In Vitro Interaction and Killing-Kinetics of Amphotericin B Combined with Anidulafungin or Caspofungin against Candida auris
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. First meeting of the WHO Antifungal Expert Group on Identifying Priority Fungal Pathogens: Meeting Report. World Health Organization: Geneva, Switzerland, 2020. Licence: CC BY-NC-SA 3.0 IGO. Available online: https://www.who.int/publications/i/item/9789240006355 (accessed on 20 June 2021).
- Sekyere, J.O. Candida auris: A Systematic Review and Meta-Analysis of Current Updates on an Emerging Multidrug-Resistant Pathogen. Microbiol. Open 2018, 7, e00578. [Google Scholar] [CrossRef] [PubMed]
- Ben-Ami, R.; Berman, J.; Novikov, A.; Bash, E.; Shachor-Meyouhas, Y.; Zakin, S.; Maor, Y.; Tarabia, J.; Schechner, V.; Adler, A.; et al. Multidrug-Resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg. Infect. Dis. 2017, 23, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; O’Brien, B.; Leach, L.; Clarke, A.; Bates, M.; Adams, E.; Ostrowsky, B.; Quinn, M.; Dufort, E.; Southwick, K.; et al. Laboratory analysis of an outbreak of Candida auris in New York from 2016 to 2018: Impact and lessons learned. J. Clin. Microbiol. 2020, 58, e01503-19. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S.; et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 2018, 73, 891–899. [Google Scholar] [CrossRef]
- Lockhart, S.R. Candida auris and multidrug resistance: Defining the new normal. Fungal Genet. Biol. 2019, 131, 103243. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Tarai, B.; Singh, A.; Sharma, A. Multidrug-Resistant Candida auris Infections in Critically Ill Coronavirus Disease Patients, India, April–July 2020. Emerg. Infect. Dis. 2020, 26, 2694–2696. [Google Scholar] [CrossRef]
- Dudiuk, C.; Berrio, I.; Leonardelli, F.; Morales-Lopez, S.; Theill, L.; Macedo, D.; Yesid-Rodriguez, J.; Salcedo, S.; Marin, A.; Gamarra, S.; et al. Antifungal activity and killing kinetics of anidulafungin, caspofungin and amphotericin B against Candida auris. J. Antimicrob. Chemother. 2019, 74, 2295–2302. [Google Scholar] [CrossRef]
- Kovács, R.; Tóth, Z.; Locke, J.B.; Forgács, L.; Kardos, G.; Nagy, F.; Borman, A.M.; Majoros, L. Comparison of in vitro killing activity of rezafungin, anidulafungin, caspofungin, and micafungin against four Candida auris clades in RPMI-1640 in the absence and presence of human serum. Microorganisms 2021, 9, 863. [Google Scholar] [CrossRef]
- Fakhim, H.; Chowdhary, A.; Prakash, A.; Vaezi, A.; Dannaoui, E.; Meis, J.F.; Badali, H. In vitro interactions of echinocandins with triazoles against multidrug-resistant Candida auris. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef]
- Bidaud, A.L.; Botterel, F.; Chowdhary, A.; Dannaoui, E. In vitro antifungal combination of flucytosine with amphotericin B, voriconazole, or micafungin against Candida auris shows no antagonism. Antimicrob. Agents Chemother. 2019. [Google Scholar] [CrossRef]
