Genetic Characterization of Kazakhstan Isolates: Avian Influenza H9N2 Viruses Demonstrate Their Potential to Infect Mammals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Study and Sample Collection
2.2. Sample Preparation and Nucleic Acid Extraction
2.3. Diagnostic Procedure
2.4. Sequencing
2.5. Phylogenetic Analysis
3. Results
3.1. Virological Findings:
3.2. Molecular Diagnostic Findings:
3.3. Phylogenetic Analysis:
3.4. Molecular Characterization
3.4.1. Hemagglutinin (HA)
3.4.2. Neuraminidase (NA)
3.4.3. Polymerase Basic 2 (PB2)
3.4.4. Polymerase Basic 1 (PB1)
3.4.5. Polymerase Acidic (PA)
3.4.6. Nucleoprotein (NP)
3.4.7. Matrix (M)
3.4.8. Nonstructural Protein (NS1)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karamendin, K.; Kydyrmanov, A.; Fereidouni, S. Has avian influenza virus H9 originated from a bat source? Front. Vet. Sci. 2024, 10, 1332886. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Qi, W.; Zhou, P.; Xiao, C.; Yan, Z.; Cui, J.; Jia, K.; Zhang, G.; Gray, G.C.; Liao, M.; et al. First evidence of H10N8 Avian influenza virus infections among feral dogs in live poultry markets in Guangdong province, China. Clin. Infect. Dis. 2014, 59, 748–750. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, S.; Bing, G.; Carter, R.A.; Wang, Z.; Wang, J.; Wang, C.; Wang, L.; Wu, G.; Webster, R.G.; et al. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerg. Microbes Infect. 2017, 6, e106. [Google Scholar] [CrossRef]
- Su, S.; Zhou, P.; Fu, X.; Wang, L.; Hong, M.; Lu, G.; Sun, L.; Qi, W.; Ning, Z.; Jia, K.; et al. Virological and Epidemiological Evidence of Avian Influenza Virus Infections Among Feral Dogs in Live Poultry Markets, China: A Threat to Human Health? Clin. Infect. Dis. 2014, 58, 1644–1646. [Google Scholar] [CrossRef] [PubMed]
- Carnaccini, S.; Perez, D.R. H9 Influenza Viruses: An Emerging Challenge. Cold Spring Harb. Perspect. Med. 2020, 10, a038588. [Google Scholar] [CrossRef]
- Murakami, J.; Shibata, A.; Neumann, G.; Imai, M.; Watanabe, T.; Kawaoka, Y. Characterization of H9N2 Avian Influenza Viruses Isolated from Poultry Products in a Mouse Model. Viruses 2022, 14, 728. [Google Scholar] [CrossRef]
- Guan, Y.; Shortridge, K.F.; Krauss, S.; Webster, R.G. Molecular Characterization of H9N2 Influenza Viruses: Were They the Donors of the “Internal” Genes of H5N1 Viruses in Hong Kong? Proc. Natl. Acad. Sci. USA 1999, 96, 9363–9367. [Google Scholar] [CrossRef]
- Arbani, O.; Ducatez, M.F.; Mahmoudi, S.; Salamat, F.; Khayi, S.; Mouahid, M.; Selim, K.M.; Kichou, F.; Ouchhour, I.; El Houadfi, M.; et al. Low Pathogenic Avian Influenza H9N2 Viruses in Morocco: Antigenic and Molecular Evolution from 2021 to 2023. Viruses 2023, 15, 2355. [Google Scholar] [CrossRef]
- Tan, M.; Zeng, X.; Xie, Y.; Li, X.; Liu, J.; Yang, J.; Yang, L.; Wang, D. Reported human infections of H9N2 avian influenza virus in China in 2021. Front. Public Health 2023, 11, 1255969. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, K.; Li, B.; Chen, Y.; Qiu, Z.; Xing, J.; Huang, J.; Hu, C.; Huang, Y.; Li, H.; et al. A risk marker of tribasic hemagglutinin cleavage site in influenza A (H9N2) virus. Commun. Biol. 2021, 4, 71. [Google Scholar] [CrossRef]
