 79, 214–222. [Google Scholar] [CrossRef]
- Zúñiga-Romero, A.; Ponce-Chávez, M.K.; Gauthereau-Torres, M.Y.; Ortega-Varela, L.F. Combination of Diacerhein and Antiepileptic Drugs after Local Peripheral, and Oral Administration in the Rat Formalin Test. Drug Dev. Res. 2014, 75, 510–520. [Google Scholar] [CrossRef]
- Stanley, J.L.; Lincoln, R.J.; Brown, T.A.; McDonald, L.M.; Dawson, G.R.; Reynolds, D.S. The Mouse Beam Walking Assay Offers Improved Sensitivity over the Mouse Rotarod in Determining Motor Coordination Deficits Induced by Benzodiazepines. J. Psychopharmacol. 2005, 19, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Tjølsen, A.; Berge, O.G.; Hunskaar, S.; Rosland, J.H.; Hole, K. The Formalin Test: An Evaluation of the Method. Pain 1992, 51, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Abbott, F.V.; Franklin, K.B.; Westbrook, R.F. The Formalin Test: Scoring Properties of the First and Second Phases of the Pain Response in Rats. Pain 1995, 60, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Rena, G.; Pearson, E.R.; Sakamoto, K. Molecular Mechanism of Action of Metformin: Old or New Insights? Diabetologia 2013, 56, 1898–1906. [Google Scholar] [CrossRef]
- Rena, G.; Hardie, D.G.; Pearson, E.R. The Mechanisms of Action of Metformin. Diabetologia 2017, 60, 1577–1585. [Google Scholar] [CrossRef]
- Foretz, M.; Guigas, B.; Viollet, B. Understanding the Glucoregulatory Mechanisms of Metformin in Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2019, 15, 569–589. [Google Scholar] [CrossRef]
- Pernicova, I.; Korbonits, M. Metformin-Mode of Action and Clinical Implications for Diabetes and Cancer. Nat. Rev. Endocrinol. 2014, 10, 143–156. [Google Scholar] [CrossRef]
- Cao, X.J.; Wu, R.; Qian, H.Y.; Chen, X.; Zhu, H.Y.; Xu, G.Y.; Sun, Y.Z.; Zhang, P.A. Metformin Attenuates Diabetic Neuropathic Pain via AMPK/NF-ΚB Signaling Pathway in Dorsal Root Ganglion of Diabetic Rats. Brain Res. 2021, 1772, 147663. [Google Scholar] [CrossRef]
- Hyun, B.; Shin, S.; Lee, A.; Lee, S.; Song, Y.; Ha, N.-J.; Cho, K.-H.; Kim, K. Metformin Down-Regulates TNF-α Secretion via Suppression of Scavenger Receptors in Macrophages. Immune Netw. 2013, 13, 123. [Google Scholar] [CrossRef]
- Wei, J.; Wei, Y.; Huang, M.; Wang, P.; Jia, S. Is Metformin a Possible Treatment for Diabetic Neuropathy? J. Diabetes 2022, 14, 658–669. [Google Scholar] [CrossRef]
- Pecikoza, U.; Lasica, A.; Nastić, K.; Dinić, M.; Jasnić, N.; Micov, A.; Đorđević, J.; Stepanović-Petrović, R.; Tomić, M. Metformin Reduces Inflammatory Nociception in Mice through a Serotonin-Dependent Mechanism. Eur. J. Pharmacol. 2025, 991, 177324. [Google Scholar] [CrossRef]
- Duan, D.; Wu, X.; Ali, U.; Wang, D.; Li, X.; Liu, R.; Ma, L.; Mao, Y.; Ma, Y. Metformin Alleviates Pain States by Regulating the Balance of Spinal Synaptic Transmission. J. Integr. Neurosci. 2024, 23, 6. [Google Scholar] [CrossRef]
- Song, Y.; Wu, Z.; Zhao, P. The Effects of Metformin in the Treatment of Osteoarthritis: Current Perspectives. Front. Pharmacol. 2022, 13, 952560. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Westveld, A.H.; Szkudlinska, M.; Guruguri, P.; Annabi, E.; Patwardhan, A.; Price, T.J.; Yassine, H.N. The Use of Metformin Is Associated with Decreased Lumbar Radiculopathy Pain. J. Pain Res. 2013, 6, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Ang, D. Metformin: Potential Analgesic? Pain Med. 2015, 16, 2256–2260. [Google Scholar] [CrossRef]