- O’Brien, B.; Chaturvedi, S.; Chaturvedi, V. In Vitro Evaluation of Antifungal Drug Combinations against Multidrug-Resistant Candida auris Isolates from New York Outbreak. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.S.; Deshpande, L.M.; Rhomberg, P.R.; Utt, E.A.; Castanheira, M. Evaluation of synergistic activity of isavuconazole or voriconazole plus anidulafungin and the occurrence and genetic characterisation of Candida auris detected in a surveillance program. Antimicrob. Agents Chemother. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Caballero, U.; Kim, S.; Eraso, E.; Quindós, G.; Vozmediano, V.; Schmidt, S.; Jauregizar, N. In vitro synergistic interactions of isavuconazole and echinocandins against Candida auris. Antibiotics 2021, 10, 355. [Google Scholar] [CrossRef] [PubMed]
- Nagy, F.; Tóth, Z.; Nyikos, F.; Forgács, L.; Jakab, Á.; Borman, A.M.; Majoros, L.; Kovács, R. In Vitro and In Vivo Interaction of Caspofungin with Isavuconazole against Candida auris Planktonic Cells and Biofilms. Med. Mycol. 2021, 434267. [Google Scholar] [CrossRef]
- Ruiz-Gaitán, A.; Moret, A.M.; Tasias-Pitarch, M.; Aleixandre-López, A.I.; Martínez-Morel, H.; Calabuig, E.; Salavert-Lletí, M.; Ramírez, P.; López-Hontangas, J.L.; Hagen, F.; et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 2018, 61, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Chow, N.A.; Muñoz, J.F.; Gade, L.; Berkow, E.L.; Li, X.; Welsh, R.M.; Forsberg, K.; Lockhart, S.R.; Adam, R.; Alanio, A.; et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. MBio 2020, 11, e03364-19. [Google Scholar] [CrossRef]
- Hernando-Ortiz, A.; Mateo, E.; Pérez-Rodríguez, A.; de Groot, P.W.J.; Quindós, G.; Eraso, E. Virulence of Candida auris from different clinical origins in Caenorhabditis elegans and Galleria mellonella host models. Virulence 2021, 12, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. The European Committee for Antimicrobial Susceptibility Testing. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. EUCAST Definitive document E.def 7.3.2, 2020. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7.3.2_Yeast_testing_definitive_revised_2020.pdf (accessed on 8 February 2021).
- Cantón, E.; Pemán, J.; Gobernado, M.; Viudes, A.; Espinel-Ingroff, A. Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob. Agents Chemother. 2004, 48, 2477–2482. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Sheehan, D.J.; Hitchcock, C.A.; Ghannoum, M.A. Combination treatment of invasive fungal infections. Clin. Microbiol. Rev. 2005, 18, 163–194. [Google Scholar] [CrossRef]
- Caballero, U.; Saravia, Y.E.; Eraso, E.; Pemán, J.; Quindós, G.; Jauregizar, N. Actividad in vitro de anfotericina B contra Candida auris mediante curvas de tiempo-letalidad. In Proceedings of the 14 Congreso Nacional de Micología, Tarragona, Spain, 19–21 September 2018. Poster number 9. [Google Scholar]
