Anti-Neuroinflammation Effect of Standardized Ethanol Extract of Leaves of Perilla frutescens var. acuta on Aβ-Induced Alzheimer’s Disease-like Mouse Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture and LPS-Induced BV2 Activation
2.3. Cell Viability Assay
2.4. Measuring NO Production
2.5. Western Blot
2.6. ELISA—Measuring Cytokine Release
2.7. Animals
2.8. Y-Maze Test
2.9. Novel Object Recognition Test
2.10. Passive Avoidance Test
2.11. Morris Water Maze Test
2.12. Statistics
3. Results
3.1. The Effect of PE on LPS-Induced Release of Inflammatory Factors
3.2. The Effect of PE on LPS-Induced Signaling Changes
3.3. The Effect of PE on LPS-Induced CREB and BDNF Expression
3.4. Effect of PE on Aβ-Induced Cognitive Impairments
3.4.1. Y-Maze Test
3.4.2. Novel Object Recognition Test
3.4.3. Passive Avoidance Test
3.4.4. Morris Water Maze
3.5. Effect of PE on Aβ-Induced Neuroinflammation
3.6. Effect of PE on Aβ-Induced CREB and BDNF Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
Aβ | Amyloid-β |
MCI | Mild cognitive impairment |
PE | Perilla frutescens extract |
IL-6 | Interleukin-6 |
TNF | Tumor necrosis factor |
ELISA | Enzyme-Linked Immunosorbent Assay |
iNOS | Inducible Nitric Oxide Synthase |
COX2 | Cyclooxygenase-2 |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B |
SAPK/JNK | Stress-Activated Protein Kinase/c-Jun N-Terminal Kinase |
MAPK | Mitogen-Activated Protein Kinase |
CREB | cAMP Response Element-Binding Protein |
BDNF | Brain-Derived Neurotrophic Factor |
DMEM | Dulbecco’s Modified Eagle Medium |
FBS | Fetal bovine serum |
References
- Aprile, D.; De Marchi, F.; Menegon, F.; Comi, C.; Tondo, G. Neutrophil-to-Lymphocyte Ratio in the Alzheimer’s Disease Continuum. Int. J. Mol. Sci. 2025, 26, 5157. [Google Scholar] [CrossRef]
- Ma, C.; Ye, Y.; Shi, X.; Li, N.; Mu, Z.; Tan, T.; Yin, H.; Dai, J.; Liu, Y.; Chen, H. Photobiomodulation mitigates blood-brain barrier disruption in APP/PS1 mouse model of Alzheimer’s disease by activating the AMPK pathway. Alzheimer’s Res. Ther. 2025, 17, 141. [Google Scholar] [CrossRef] [PubMed]
- Kumar Vats, D.; Biswas, N.; Pandian, P.; Kamalakannan, A. Review Current and Emerging Treatment Options for Alzheimer’s Disease. Neurol. Lett. 2023, 2, 1–5. [Google Scholar] [CrossRef]
- Duff, K. Mild Cognitive Impairment: Quantifying a Qualitative Disorder. Neurol. Clin. 2024, 42, 781–792. [Google Scholar] [CrossRef]
- Shimizu, S.; Hanyu, H. Mild cognitive impairment. Nihon Rinsho 2016, 74, 455–458. [Google Scholar]
- Duff, K.; ADNI Investigators. Amnestic MCI in ADNI: Maybe Not Enough Memory Impairment? Neurology 2021, 97, 595–596. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, R.; Saif, N. A Missed Opportunity for Dementia Prevention? Current Challenges for Early Detection and Modern-Day Solutions. J. Prev. Alzheimer’s Dis. 2020, 7, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Jelic, V.; Winblad, B. Treatment of mild cognitive impairment: Rationale, present and future strategies. Acta Neurol. Scand. 2003, 179, 83–93. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, W.; Liu, S.; Qiao, X.; Xing, Y.; Zhou, Q.; Zhang, Z. Epigenetic Regulation of Neuroinflammation in Alzheimer’s Disease. Cells 2023, 13, 79. [Google Scholar] [CrossRef]
- Amor, S.; Woodroofe, M.N. Innate and adaptive immune responses in neurodegeneration and repair. Immunology 2014, 141, 287–291. [Google Scholar] [CrossRef]
