Next Article in Journal
Optimization of Innovative Three-Dimensionally-Structured Hybrid Vesicles to Improve the Cutaneous Delivery of Clotrimazole for the Treatment of Topical Candidiasis
Next Article in Special Issue
Preparation and Characterization of Oxidized Inulin Hydrogel for Controlled Drug Delivery
Previous Article in Journal
Synergistic Anti-Angiogenic Effects Using Peptide-Based Combinatorial Delivery of siRNAs Targeting VEGFA, VEGFR1, and Endoglin Genes
Open AccessArticle

Effect of a Cationic Surfactant on Microemulsion Globules and Drug Release from Hydrogel Contact Lenses

1
Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA
2
Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA
3
Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
*
Authors to whom correspondence should be addressed.
Pharmaceutics 2019, 11(6), 262; https://doi.org/10.3390/pharmaceutics11060262
Received: 8 May 2019 / Revised: 1 June 2019 / Accepted: 3 June 2019 / Published: 6 June 2019
(This article belongs to the Special Issue Designing Hydrogels for Controlled Drug Delivery)
The present study evaluates the in vitro release of diclofenac sodium (DFNa) from contact lenses based on poly-2-hydroxyethyl methacrylate (pHEMA) hydrogels containing an embedded microemulsion to extend release duration. The oil (ethyl butyrate)-in-water microemulsion systems are prepared with two non-ionic surfactants, Brij 97 or Tween 80, together with a long-alkyl chain cationic surfactant, cetalkonium chloride (CKC). Without CKC, Brij 97 or Tween 80-based microemulsions showed average droplet sizes of 12 nm and 18 nm, respectively. The addition of CKC decreased the average droplet sizes to 2–5 nm for both non-ionic surfactants. Such significant reduction in the average droplet size corresponds to an increase in the DFNa release duration as revealed by the in vitro experiments. Contact lens characterization showed that important properties such as optical transparency and water content of Brij 97-based contact lenses with cationic microemulsions was excellent. However, the optical transparency of the corresponding Tween 80 based contact lenses was unsatisfactory. The results indicate that cationic microemulsion-laden contact lenses can benefit from combinatory effects of microemulsions and cationic surfactant at low CKC weight percentage, e.g., with the release of 70% of the drug in 45, 10, and 7 h for B97-CKC-0.45%, CKC-0.45%, and control lenses, respectively. However, the microemulsion effect on extending DFNa release became negligible at the highest CKC weight percentage (1.8%). View Full-Text
Keywords: drug delivery; microemulsion; contact lenses; cationic surfactant; controlled release drug delivery; microemulsion; contact lenses; cationic surfactant; controlled release
Show Figures

Graphical abstract

MDPI and ACS Style

Torres-Luna, C.; Hu, N.; Koolivand, A.; Fan, X.; Zhu, Y.; Domszy, R.; Yang, J.; Yang, A.; Wang, N.S. Effect of a Cationic Surfactant on Microemulsion Globules and Drug Release from Hydrogel Contact Lenses. Pharmaceutics 2019, 11, 262.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop