The Platelet–Virus Axis in Human Disease
Abstract
1. Introduction
2. Mechanisms of Platelet–Virus Interactions
3. HCV and the Platelet Paradox
4. Clinical Implications and Therapeutic Perspectives
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koupenova, M.; Vitseva, O.; MacKay, C.R.; Beaulieu, L.M.; Benjamin, E.J.; Mick, E.; Kurt-Jones, E.A.; Ravid, K.; Freedman, J.E. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014, 124, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Hottz, E.D.; Bozza, F.A.; Bozza, P.T. Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front. Med. 2018, 5, 121. [Google Scholar] [CrossRef]
- Schrottmaier, W.C.; Schmuckenschlager, A.; Pirabe, A.; Assinger, A. Platelets in Viral Infections—Brave Soldiers or Trojan Horses. Front. Immunol. 2022, 13, 856713. [Google Scholar] [CrossRef]
- Zaid, Y.; Puhm, F.; Allaeys, I.; Naya, A.; Oudghiri, M.; Khalki, L.; Limami, Y.; Zaid, N.; Sadki, K.; Ben El Haj, R.; et al. Platelets Can Associate with SARS-CoV-2 RNA and Are Hyperactivated in COVID-19. Circ. Res. 2020, 127, 1404–1418. [Google Scholar] [CrossRef]
- Barrett, T.J.; Cornwell, M.; Myndzar, K.; Rolling, C.C.; Xia, Y.; Drenkova, K.; Biebuyck, A.; Fields, A.T.; Tawil, M.; Luttrell-Williams, E.; et al. Platelets amplify endotheliopathy in COVID-19. Sci. Adv. 2021, 7, eabh2434. [Google Scholar] [CrossRef]
- Li, T.; Yang, Y.; Li, Y.; Wang, Z.; Ma, F.; Luo, R.; Xu, X.; Zhou, G.; Wang, J.; Niu, J.; et al. Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein. J. Clin. Investig. 2022, 132, e150101. [Google Scholar] [CrossRef]
- Lupia, E.; Capuano, M.; Vizio, B.; Schiavello, M.; Bosco, O.; Gelardi, M.; Favale, E.; Pivetta, E.; Morello, F.; Husain, S.; et al. Thrombopoietin participates in platelet activation in COVID-19 patients. EBioMedicine 2022, 85, 104305. [Google Scholar] [CrossRef]
- Khazali, A.S.; Hadrawi, W.H.; Ibrahim, F.; Othman, S.; Nor Rashid, N. Thrombocytopenia in dengue infection: Mechanisms and a potential application. Expert Rev. Mol. Med. 2024, 26, e26. [Google Scholar] [CrossRef]
- García-Larragoiti, N.; Kim, Y.C.; López-Camacho, C.; Cano-Méndez, A.; López-Castaneda, S.; Hernández-Hernández, D.; Vargas-Ruiz, Á.G.; Vázquez-Garcidueñas, M.S.; Reyes-Sandoval, A.; Viveros-Sandoval, M.E. Platelet activation and aggregation response to dengue virus nonstructural protein 1 and domains. J. Thromb. Haemost. 2021, 19, 2572–2582. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, W.; Nardi, M.A.; Li, Z. HIV-1 Tat-induced platelet activation and release of CD154 contribute to HIV-1-associated autoimmune thrombocytopenia. J. Thromb. Haemost. 2011, 9, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Koupenova, M.; Corkrey, H.A.; Vitseva, O.; Manni, G.; Pang, C.J.; Clancy, L.; Yao, C.; Rade, J.; Levy, D.; Wang, J.P.; et al. The role of platelets in mediating a response to human influenza infection. Nat. Commun. 2019, 10, 1780. [Google Scholar] [CrossRef]