- Guzmán-Priego, C.G.; Méndez-Mena, R.; Baños-González, M.A.; Araiza-Saldaña, C.I.; Castañeda-Corral, G.; Torres-López, J.E. Antihyperalgesic Effects of Indomethacin, Ketorolac, and Metamizole in Rats: Effects of Metformin. Drug Dev. Res. 2017, 78, 98–104. [Google Scholar] [CrossRef]
- Pecikoza, U.B.; Tomić, M.A.; Micov, A.M.; Stepanović-Petrović, R.M. Metformin Synergizes with Conventional and Adjuvant Analgesic Drugs to Reduce Inflammatory Hyperalgesia in Rats. Anesth. Analg. 2017, 124, 1317–1329. [Google Scholar] [CrossRef]
- Melemedjian, O.K.; Asiedu, M.N.; Tillu, D.V.; Sanoja, R.; Yan, J.; Lark, A.; Khoutorsky, A.; Johnson, J.; Peebles, K.A.; Lepow, T.; et al. Targeting Adenosine Monophosphate-Activated Protein Kinase (AMPK) in Preclinical Models Reveals a Potential Mechanism for the Treatment of Neuropathic Pain. Mol. Pain 2011, 7, 1–14. [Google Scholar] [CrossRef]
- Price, T.J.; Dussor, G. AMPK: An Emerging Target for Modification of Injury-Induced Pain Plasticity. Neurosci. Lett. 2013, 557, 9–18. [Google Scholar] [CrossRef]
- Fatemi, I.; Amirteimoury, M.; Shamsizadeh, A.; Kaeidi, A. The Effect of Metformin on Morphine Analgesic Tolerance and Dependence in Rats. Res. Pharm. Sci. 2018, 13, 316–323. [Google Scholar] [CrossRef]
- Inyang, K.E.; Szabo-Pardi, T.; Wentworth, E.; McDougal, T.A.; Dussor, G.; Burton, M.D.; Price, T.J. The Antidiabetic Drug Metformin Prevents and Reverses Neuropathic Pain and Spinal Cord Microglial Activation in Male but Not Female Mice. Pharmacol. Res. 2019, 139, 1–16. [Google Scholar] [CrossRef]
- Ortiz, M.I. Synergistic Interaction between Metformin and Sulfonylureas on Diclofenac-Induced Antinociception Measured Using the Formalin Test in Rats. Pain Res. Manag. 2013, 18, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Emet, M.; Ozcan, H.; Ozel, L.; Yayla, M.; Halici, Z.; Hacimuftuoglu, A. Bir Melatonin Derlemesi, Reseptörleri ve Ilaçları. Eurasian J. Med. 2016, 48, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Scarabelot, V.L.; Medeiros, L.F.; de Oliveira, C.; Adachi, L.N.S.; de Macedo, I.C.; Cioato, S.G.; de Freitas, J.S.; de Souza, A.; Quevedo, A.; Caumo, W.; et al. Melatonin Alters the Mechanical and Thermal Hyperalgesia Induced by Orofacial Pain Model in Rats. Inflammation 2016, 39, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Fan, W.; He, H.; Huang, F. Role of Melatonin in the Regulation of Pain. J. Pain Res. 2020, 13, 331–343. [Google Scholar] [CrossRef]
- Chaudhry, S.R.; Stadlbauer, A.; Buchfelder, M.; Kinfe, T.M. Melatonin Moderates the Triangle of Chronic Pain, Sleep Architecture and Immunometabolic Traffic. Biomedicines 2021, 9, 984. [Google Scholar] [CrossRef]
- Mantovani, M.; Kaster, M.P.; Pertile, R.; Calixto, J.B.; Rodrigues, A.L.S.; Santos, A.R.S. Mechanisms Involved in the Antinociception Caused by Melatonin in Mice. J. Pineal Res. 2006, 41, 382–389. [Google Scholar] [CrossRef]
- Murad, H.; Ayuob, N. Co-Administration of Pioglitazone Improves Fluoxetine’s Antinociceptive, Neuroprotective, and Antidepressant Effects in Chronic Constriction Injury in Rats. Pain Physician 2015, 18, 609–620. [Google Scholar] [CrossRef]
- Dasuni Wasana, P.W.; Hasriadi; Muangnoi, C.; Vajragupta, O.; Rojsitthisak, P.; Rojsitthisak, P.; Towiwat, P. Curcumin and Metformin Synergistically Modulate Peripheral and Central Immune Mechanisms of Pain. Sci. Rep. 2022, 12, 9713. [Google Scholar] [CrossRef]