- Castro-Gomez, S.; Heneka, M.T. Innate immune activation in neurodegenerative diseases. Immunity 2024, 57, 790–814. [Google Scholar] [CrossRef]
- Fornari Laurindo, L.; Aparecido Dias, J.; Cressoni Araujo, A.; Torres Pomini, K.; Machado Galhardi, C.; Rucco Penteado Detregiachi, C.; Santos de Argollo Haber, L.; Donizeti Roque, D.; Dib Bechara, M.; Vialogo Marques de Castro, M.; et al. Immunological dimensions of neuroinflammation and microglial activation: Exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front. Immunol. 2023, 14, 1305933. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Bezgin, G.; Tissot, C.; Lussier, F.Z.; Therriault, J.; Servaes, S.; Stevenson, J.; Arias, J.F.; Kang, M.S.; Rahmouni, N.; et al. Neuroinflammation is associated with the rising of early Alzheimer’s disease pathology in amyloid-negative elderly. Alzheimer’s Dement. 2022, 18, e068073. [Google Scholar] [CrossRef]
- Appleton, J.; Finn, Q.; Zanotti-Fregonara, P.; Yu, M.; Faridar, A.; Nakawah, M.O.; Zarate, C.; Carrillo, M.C.; Dickerson, B.C.; Rabinovici, G.D.; et al. Brain inflammation co-localizes highly with tau in mild cognitive impairment due to early-onset Alzheimer’s disease. Brain 2025, 148, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Valiukas, Z.; Tangalakis, K.; Apostolopoulos, V.; Feehan, J. Microglial activation states and their implications for Alzheimer’s Disease. J. Prev. Alzheimer’s Dis. 2025, 12, 100013. [Google Scholar] [CrossRef] [PubMed]
- Psenicka, M.W.; Smith, B.C.; Tinkey, R.A.; Williams, J.L. Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Front. Cell. Neurosci. 2021, 15, 654284. [Google Scholar] [CrossRef]
- Ahmed, H.M. Ethnomedicinal, Phytochemical and Pharmacological Investigations of Perilla frutescens (L.) Britt. Molecules 2018, 24, 102. [Google Scholar] [CrossRef]
- Yang, H.; Sun, W.; Ma, P.; Yao, C.; Fan, Y.; Li, S.; Yuan, J.; Zhang, Z.; Li, X.; Lin, M.; et al. Multiple Components Rapidly Screened from Perilla Leaves Attenuate Asthma Airway Inflammation by Synergistic Targeting on Syk. J. Inflamm. Res. 2020, 13, 897–911. [Google Scholar] [CrossRef]
- Pintha, K.; Chaiwangyen, W.; Yodkeeree, S.; Suttajit, M.; Tantipaiboonwong, P. Suppressive Effects of Rosmarinic Acid Rich Fraction from Perilla on Oxidative Stress, Inflammation and Metastasis Ability in A549 Cells Exposed to PM via C-Jun, P-65-Nf-Kappab and Akt Signaling Pathways. Biomolecules 2021, 11, 1090. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, J.; Cai, G.E.; Lu, W.; Xu, W.; Wang, R.; Lin, Y.; Yang, C. Rosmarinic Acid Regulates Microglial M1/M2 Polarization via the PDPK1/Akt/HIF Pathway Under Conditions of Neuroinflammation. Inflammation 2021, 44, 129–147. [Google Scholar] [CrossRef]
- Ravaria, P.; Saxena, P.; Laksmi Bs, S.; Ranjan, V.; Abidi, S.W.F.; Saha, P.; Ramamoorthy, S.; Ahmad, F.; Rana, S.S. Molecular mechanisms of neuroprotective offerings by rosmarinic acid against neurodegenerative and other CNS pathologies. Phytother. Res. 2023, 37, 2119–2143. [Google Scholar] [CrossRef]
- Seo, C.R.; Lee, B.K.; Jee, H.J.; Yoo, J.R.; Lee, C.K.; Park, J.W.; Jung, Y.S. Ameliorating Effect of Fermented Perilla frutescens on Sleep Deprivation-Induced Cognitive Impairment Through Antioxidant and BDNF Signaling in Mice. Nutrients 2024, 16, 4224. [Google Scholar] [CrossRef]
- National Institutes of Health. Guide for the Care and Use of Laboratory Animals, NIH Publication No. 8023, Revised 1978; National Institutes of Health: Bethesda, MD, USA, 1978.