- Szekely, A.; Borman, A.M.; Johnson, E.M. Candida auris Isolates of the Southern Asian and South African Lineages Exhibit Different Phenotypic and Antifungal Susceptibility Profiles In Vitro. J. Clin. Microbiol. 2019, 57, e02055-18. [Google Scholar] [CrossRef]
- Borman, A.M.; Szekely, A.; Johnson, E.M. Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species. mSphere 2016, 1, e00189-16. [Google Scholar] [CrossRef] [PubMed]
- Forgács, L.; Borman, A.M.; Prépost, E.; Tóth, Z.; Kardos, G.; Kovács, R.; Szekely, A.; Nagy, F.; Kovacs, I.; Majoros, L. Comparison of in vivo pathogenicity of four Candida auris clades in a neutropenic bloodstream infection murine model. Emerg. Microbes Infect. 2020, 9, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Kordalewska, M.; Lee, A.; Park, S.; Berrio, I.; Chowdhary, A.; Zhao, Y.; Perlin, D.S. Understanding Echinocandin Resistance in the Emerging Pathogen Candida auris. Antimicrob. Agents Chemother. 2018, 62, e00238-18. [Google Scholar] [CrossRef] [PubMed]
- Tóth, Z.; Forgács, L.; Kardos, T.; Kovács, R.; Locke, J.B.; Kardos, G.; Nagy, F.; Borman, A.M.; Adnan, A.; Majoros, L. Relative Frequency of Paradoxical Growth and Trailing Effect with Caspofungin, Micafungin, Anidulafungin, and the Novel Echinocandin Rezafungin against Candida Species. J. Fungi. 2020, 6, 136. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Arias, M.J.; Hernández-Chávez, M.J.; García-Carnero, L.C.; Amezcua-Hernández, D.G.; Lozoya-Pérez, N.E.; Estrada-Mata, E.; Martínez-Duncker, I.; Franco, B.; Mora-Montes, H.M. Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect. DrugRresist. 2019, 12, 783–794. [Google Scholar] [CrossRef]
- Kiraz, N.; Dag, I.; Yamac, M.; Kiremitci, A.; Kasifoglu, N.; Akgun, Y. Antifungal activity of caspofungin in combination with amphotericin B against Candida glabrata: Comparison of disk diffusion, Etest, and time-kill methods. Antimicrob. Agents Chemother. 2009, 53, 788–790. [Google Scholar] [CrossRef]
- Teixeira-Santos, R.; Rocha, R.; Moreira-Rosario, A.; Monteiro-Soares, M.; Cantón, E.; Rodrigues, A.G.; Pina-Vaz, C. Novel method for evaluating in vitro activity of anidulafungin in combination with amphotericin B or azoles. J. Clin. Microbiol. 2012, 8, 2748–2754. [Google Scholar] [CrossRef][Green Version]
- Denardi, L.B.; Keller, J.T.; Oliveira, V.; Mario, D.A.N.; Santurio, J.M.; Alves, S.H. Activity of combined antifungal agents against multidrug-resistant Candida glabrata strains. Mycopathologia 2017, 9–10, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Serena, C.; Mariné, M.; Quindós, G.; Carrillo, A.J.; Cano, J.F.; Pastor, F.J.; Guarro, J. In vitro interactions of micafungin with amphotericin B against clinical isolates of Candida spp. Antimicrob. Agents Chemother. 2008, 4, 1529–1532. [Google Scholar] [CrossRef][Green Version]