- El-Haddad, M.E.; El-Refaie, W.M.; Hammad, G.O.; EL-Massik, M.A. Targeted Non-Invasive Metformin-Curcumin Co-Loaded Nanohyaluosomes Halt Osteoarthritis Progression and Improve Articular Cartilage Structure: A Preclinical Study. Int. J. Pharm. 2024, 666, 124845. [Google Scholar] [CrossRef]
- Qin, H.M.; Luo, Z.K.; Zhou, H.L.; Zhu, J.; Xiao, X.Y.; Xiao, Y.; Zhuang, T.; Zhang, Z.G. No TitleNovel Drug-Drug Salt Crystals of Metformin with Ibuprofen or Naproxen: Improved Solubility, Dissolution Rate, and Synergistic Antinociceptive Effects. Int. J. Pharm. 2024, 25, 124–126. [Google Scholar] [CrossRef]
- Pang, C.S.; Tsang, S.F.; Yang, J.C. Effects of Melatonin, Morphine and Diazepam on Formalin-Induced Nociception in Mice. Life Sci. 2001, 68, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Hemati, K.; Pourhanifeh, M.H.; Dehdashtian, E.; Fatemi, I.; Mehrzadi, S.; Reiter, R.J.; Hosseinzadeh, A. Melatonin and Morphine: Potential Beneficial Effects of Co-Use. Fundam. Clin. Pharmacol. 2021, 35, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Alavez-Pérez, N.; Patiño-Camacho, I.S.; Granados-Soto, V.; Déciga-Campos, M. Melatonin Synergizes with the Antinociceptive Effect of N-Palmitoylethanolamide and Paracetamol. Pharmazie 2022, 77, 236–242. [Google Scholar] [CrossRef]
- Terribili, R.; Vallifuoco, G.; Bardelli, M.; Frediani, B.; Gentileschi, S. A Fixed Combination of Palmitoylethanolamide and Melatonin (PEATONIDE) for the Management of Pain, Sleep, and Disability in Patients with Fibromyalgia: A Pilot Study. Nutrients 2024, 16, 2785. [Google Scholar] [CrossRef]
- Gilron, I.; Debow, C.; Elkerdawy, H.; Khan, J.S.; Salomons, T.V.; Duggan, S.; Tu, D.; Holden, R.R.; Milev, R.; Buckley, D.N.; et al. PRECISE Trial (Pain RElief Combination Intervention StratEgies): Protocol for the Clinical Trial of a Pregabalin-Melatonin Combination for Fibromyalgia. BMJ Open 2024, 14, e087180. [Google Scholar] [CrossRef]
- Çakırgöz, E.; Durdağı, G.; Öz Oyar, E. Enhanced Analgesia: Synergistic Effects of Melatonin and Tramadol on Acute Thermal Nociception in Wistar Rats via Tail-Flick and Hot-Plate Tests. Behav. Brain Res. 2025, 490, 115641. [Google Scholar] [CrossRef]
- Hussain, S.A.; Khadim, H.M.; Khalaf, B.H.; Ismail, S.H.; Hussein, K.I.; Sahib, A.S. Effects of Melatonin and Zinc on Glycemic Control in Type 2 Diabetic Patients Poorly Controlled with Metformin. Saudi Med. J. 2006, 27, 1483–1488. [Google Scholar]
- Dantas-Ferreira, R.F.; Raingard, H.; Dumont, S.; Schuster-Klein, C.; Guardiola-Lemaitre, B.; Pevet, P.; Challet, E. Melatonin Potentiates the Effects of Metformin on Glucose Metabolism and Food Intake in High-fat-fed Rats. Endocrinol. Diabetes Metab. 2018, 1, e00039. [Google Scholar] [CrossRef]
- Lemos, A.J.J.M.; Peixoto, C.A.; Teixeira, Á.A.C.; Luna, R.L.A.; Rocha, S.W.S.; Santos, H.M.P.; Silva, A.K.S.; Nunes, A.K.S.; Wanderley-Teixeira, V. Effect of the Combination of Metformin Hydrochloride and Melatonin on Oxidative Stress before and during Pregnancy, and Biochemical and Histopathological Analysis of the Livers of Rats after Treatment for Polycystic Ovary Syndrome. Toxicol. Appl. Pharmacol. 2014, 280, 159–168. [Google Scholar] [CrossRef]
- Lombardi, L.A.; Mattos, L.S.; Espindula, A.P.; Simões, R.S.; Sasso, G.R.D.S.; Simões, M.J.; Soares-Jr, J.M.; Florencio-Silva, R. Effects of Melatonin and Metformin on the Ovaries of Rats with Polycystic Ovary Syndrome. F S Sci. 2024, 5, 204–211. [Google Scholar] [CrossRef]