- Mohamed-Hinds, R.; Dutta, A.; Park, C.; Yang, X.; Zou, L.; Chao, W.; Williams, B. Toll-like Receptor 7 Deficiency Attenuates Platelet Dysfunction in Sepsis. Biomolecules 2025, 15, 1604. [Google Scholar] [CrossRef] [PubMed]
- Tagara, S.; Valsami, S.; Gavriilaki, E.; Kyriakou, E.; Grouzi, E.; Evangelidis, P.; Karvouni, P.; Kaiafa, G.; Papadakis, I.; Poulis, A.; et al. Activated Complement System’s Impact in Antiphospholipid Syndrome Thrombosis: From Pathophysiology to Treatment. J. Clin. Med. 2025, 14, 6672. [Google Scholar] [CrossRef]
- Semple, J.W.; Italiano, J.E., Jr.; Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 2011, 11, 264–274. [Google Scholar] [CrossRef]
- de Paula, M.M.L.; Oliveira, R.T.R.; Hottz, E.D. Platelets and platelet-leukocyte interactions in infectious diseases. Curr. Opin. Hematol. 2025, 32, 261–269. [Google Scholar] [CrossRef]
- Manne, B.K.; Denorme, F.; Middleton, E.A.; Portier, I.; Rowley, J.W.; Stubben, C.; Petrey, A.C.; Tolley, N.D.; Guo, L.; Cody, M.; et al. Platelet gene expression and function in patients with COVID-19. Blood 2020, 136, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Klinger, M.H.; Jelkmann, W. Role of blood platelets in infection and inflammation. J. Interferon Cytokine Res. 2002, 22, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Siniscalchi, C.; Di Micco, P.; Guerra, A.; Simoni, R.; Magro, J.; Parise, A.; Cerundolo, N.; Imbalzano, E.; Tana, C.; Finardi, L.; et al. Platelet count and clinical outcomes in hospitalized patients with COVID-19 pneumonia. Front. Med. 2025, 12, 1614447. [Google Scholar] [CrossRef]
- Ferroni, P.; Mammarella, A.; Martini, F.; Paoletti, V.; Cardarello, C.M.; Labbadia, G.; Donnarumma, L.; De Matteis, A.; Gazzaniga, P.P.; Musca, A.; et al. Increased soluble P-selectin levels in hepatitis C virus-related chronic hepatitis: Correlation with viral load. J. Investig. Med. 2001, 49, 407–412. [Google Scholar] [CrossRef]
- Dahal, S.; Upadhyay, S.; Banjade, R.; Dhakal, P.; Khanal, N.; Bhatt, V.R. Thrombocytopenia in Patients with Chronic Hepatitis C Virus Infection. Mediterr. J. Hematol. Infect. Dis. 2017, 9, e2017019. [Google Scholar] [CrossRef]
- Dimitroulis, D.; Valsami, S.; Stamopoulos, P.; Kouraklis, G. Immunological HCV-associated thrombocytopenia: Short review. Clin. Dev. Immunol. 2012, 2012, 378653. [Google Scholar] [CrossRef]
- Ambrosino, P.; Tarantino, L.; Criscuolo, L.; Nasto, A.; Celentano, A.; Di Minno, M.N. The risk of venous thromboembolism in patients with hepatitis C. A systematic review and meta-analysis. Thromb. Haemost. 2016, 116, 958–966. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Thongprayoon, C.; Panjawatanan, P.; Ungprasert, P. Hepatitis C Virus Infection and Risk of Venous Thromboembolism: A Systematic Review and Meta-Analysis. Ann. Hepatol. 2017, 16, 514–520. [Google Scholar] [CrossRef]
- Wang, C.C.; Chang, C.T.; Lin, C.L.; Lin, I.C.; Kao, C.H. Hepatitis C Virus Infection Associated with an Increased Risk of Deep Vein Thrombosis: A Population-Based Cohort Study. Medicine 2015, 94, e1585. [Google Scholar] [CrossRef]