- Olson, J.A.; Adler-Moore, J.P.; Smith, P.J.; Proffitt, R.T. Treatment of Candida glabrata infection in immunosuppressed mice by using a combination of liposomal amphotericin B with caspofungin or micafungin. Antimicrob. Agents Chemother. 2005, 12, 4895–4902. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Reyes, G.H.; Long, L.A.; Mukherjee, P.K.; Ghannoum, M.A. Efficacy of caspofungin combined with amphotericin B against azole-resistant Candida albicans. J. Antimicrob. Chemother. 2003, 6, 1427–1429. [Google Scholar] [CrossRef] [PubMed]
- Mpakosi, A.; Siopi, M.; Falaina, V.; Siafakas, N.; Roilides, E.; Kimouli, M.; Theodoraki, M.; Karle, P.; Meletiadis, J. Successful therapy of Candida pulcherrima fungemia in a premature newborn with liposomal amphotericin B and micafungin. Med. Mycol. Case Rep. 2016, 12, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, T.; Matsushima, T.; Shimizu, H.; Osaki, Y.; Yamane, A.; Irisawa, H.; Yokohama, A.; Uchiumi, H.; Handa, H.; Tsukamoto, N.; et al. Successful treatment of azole-refractory Candida guilliermondii fungemia with a combination therapy of micafungin and liposomal amphotericin B. Rinsho Ketsueki 2008, 2, 94–98. [Google Scholar]
- Roberts, S.C.; Zembower, T.R.; Bolon, M.K.; Kadakia, A.R.; Gilley, J.H.; Ko, J.H.; Clark, J.; Ward-Fore, S.; Taiwo, B.O. Successful treatment of a Candida auris intra-articular infection. Emerg. Microbes Infect. 2019, 8, 866–868. [Google Scholar] [CrossRef]
- Yilmaz, D.; Balkan, C.; Ay, Y.; Akin, M.; Karapinar, B.; Kavakli, K. A rescue therapy with a combination of caspofungin and liposomal amphotericin B or voriconazole in children with haematological malignancy and refractory invasive fungal infections. Mycoses 2011, 3, 234–242. [Google Scholar] [CrossRef]
- Jarque, I.; Tormo, M.; Bello, J.L.; Rovira, M.; Batlle, M.; Julià, A.; Tabares, S.; Rivas, C.; Fernández-Sevilla, A.; García-Boyero, R.; et al. Caspofungin for the treatment of invasive fungal disease in hematological patients (ProCAS study). Med. Mycol. 2013, 2, 150–154. [Google Scholar] [CrossRef][Green Version]
AmB+ECH (mg/L) | Fungal Count (log CFU/mL) (SD) | ||||||
---|---|---|---|---|---|---|---|
AmB+ANF | AmB+CSP | ||||||
8 h | 24 h | 48 h | 8 h | 24 h | 48 h | ||
CJ94 | Control | 6.68 (0.26) | 7.65 (0.08) | 7.83 (0.10) | 6.68 (0.26) | 7.65 (0.10) | 7.83 (0.10) |
0.5 AMB | 5.14 (0.29) | 6.58 (0.43) | 7.37 (0.14) | 5.14 (0.29) | 6.58 (0.43) | 7.37 (0.14) | |
0.5+0.5 | 4.52 (0.26) | 3.91 (0.05) | 3.62 (0.58) | 4.62 (0.07) | 4.36 (0.40) | 5.26 (0.10) | |
0.5+1 | 3.73 (0.31) | 3.72 (0.31) | 2.86 (0.66) | 4.10 (0.00) | 3.22 (0.25) | 3.96 (0.51) | |
0.5+2 | 2.92 (0.16) | 1.10 (1.55) | 1.07 (1.51) | 2.98 (0.30) | 3.21 (0.45) | 3.20 (0.08) | |