- Guan, Y.; Shortridge, K.F.; Krauss, S.; Chin, P.S.; Dyrting, K.C.; Ellis, T.M.; Webster, R.G.; Peiris, M. H9N2 Influenza Viruses Possessing H5N1-Like Internal Genomes Continue to Circulate in Poultry in Southeastern China. J. Virol. 2000, 74, 9372–9380. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.P.; Shaw, M.; Gregory, V.; Cameron, K.; Lim, W.; Klimov, A.; Subbarao, K.; Guan, Y.; Krauss, S.; Shortridge, K.; et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: Relationship between H9N2 and H5N1 human isolates. Proc. Natl. Acad. Sci. USA 2000, 97, 9654–9658. [Google Scholar] [CrossRef]
- To, K.K.; Chan, J.F.; Chen, H.; Li, L.; Yuen, K.-Y. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: A tale of two cities. Lancet Infect. Dis. 2013, 13, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Bi, Y.; Wong, G.; Gray, G.C.; Gao, G.F.; Li, S. Epidemiology, Evolution, and Recent Outbreaks of Avian Influenza Virus in China. J. Virol. 2015, 89, 8671–8676. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.J. A review of avian influenza in different bird species. Vet. Microbiol. 2000, 74, 3–13. [Google Scholar] [CrossRef]
- Perdue, M.L.; Swayne, D.E. Public health risk from avian influenza viruses. Avian Dis. 2005, 49, 317–327. [Google Scholar] [CrossRef]
- World Organization for Animal Health (OIE). Avian influenza (infection with avian influenza viruses). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; World Organization for Animal Health (OIE): Paris, France, 2015. [Google Scholar]
- Fereidouni, S.; Starick, E.; Karamendin, K.; Genova, C.D.; Scott, S.D.; Khan, Y.; Harder, T.; Kydyrmanov, A. Genetic characterization of a new candidate hemagglutinin subtype of influenza A viruses. Emerg. Microbes Infect. 2023, 12, 2225645. [Google Scholar] [CrossRef]
- Cameron, K.R.; Gregory, V.; Banks, J.; Brown, I.; Alexander, D.; Hay, A.; Lin, Y. H9N2 subtype influenza A viruses in poultry in pakistan are closely related to the H9N2 viruses responsible for human infection in Hong Kong. Virology 2000, 278, 36–41. [Google Scholar] [CrossRef]
- Zhumatov, K.K.; Kydyrmanov, A.I.; Sayatov, M.K. Influenza A/H9 viruses–important infectious pathogens of wild birds, mammals and human. News of the National academy of sciences of the Republic of Kazakhstan of the Institute of Plant Biology and Biotechnology. Ser. Biol. Med. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Kydyrmanov, A.; Sayatov, M.; Karamendin, K.; Zhumatov, K.; Asanova, S.; Daulbayeva, K.; Starick, E.; Fereidouni, S. Monitoring of influenza A viruses in wild bird populations in Kazakhstan in 2002–2009. Arch. Virol. 2016, 162, 147–155. [Google Scholar] [CrossRef]
- Tavares, E.S.; Baker, A.J. Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol. Biol. 2008, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.K.; Leung, C.Y.; Gilbert, M.; Joyner, P.H.; Ng, E.M.; Tse, T.M.; Guan, Y.; Peiris, J.S.; Poon, L.L. Avian coronavirus in wild aquatic birds. J. Virol. 2011, 85, 12815–12820. [Google Scholar]
- Kazakhstan Location map.svg. 2024. Available online: https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Kazakhstan_location_map.svg (accessed on 20 December 2024).