- Cho, E.; Lee, J.; Sin, J.S.; Kim, S.K.; Kim, C.J.; Park, M.H.; Cho, W.S.; Moon, M.; Kim, D.H.; Jung, J.W. Effects of Perilla frutescens var. acuta in amyloid beta toxicity and Alzheimer’s disease-like pathology in 5XFAD mice. Food Chem. Toxicol. 2022, 161, 112847. [Google Scholar] [CrossRef]
- Senthil Kumar, K.J.; Wang, S.Y. Lucidone inhibits iNOS and COX-2 expression in LPS-induced RAW 264.7 murine macrophage cells via NF-kappaB and MAPKs signaling pathways. Planta Medica 2009, 75, 494–500. [Google Scholar] [CrossRef]
- Charlton, T.; Prowse, N.; McFee, A.; Heiratifar, N.; Fortin, T.; Paquette, C.; Hayley, S. Brain-derived neurotrophic factor (BDNF) has direct anti-inflammatory effects on microglia. Front. Cell. Neurosci. 2023, 17, 1188672. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.B.; Kim, S.H.; Uhm, S.H.; Kim, D.K.; Lee, N.S.; Jeong, Y.G.; Sung, N.Y.; Kim, D.S.; Han, I.J.; Yoo, Y.C.; et al. Perilla frutescens Leaf Extract Attenuates Vascular Dementia-Associated Memory Deficits, Neuronal Damages, and Microglial Activation. Curr. Issues Mol. Biol. 2022, 44, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zong, S.; Cui, X.; Wang, X.; Wu, S.; Wang, L.; Liu, Y.; Lu, Z. The effects of microglia-associated neuroinflammation on Alzheimer’s disease. Front. Immunol. 2023, 14, 1117172. [Google Scholar] [CrossRef]
- Esvald, E.E.; Tuvikene, J.; Sirp, A.; Patil, S.; Bramham, C.R.; Timmusk, T. CREB Family Transcription Factors Are Major Mediators of BDNF Transcriptional Autoregulation in Cortical Neurons. J Neurosci 2020, 40, 1405–1426. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022, 11, 4. [Google Scholar] [CrossRef]
- Du, Q.; Zhu, X.; Si, J. Angelica polysaccharide ameliorates memory impairment in Alzheimer’s disease rat through activating BDNF/TrkB/CREB pathway. Exp. Biol. Med. 2020, 245, 1–10. [Google Scholar] [CrossRef]
- Lee, A.Y.; Hwang, B.R.; Lee, M.H.; Lee, S.; Cho, E.J. Perilla frutescens var. japonica and rosmarinic acid improve amyloid-beta25-35 induced impairment of cognition and memory function. Nutr. Res. Pract. 2016, 10, 274–281. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, Y.; Yao, X.; Yi, J.; Feng, G. Pinoresinol diglucoside alleviates ischemia/reperfusion-induced brain injury by modulating neuroinflammation and oxidative stress. Chem. Biol. Drug Des. 2021, 98, 986–996. [Google Scholar] [CrossRef]
- Yamamoto, S.; Kayama, T.; Noguchi-Shinohara, M.; Hamaguchi, T.; Yamada, M.; Abe, K.; Kobayashi, S. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway. npj Sci. Food 2021, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Hase, T.; Shishido, S.; Yamamoto, S.; Yamashita, R.; Nukima, H.; Taira, S.; Toyoda, T.; Abe, K.; Hamaguchi, T.; Ono, K.; et al. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid beta aggregation by increasing monoamine secretion. Sci. Rep. 2019, 9, 8711. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Dong, S.; Chen, H.; Guo, M.; Sun, Z.; Luo, H. Perilla frutescens: A traditional medicine and food homologous plant. Chin. Herb. Med. 2023, 15, 369–375. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, H.; Lee, J.; Lee, E.; Moon, S.; Cho, E.; Jeon, J.; Park, A.Y.; Hwang, J.-H.; Cho, G.H.; Kong, H.; et al. Anti-Neuroinflammation Effect of Standardized Ethanol Extract of Leaves of Perilla frutescens var. acuta on Aβ-Induced Alzheimer’s Disease-like Mouse Model. Pharmaceutics 2025, 17, 1045. https://doi.org/10.3390/pharmaceutics17081045
Kwon H, Lee J, Lee E, Moon S, Cho E, Jeon J, Park AY, Hwang J-H, Cho GH, Kong H, et al. Anti-Neuroinflammation Effect of Standardized Ethanol Extract of Leaves of Perilla frutescens var. acuta on Aβ-Induced Alzheimer’s Disease-like Mouse Model. Pharmaceutics. 2025; 17(8):1045. https://doi.org/10.3390/pharmaceutics17081045
Chicago/Turabian StyleKwon, Hyunji, Jihye Lee, Eunhong Lee, Somin Moon, Eunbi Cho, Jieun Jeon, A Young Park, Joon-Ho Hwang, Gun Hee Cho, Haram Kong, and et al. 2025. "Anti-Neuroinflammation Effect of Standardized Ethanol Extract of Leaves of Perilla frutescens var. acuta on Aβ-Induced Alzheimer’s Disease-like Mouse Model" Pharmaceutics 17, no. 8: 1045. https://doi.org/10.3390/pharmaceutics17081045
APA StyleKwon, H., Lee, J., Lee, E., Moon, S., Cho, E., Jeon, J., Park, A. Y., Hwang, J.-H., Cho, G. H., Kong, H., Park, M.-H., Kim, S.-K., Kim, D. H., & Jung, J. W. (2025). Anti-Neuroinflammation Effect of Standardized Ethanol Extract of Leaves of Perilla frutescens var. acuta on Aβ-Induced Alzheimer’s Disease-like Mouse Model. Pharmaceutics, 17(8), 1045. https://doi.org/10.3390/pharmaceutics17081045