1 AMB | 4.03 (0.23) | 3.40 (0.21) | 2.52 (0.06) | 4.03 (0.23) | 3.40 (0.20) | 2.52 (0.06) | |
1+0.25 | 3.15 (0.49) | 2.90 (0.71) | 1.35 (0.21) | 3.12 (0.17) | 2.37 (0.11) | 2.68 (0.19) | |
1+0.5 | 3.13 (0.18) | 2.21 (0.17) | 0.84 (1.19) | 3.07 (0.10) | 2.60 (0.69) | 1.71 (1.39) | |
1+1 | 2.87 (0.03) | 2.66 (0.04) | 1.71 (0.56) | 2.50 (0.14) | 2.09 (0.84) | 2.62 (0.12) | |
CJ97 | Control | 6.20 (0.00) | 7.62 (0.06) | 7.71 (0.3) | 6.20 (0.00) | 7.63 (0.06) | 7.71 (0.30) |
0.5 AMB | 5.23 (0.05) | 6.81 (0.04) | 7.32 (0.00) | 5.23 (0.05) | 6.81 (0.04) | 7.32 (0.00) | |
0.5+0.5 | 4.67 (0.00) | 4.21 (0.02) | 3.54 (0.18) | 4.65 (0.02) | 4.29 (0.66) | 4.08 (0.36) | |
0.5+1 | 3.65 (0.07) | 3.32 (0.04) | 2.77 (0.54) | 3.98 (0.02) | 3.47 (0.16) | 2.52 (0.11) | |
0.5+2 | 3.08 (0.39) | 2.49 (0.86) | 2.44 (2.39) | 3.31 (0.25) | 3.20 (0.29) | 3.40 (0.22) | |
1 AMB | 4.42 (0.32) | 4.16 (1.03) | 3.20 (0.69) | 4.43 (0.32) | 4.17 (1.00) | 3.20 (0.69) | |
1+0.25 | 3.68 (0.25) | 2.72 (0.22) | 2.63(1.99) | 3.52 (0.17) | 3.07 (0.04) | 2.48 (0.70) | |
1+0.5 | 3.30 (0.00) | 3.28 (0.47) | 0.50 (0.70) | 3.45 (0.21) | 2.44 (0.22) | 1.76 (1.00) | |
1+1 | 2.83 (0.14) | 2.87 (1.37) | 2.09 (0.84) | 2.17 (0.17) | 2.43 (0.21) | 2.37 (3.35) | |
CJ98 | Control | 6.38 (0.02) | 7.54 (0.01) | 7.95 (0.09) | 6.38 (0.02) | 7.54 (0.01) | 7.95 (0.08) |
0.5 AMB | 5.20 (0.05) | 6.40 (0.40) | 7.50 (0.16) | 5.23 (0.05) | 6.4 (0.43) | 7.48 (0.16) | |
0.5+0.5 | 4.42 (0.20) | 3.79 (0.39) | 3.55 (0.14) | 4.38 (0.16) | 3.96 (0.22) | 5.08 (1.17) | |
0.5+1 | 3.35 (0.02) | 3.03 (0.37) | 3.00 (1.00) | 3.55 (0.44) | 3.22 (0.49) | 1.85 (0.21) | |
0.5+2 | 2.86 (0.05) | 3.23 (0.78) | 3.39 (1.12) | 2.73 (0.05) | 2.48 (0.05) | 3.52 (1.03) | |
1 AMB | 3.85 (0.07) | 3.61 (0.48) | 3.77 (0.46) | 3.85 (0.07) | 3.61 (0.48) | 3.77 (0.46) | |
1+0.25 | 3.13 (0.28) | 2.55 (0.40) | 1.79 (0.49) | 2.95 (0.12) | 2.57 (0.13) | 3.60 (0.73) | |
1+0.5 | 3.06 (0.09) | 2.39 (0.80) | 1.79 (1.40) | 3.00 (0.01) | 3.31 (0.59) | 1.00 (0.01) | |
1+1 | 2.26 (0.15) | 3.22 (2.00) | 0.60 (0.84) | 1.3 (0.42) | 1.97 (2.78) | 0.00 (0.00) | |
CJ99 | Control | 6.88 (0.44) | 7.54 (0.04) | 7.93 (0.09) | 6.88 (0.44) | 7.54 (0.04) | 7.93 (0.09) |
0.5 AMB | 5.30 (0.37) | 7.05 (0.10) | 7.54 (0.01) | 5.30 (0.37) | 7.05 (0.11) | 7.54 (0.01) | |
0.5+0.5 | 4.68 (0.20) | 4.68 (0.60) | 3.28 (1.16) | 4.70 (0.14) | 3.94 (0.17) | 3.19 (0.84) | |
0.5+1 | 3.88 (0.16) | 2.68 (0.27) | 3.11 (0.87) | 3.75 (0.11) | 2.84 (0.42) | 1.68 (0.01) | |
0.5+2 | 2.58 (0.16) | 1.7 (0.49) | 2.40 (0.80) | 2.66 (0.23) | 2.69 (1.68) | 3.40 (2.35) | |
1 AMB | 3.88 (0.26) | 2.99 (0.43) | 4.93 (0.42) | 3.88 (0.25) | 2.99 (0.43) | 4.94 (0.41) | |
1+0.25 | 2.90 (0.59) | 2.23 (1.12) | 1.77 (1.96) | 3.10 (0.47) | 1.99 (1.33) | 1.43 (0.98) | |
1+0.5 | 2.90 (0.47) | 2.29 (1.76) | 1.91 (1.65) | 2.38 (0.54) | 2.06 (0.06) | 1.90 (1.63) | |
1+1 | 2.25 (0.35) | 2.23 (0.24) | 0.95 (1.34) | 2.25 (0.49) | 2.19 (0.15) | 0.00 (0.00) | |