- Hoffmann, E.; Stech, J.; Guan, Y.; Webster, R.G.; Perez, D.R. Universal primer set for the full-length amplification of all influenza A viruses. Arch. Virol. 2001, 146, 2275–2289. [Google Scholar] [CrossRef]
- Li, O.T.W.; Barr, I.; Leung, C.Y.H.; Chen, H.; Guan, Y.; Peiris, J.M.; Poon, L.L. Reliable universal RT-PCR assays for studying influenza polymerase subunit gene sequences from all 16 hemagglutinin subtypes. J. Virol. Methods 2007, 142, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Karamendin, K.; Kydyrmanov, A.; Sabyrzhan, T.; Nuralibekov, S.; Kasymbekov, Y.; Khan, Y. Detection and Phylogenetic Characterization of a Novel Adenovirus Found in Lesser Mouse-Eared Bat (Myotis blythii) in South Kazakhstan. Viruses 2023, 15, 1139. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Butt, A.M.; Siddique, S.; Idrees, M.; Tong, Y. Avian influenza A (H9N2): Computational molecular analysis and phylogenetic characterization of viral surface proteins isolated between 1997 and 2009 from the human population. Virol. J. 2010, 7, 319. [Google Scholar] [CrossRef]
- Guo, Y.J.; Krauss, S.; Senne, D.A.; Mo, I.P.; Lo, K.S.; Xiong, X.P.; Norwood, M.; Shortridge, K.F.; Webster, R.G.; Guan, Y. Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology 2000, 267, 279–288. [Google Scholar] [CrossRef]
- Nobusawa, E.; Aoyama, T.; Kato, H.; Suzuki, Y.; Tateno, Y.; Nakajima, K. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza viruses. Virology 1991, 182, 475–485. [Google Scholar] [CrossRef]
- Ge, F.F.; Zhou, J.P.; Liu, J.; Wang, J.; Zhang, W.Y.; Sheng, L.P.; Xu, F.; Ju, H.B.; Sun, Q.Y.; Liu, P.H. Genetic evolution of H9 subtype influenza viruses from live poultry markets in Shanghai, China. J. Clin. Microbiol. 2009, 47, 3294–3300. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, D.; Ren, Q.; Yang, Y.; Liu, X.; Xu, X.; Liu, W.; Chen, S.; Peng, D.; Liu, X. Identification and characterization of a novel antigenic epitope in the hemagglutinin of the escape mutants of H9N2 avian influenza viruses. Vet. Microbiol. 2015, 178, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Mase, M.; Imada, T.; Sanada, Y.; Etoh, M.; Sanada, N.; Tsukamoto, K.; Kawaoka, Y.; Yamaguchi, S. Imported parakeets harbor H9N2 influenza A viruses that are genetically closely related to those transmitted to humans in Hong Kong. J. Virol. 2001, 75, 3490–3494. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; He, W.; Yan, H.; Li, X.; Wang, C.; Shi, Q.; Zhou, T.; Dong, G. The evolution and molecular characteristics of H9N2 avian influenza viruses in Jiangxi of China. J. Med. Virol. 2019, 91, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Zhang, Y.; Li, X.; Bo, H.; Wei, H.; Dong, L.; Yang, L.; Dong, J.; Liu, J.; Shu, Y.; et al. Molecular characterization and receptor binding specificity of H9N2 avian influenza viruses based on poultry-related environmental surveillance in China between 2013 and 2016. Virology. 2019, 529, 135–143. [Google Scholar] [CrossRef]
- Li, J.; Ishaq, M.; Prudence, M.; Xi, X.; Hu, T.; Liu, Q.; Guo, D. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2. Virus Res. 2009, 144, 123–129. [Google Scholar] [CrossRef]
- Kimble, J.B.; Sorrell, E.; Shao, H.; Martin, P.L.; Perez, D.R. Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model. Proc. Natl. Acad. Sci. USA 2011, 19, 12084–12088. [Google Scholar] [CrossRef]
- Taft, A.S.; Ozawa, M.; Fitch, A.; Depasse, J.V.; Halfmann, P.J.; Hill-Batorski, L.; Hatta, M.; Friedrich, T.C.; Lopes, T.J.S.; Maher, E.A.; et al. Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nat. Commun. 2015, 6, 7491. [Google Scholar] [CrossRef] [PubMed]
- Suttie, A.; Deng, Y.M.; Greenhill, A.R.; Dussart, P.; Horwood, P.F.; Karlsson, E.A. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019, 55, 739–768. [Google Scholar] [CrossRef]
- Kandeil, A.; El-Shesheny, R.; Maatouq, A.M.; Moatasim, Y.; Shehata, M.M.; Bagato, O.; Rubrum, A.; Shanmuganatham, K.; Webby, R.J.; Ali, M.A.; et al. Genetic and antigenic evolution of H9N2 avian influenza viruses circulating in Egypt between 2011 and 2013. Arch. Virol. 2014, 159, 2861–2876. [Google Scholar] [CrossRef]