- Man’Cheva, T.A.; Demidov, D.V.; Plotnikova, N.A.; Kharitonova, T.V.; Pashkevich, I.V.; Anisimov, V.N. Melatonin and Metformin Inhibit Skin Carcinogenesis and Lipid Peroxidation Induced by Benz(a)Pyrene in Female Mice. Bull. Exp. Biol. Med. 2011, 151, 363–365. [Google Scholar] [CrossRef]
- Deriabina, O.N.; Plotnikova, N.A.; Anisimov, V.N. Melatonin and Metformin Inhibit Skin Carcinogenesis Induced by Benz(a)Pyrene in Mice. Vopr. Onkol. 2010, 56, 583–587. [Google Scholar]
- Brown, R.E.; Buryanek, J.; McGuire, M.F. Metformin and Melatonin in Adrenocortical Carcinoma: Morphoproteomics and Biomedical Analytics Provide Proof of Concept in a Case Study. Ann. Clin. Lab. Sci. 2017, 47, 457–465. [Google Scholar]
- Kurhaluk, N.; Bojková, B.; Winklewski, P.J. Liver Antioxidant and Aerobic Status Improves after Metformin and Melatonin Administration in a Rat Model of High-Fat Diet and Mammary Carcinogenesis. Can. J. Physiol. Pharmacol. 2018, 96, 790–797. [Google Scholar] [CrossRef]
- Bojková, B.; Kajo, K.; Kubatka, P.; Solár, P.; Péč, M.; Adamkov, M. Metformin and Melatonin Improve Histopathological Outcome of NMU-Induced Mammary Tumors in Rats. Pathol. Res. Pract. 2019, 215, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.; Cheki, M.; Hassanzadeh, G.; Amini, P.; Shabeeb, D.; Musa, A.E. The Radioprotective Effect of Combination of Melatonin and Metformin on Rat Duodenum Damage Induced by Ionizing Radiation: A Histological Study. Adv. Biomed. Res. 2019, 21, 51. [Google Scholar] [CrossRef]
- Tajabadi, E.; Javadi, A.; Azar, N.A.; Najafi, M.; Shirazi, A.; Shabeeb, D.; Musa, A.E. Radioprotective Effect of a Combination of Melatonin and Metformin on Mice Spermatogenesis: A Histological Study. Int. J. Reprod. Biomed. 2020, 18, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Blanchard, O.L.; Smoliga, J.M. Translating Dosages from Animal Models to Human Clinical Trials--Revisiting Body Surface Area Scaling. FASEB J. 2015, 29, 1629–1634. [Google Scholar] [CrossRef]
- Ray, M.; Mediratta, P.K.; Mahajan, P.; Sharma, K.K. Evaluation of the Role of Melatonin in Formalin-Induced Pain Response in Mice. Indian J. Med. Sci. 2004, 58, 122–130. [Google Scholar]
- Lopez-Canul, M.; Palazzo, E.; Dominguez-Lopez, S.; Luongo, L.; Lacoste, B.; Comai, S.; Angeloni, D.; Fraschini, F.; Boccella, S.; Spadoni, G.; et al. Selective Melatonin MT2 Receptor Ligands Relieve Neuropathic Pain through Modulation of Brainstem Descending Antinociceptive Pathways. Pain 2015, 156, 305–317. [Google Scholar] [CrossRef]
- Cheng, J.T.; Huang, C.C.; Liu, I.M.; Tzeng, T.F.; Chih, J.C. Novel Mechanism for Plasma Glucose-Lowering Action of Metformin in Streptozotocin-Induced Diabetic Rats. Diabetes 2006, 55, 819–825. [Google Scholar] [CrossRef]
- Shavali, S.; Ho, B.; Govitrapong, P.; Sawlom, S.; Ajjimaporn, A.; Klongpanichapak, S.; Ebadi, M. Melatonin Exerts Its Analgesic Actions Not by Binding to Opioid Receptor Subtypes but by Increasing the Release of β-Endorphin an Endogenous Opioid. Brain Res. Bull. 2005, 64, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Russe, O.Q.; Möser, C.V.; Kynast, K.L.; King, T.S.; Stephan, H.; Geisslinger, G.; Niederberger, E. Activation of the AMP-Activated Protein Kinase Reduces Inflammatory Nociception. J. Pain 2013, 14, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Price, T.J.; Das, V.; Dussor, G. Adenosine Monophosphate-Activated Protein Kinase (AMPK) Activators For the Prevention, Treatment and Potential Reversal of Pathological Pain. Curr. Drug Targets 2016, 17, 908–920. [Google Scholar] [CrossRef] [PubMed]