CJ100 | Control | 6.43 (0.33) | 7.7 (0.19) | 7.81 (012) | 6.43 (0.33) | 7.70 (0.20) | 7.80 (0.12) |
0.5 AMB | 5.50 (0.47) | 7.28 (0.06) | 7.49 (0.04) | 5.50 (0.47) | 7.28 (0.06) | 7.49 (0.04) | |
0.5+0.5 | 4.55 (0.35) | 4.72 (0.2) | 4.32 (1.43) | 4.55 (0.26) | 4.78 (0.03) | 3.26 (0.14) | |
0.5+1 | 3.02 (0.96) | 2.65 (0.91) | 2.29 (0.40) | 3.82 (0.68) | 2.75 (0.43) | 1.42 (0.98) | |
0.5+2 | 2.66 (0.53) | 2.25 (0.23) | 1.74 (0.55) | 2.70 (0.00) | 2.93 (0.08) | 2.09 (0.74) | |
1 AMB | 4.17 (0.19) | 3.34 (0.49) | 3.10 (0.00) | 4.16 (0.18) | 3.34 (0.49) | 3.10 (0.00) | |
1+0.25 | 2.96 (1.36) | 2.38 (1.33) | 1.07 (1.52) | 3.02 (0.74) | 2.67 (0.49) | 2.10 (0.18) | |
1+0.5 | 3.20 (0.98) | 2.45 (0.51) | 2.1 (0.72) | 2.88 (0.82) | 1.23 (1.74) | 0.53 (0.74) | |
1+1 | 2.61 (0.11) | 1.37 (1.59) | 1.73 (1.41) | 1.80 (0.00) | 0.00 (0.00) | 0.00 (0.00) | |
CJ102 | Control | 6.52 (0.16) | 7.59 (0.15) | 7.59 (0.23) | 6.52 (0.16) | 7.59 (0.15) | 7.6 0(0.24) |
0.5 AMB | 5.11 (0.21) | 6.06 (0.12) | 6.94 (0.57) | 5.11 (0.21) | 6.06 (0.13) | 6.94 (0.57) | |
0.5+0.5 | 4.46 (0.18) | 4.04 (0.40) | 4.01 (0.15) | 4.25 (0.16) | 3.86 (0.16) | 4.58 (0.48) | |
0.5+1 | 4.40 (0.14) | 3.73 (0.09) | 3.69 (0.43) | 3.91 (0.02) | 3.36 (0.01) | 2.39 (0.00) | |
0.5+2 | 2.65 (0.35) | 2.00 (0.25) | 3.52 (0.00) | 2.70 (0.14) | 2.62 (0.52) | 3.06 (0.00) | |
1 AMB | 3.80 (0.14) | 3.82 (0.44) | 4.04 (0.19) | 3.80 (0.14) | 3.82 (0.43) | 4.04 (0.18) | |
1+0.25 | 3.05 (0.44) | 2.73 (0.36) | 2.79 (1.14) | 2.94 (0.27) | 3.56 (0.51) | 3.31 (0.00) | |
1+0.5 | 3.22 (0.40) | 2.52 (0.84) | 1.39 (0.52) | 2.21 (0.50) | 2.92 (1.10) | 2.88 (0.10) | |
1+1 | 2.39 (0.06) | 1.74 (1.02) | 0.84 (1.18) | 1.70 (0.70) | 0.00 (0.00) | 0.00 (0.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero, U.; Eraso, E.; Quindós, G.; Jauregizar, N. In Vitro Interaction and Killing-Kinetics of Amphotericin B Combined with Anidulafungin or Caspofungin against Candida auris. Pharmaceutics 2021, 13, 1333. https://doi.org/10.3390/pharmaceutics13091333
Caballero U, Eraso E, Quindós G, Jauregizar N. In Vitro Interaction and Killing-Kinetics of Amphotericin B Combined with Anidulafungin or Caspofungin against Candida auris. Pharmaceutics. 2021; 13(9):1333. https://doi.org/10.3390/pharmaceutics13091333
Chicago/Turabian StyleCaballero, Unai, Elena Eraso, Guillermo Quindós, and Nerea Jauregizar. 2021. "In Vitro Interaction and Killing-Kinetics of Amphotericin B Combined with Anidulafungin or Caspofungin against Candida auris" Pharmaceutics 13, no. 9: 1333. https://doi.org/10.3390/pharmaceutics13091333
APA StyleCaballero, U., Eraso, E., Quindós, G., & Jauregizar, N. (2021). In Vitro Interaction and Killing-Kinetics of Amphotericin B Combined with Anidulafungin or Caspofungin against Candida auris. Pharmaceutics, 13(9), 1333. https://doi.org/10.3390/pharmaceutics13091333