- Galli, L.; Gerdes, V.E.; Guasti, L.; Squizzato, A. Thrombosis Associated with Viral Hepatitis. J. Clin. Transl. Hepatol. 2014, 2, 234–239. [Google Scholar] [CrossRef]
- Grossini, E.; Smirne, C.; Venkatesan, S.; Tonello, S.; D’Onghia, D.; Minisini, R.; Cantaluppi, V.; Sainaghi, P.P.; Comi, C.; Tanzi, A.; et al. Plasma Pattern of Extracellular Vesicles Isolated from Hepatitis C Virus Patients and Their Effects on Human Vascular Endothelial Cells. Int. J. Mol. Sci. 2023, 24, 10197. [Google Scholar] [CrossRef] [PubMed]
- Di Micco, P.; Siniscalchi, C.; Imbalzano, E.; Russo, V.; Camporese, G.; Lodigiani, C.; Meschi, T.; Perrella, A. COVID-19: A Disease Driven by Protease/Antiprotease Imbalance? A Specific Review Five Years into the Pandemic. Infect. Drug Resist. 2025, 18, 3967–3975. [Google Scholar] [CrossRef]
- Gogtay, M.; Singh, Y.; Bullappa, A.; Scott, J. Retrospective analysis of aspirin’s role in the severity of COVID-19 pneumonia. World J. Crit. Care Med. 2022, 11, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Hottz, E.D.; Lopes, J.F.; Freitas, C.; Valls-de-Souza, R.; Oliveira, M.F.; Bozza, M.T.; Da Poian, A.T.; Weyrich, A.S.; Zimmerman, G.A.; Bozza, F.A.; et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 2013, 122, 3405–3414. [Google Scholar] [CrossRef] [PubMed]
- Ebeyer-Masotta, M.; Eichhorn, T.; Weiss, R.; Lauková, L.; Weber, V. Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis. Front. Cell Dev. Biol. 2022, 10, 914891. [Google Scholar] [CrossRef]
- Caillon, A.; Trimaille, A.; Favre, J.; Jesel, L.; Morel, O.; Kauffenstein, G. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J. Thromb. Haemost. 2022, 20, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Hottz, E.D.; Quirino-Teixeira, A.C.; Merij, L.B.; Pinheiro, M.B.M.; Rozini, S.V.; Bozza, F.A.; Bozza, P.T. Platelet-leukocyte interactions in the pathogenesis of viral infections. Platelets 2022, 33, 200–207. [Google Scholar] [CrossRef]
- Sciaudone, A.; Corkrey, H.; Humphries, F.; Koupenova, M. Platelets and SARS-CoV-2 During COVID-19: Immunity, Thrombosis, and Beyond. Circ. Res. 2023, 132, 1272–1289. [Google Scholar] [CrossRef]
- Eustes, A.S.; Ahmed, A.; Swamy, J.; Patil, G.; Jensen, M.; Wilson, K.M.; Kudchadkar, S.; Wahab, A.; Perepu, U.; Miller, F.J., Jr.; et al. Extracellular histones: A unifying mechanism driving platelet-dependent extracellular vesicle release and thrombus formation in COVID-19. J. Thromb. Haemost. 2024, 22, 2514–2530. [Google Scholar] [CrossRef]
- Eichhorn, T.; Weiss, R.; Huber, S.; Ebeyer-Masotta, M.; Mostageer, M.; Emprechtinger, R.; Knabl, L., Sr.; Knabl, L.; Würzner, R.; Weber, V. Expression of Tissue Factor and Platelet/Leukocyte Markers on Extracellular Vesicles Reflect Platelet-Leukocyte Interaction in Severe COVID-19. Int. J. Mol. Sci. 2023, 24, 16886. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Lowenstein, C.J.; Bhatt, A.S.; Peikert, A.; Vardeny, O.; Kosiborod, M.N.; Berger, J.S.; Reynolds, H.R.; Mavromichalis, S.; Barytol, A.; et al. Effect of the P-Selectin Inhibitor Crizanlizumab on Survival Free of Organ Support in Patients Hospitalized for COVID-19: A Randomized Controlled Trial. Circulation 2023, 148, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.S.; Kornblith, L.Z.; Gong, M.N.; Reynolds, H.R.; Cushman, M.; Cheng, Y.; McVerry, B.J.; Kim, K.S.; Lopes, R.D.; Atassi, B.; et al. Effect of P2Y12 Inhibitors on Survival Free of Organ Support Among Non-Critically Ill Hospitalized Patients With COVID-19: A Randomized Clinical Trial. JAMA 2022, 327, 227–236. [Google Scholar] [CrossRef]
- Berger, J.S.; Neal, M.D.; Kornblith, L.Z.; Gong, M.N.; Reynolds, H.R.; Cushman, M.; Althouse, A.D.; Lawler, P.R.; McVerry, B.J.; Kim, K.S.; et al. Effect of P2Y12 Inhibitors on Organ Support-Free Survival in Critically Ill Patients Hospitalized for COVID-19: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2314428. [Google Scholar] [CrossRef]
- Goubran, H.; Seghatchian, J.; Sabry, W.; Ragab, G.; Burnouf, T. Platelet and extracellular vesicles in COVID-19 infection and its vaccines. Transfus. Apher. Sci. 2022, 61, 103459. [Google Scholar] [CrossRef]


| Platelet Function | Role |
|---|---|
| TLR7/TLR9 sensing | Viral RNA detection |
| CD40L expression | T-cell activation |
| PF4, RANTES | Leukocyte recruitment |
| Microparticle release | Coagulation amplification |
| NET induction | Immunothrombosis |
| Virus | Platelet Abnormality | Mechanism | Clinical Consequence |
|---|---|---|---|
| SARS-CoV-2 | Hyperactivation, thrombocytopenia | Spike–platelet, TLR7 | Thrombosis, ARDS |
| Dengue | Severe thrombocytopenia | NS1, immune clearance | Bleeding, shock |
| HIV | Immune thrombocytopenia | Tat, CD154 | Bleeding, thrombosis |
| Influenza | Platelet activation | TLR7 | Lung microthrombosis |
| Ebola | Consumptive coagulopathy | Endothelial injury | DIC, bleeding |
| Biomarker | Virus | Mechanism | Clinical Relevance |
|---|---|---|---|
| Soluble P-selectin | COVID-19, HCV | Platelet/endothelial activation | Severity, thrombosis risk |
| CD40L | HIV, COVID-19 | Immune activation | Immune dysregulation |
| PF4 | Dengue, HIV | Immune complex formation | Thrombocytopenia |
| Platelet-derived EVs | COVID-19, HCV | Procoagulant surfaces | Immunothrombosis |
| Platelet–leukocyte aggregates | Influenza, COVID-19 | NETs, TF induction | Microthrombosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Siniscalchi, C.; Basaglia, M.; Imbalzano, E.; Di Micco, P. The Platelet–Virus Axis in Human Disease. Viruses 2026, 18, 183. https://doi.org/10.3390/v18020183
Siniscalchi C, Basaglia M, Imbalzano E, Di Micco P. The Platelet–Virus Axis in Human Disease. Viruses. 2026; 18(2):183. https://doi.org/10.3390/v18020183
Chicago/Turabian StyleSiniscalchi, Carmine, Manuela Basaglia, Egidio Imbalzano, and Pierpaolo Di Micco. 2026. "The Platelet–Virus Axis in Human Disease" Viruses 18, no. 2: 183. https://doi.org/10.3390/v18020183
APA StyleSiniscalchi, C., Basaglia, M., Imbalzano, E., & Di Micco, P. (2026). The Platelet–Virus Axis in Human Disease. Viruses, 18(2), 183. https://doi.org/10.3390/v18020183