- Motilva, V.; García-Mauriño, S.; Talero, E.; Illanes, M. New Paradigms in Chronic Intestinal Inflammation and Colon Cancer: Role of Melatonin. J. Pineal Res. 2011, 51, 44–60. [Google Scholar] [CrossRef]
- McCarty, M.F.; Assanga, S.B.I.; Luján, L.L.; O’keefe, J.H.; Dinicolantonio, J.J. Nutraceutical Strategies for Suppressing Nlrp3 Inflammasome Activation: Pertinence to the Management of COVID-19 and Beyond. Nutrients 2021, 13, 47. [Google Scholar] [CrossRef]
- Liu, Q.; Su, L.Y.; Sun, C.; Jiao, L.; Miao, Y.; Xu, M.; Luo, R.; Zuo, X.; Zhou, R.; Zheng, P.; et al. Melatonin Alleviates Morphine Analgesic Tolerance in Mice by Decreasing NLRP3 Inflammasome Activation. Redox Biol. 2020, 34, 101560. [Google Scholar] [CrossRef]
- Ramirez, A.D.; Gotter, A.L.; Fox, S.V.; Tannenbaum, P.L.; Yao, L.; Tye, S.J.; McDonald, T.; Brunner, J.; Garson, S.L.; Reiss, D.R.; et al. Dual Orexin Receptor Antagonists Show Distinct Effects on Locomotor Performance, Ethanol Interaction and Sleep Architecture Relative to Gamma-Aminobutyric Acid-A Receptor Modulators. Front. Neurosci. 2013, 7, 254. [Google Scholar] [CrossRef]
Metformin mg/kg | Melatonin mg/kg | |
---|---|---|
1. | 59.21 | 7.92 |
2. | 118.43 | 15.85 |
3. | 236.86 | 31.71 |
4. | 473.72 | 63.42 |
Treatment |
% Antinociception Maximum
Effect in Phase 1, Oral Route |
---|---|
Metformin 1000 mg/kg | 22.7 ± 10.2 |
Melatonin 150 mg/kg | 0.4 ± 7.3 |
Metformin (473.72 mg/Kg) and melatonin (63.42 mg/Kg) | 24.5 ± 2.3 |
Drugs Administered Orally | ||||
---|---|---|---|---|
DE50 ± S.E.M. Metformin (mg/Kg) | DE50 ± S.E.M. Melatonin (mg/Kg) | DE50 ± S.E.M. Theoretical (mg/Kg) | DE50 ± S.E.M. Experimental (mg/Kg) | Interaction Index (γ) ± S.E.M. |
947.46 ± 242.58 | 126.85 ± 37.97 | 537.15 ± 122.76 | 360.83 ± 23.36 | 0.672 ± 0.1596 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gauthereau-Torres, M.Y.; Martínez-Guillen, J.S.; Cervantes-Durán, C.; Gutiérrez-García, C.J.; Godínez-Hernández, D.; Aguilera Méndez, A.; Ortega-Varela, L.F. Preclinical Assessment of a Metformin–Melatonin Combination: Antinociceptive Synergism. Pharmaceutics 2025, 17, 1057. https://doi.org/10.3390/pharmaceutics17081057
Gauthereau-Torres MY, Martínez-Guillen JS, Cervantes-Durán C, Gutiérrez-García CJ, Godínez-Hernández D, Aguilera Méndez A, Ortega-Varela LF. Preclinical Assessment of a Metformin–Melatonin Combination: Antinociceptive Synergism. Pharmaceutics. 2025; 17(8):1057. https://doi.org/10.3390/pharmaceutics17081057
Chicago/Turabian StyleGauthereau-Torres, Marcia Yvette, Jenny Selene Martínez-Guillen, Claudia Cervantes-Durán, Carmen Judith Gutiérrez-García, Daniel Godínez-Hernández, Asdrúbal Aguilera Méndez, and Luis Fernando Ortega-Varela. 2025. "Preclinical Assessment of a Metformin–Melatonin Combination: Antinociceptive Synergism" Pharmaceutics 17, no. 8: 1057. https://doi.org/10.3390/pharmaceutics17081057
APA StyleGauthereau-Torres, M. Y., Martínez-Guillen, J. S., Cervantes-Durán, C., Gutiérrez-García, C. J., Godínez-Hernández, D., Aguilera Méndez, A., & Ortega-Varela, L. F. (2025). Preclinical Assessment of a Metformin–Melatonin Combination: Antinociceptive Synergism. Pharmaceutics, 17(8), 1057. https://doi.org/10.3390/pharmaceutics17081057