- Gabriel, G.; Dauber, B.; Wolff, T.; Planz, O.; Klenk, H.D.; Stech, J. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc. Natl. Acad. Sci. USA 2005, 102, 18590–18595. [Google Scholar] [CrossRef]
- Kimble, J.B.; Angel, M.; Wan, H.; Sutton, T.C.; Finch, C.; Perez, D.R. Alternative Reassortment Events Leading to Transmissible H9N1 Influenza Viruses in the Ferret Model. J. Virol. 2014, 88, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Park, K.J.; Song, M.S.; Kim, E.H.; Kwon, H.I.; Baek, Y.H.; Choi, E.H.; Park, S.J.; Kim, S.M.; Kim, Y.I.; Choi, W.S.; et al. Molecular characterization of mammalian-adapted Korean-type avian H9N2 virus and evaluation of its virulence in mice. J. Microbiol. 2015, 53, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Sun, H.; Qu, Y.; Wang, C.; Gao, W.; Zhu, J.; Sun, Y.; Bi, Y.; Huang, Y.; Chang, K.C.; et al. Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China. J. Virol. 2017, 29, e02055-16. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, K.; Chen, Q.; Zhang, X.; Sun, Y.; Bi, Y.; Zhang, S.; Gu, J.; Li, J.; Liu, D.; et al. Three amino acid substitutions in the NS1 protein change the virus replication of H5N1 influenza virus in human cells. Virology 2018, 519, 64–73. [Google Scholar] [CrossRef]
- Olsen, B.; Munster, V.J.; Wallensten, A.; Waldenström, J.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Global patterns of influenza a virus in wild birds. Science 2006, 312, 384–388. [Google Scholar] [CrossRef]
- Iverson, S.A.; Gavrilov, A.; Katzner, T.E.; Takekawa, J.Y.; Miller, T.A.; Hagemeijer, W.; Mundkur, T.; Sivananinthaperumal, B.; Demattos, C.C.; Ahmed, L.S.; et al. Migratory movements of waterfowl in Central Asia and avian influenza emergence: Sporadic transmission of H5N1 from east to west. IBIS 2011, 153, 279–292. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, S.; Hou, G.; Li, J.; Zhuang, Q.; Wang, S.; Zhang, P.; Chen, J. Chinese and global distribution of H9 subtype avian influenza viruses. PLoS ONE 2012, 7, e52671. [Google Scholar] [CrossRef]
- Zinyakov, N.G.; Sosipatorova, V.Y.; Andriyasov, A.V.; Ovchinnikova, E.V.; Nikonova, Z.B.; Kozlov, A.A.; Altunin, D.A.; Osipova, O.S.; Akshalova, P.B.; Andreychuk, D.B.; et al. Genetic analysis of genotype G57 H9N2 avian influenza virus isolate A/chicken/Tajikistan/2379/2018 recovered in Central Asia. Arch. Virol. 2021, 166, 1591–1597. [Google Scholar] [CrossRef]
- Fereidouni, S.R.; Harder, T.C.; Starick, E. Rapid pathotyping of recent H5N1 highly pathogenic avian influenza viruses and of H5 viruses with low pathogenicity by RT-PCR and restriction enzyme cleavage pattern (RECP). J. Virol. Methods 2008, 154, 14–19. [Google Scholar] [CrossRef]
- Gu, M.; Xu, L.; Wang, X.; Liu, X. Current situation of H9N2 subtype avian influenza in China. Vet. Res. 2017, 48, 49. [Google Scholar] [CrossRef]
- Fan, M.; Liang, B.; Zhao, Y.; Zhang, Y.; Liu, Q.; Tian, M.; Zheng, Y.; Xia, H.; Suzuki, Y.; Chen, H.; et al. Mutations of 127, 183 and 212 residues on the HA globular head affect the antigenicity, replication and pathogenicity of H9N2 avian influenza virus. Transbound. Emerg. Dis. 2022, 69, e659–e670. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, J.L.; He, L.; Gong, L.; Hou, S.; Zhu, M.; Wu, J.B.; Su, B.; Liu, J.; Wu, G.; et al. Molecular characteristics of the H9N2 avian influenza viruses in live poultry markets in Anhui Province, China, 2013 to 2018. Health Sci. Rep. 2021, 4, e230. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Peng, F.; Xiong, Z.; Zhang, W.; Li, T.; Shi, Y.; Xie, J.; Jin, X.; Huang, J.; Xiao, H.; et al. Genetic and Molecular Characterization of H9N2 Avian Influenza Viruses Isolated from Live Poultry Markets in Hubei Province, Central China, 2013–2017. Virol. Sin. 2021, 36, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Sun, X.; Brock, N.; Pappas, C.; Pulit-Penaloza, J.A.; Zeng, H.; Jang, Y.; Jones, J.; Carney, P.J.; Chang, J.; et al. Genetically and Antigenically Divergent Influenza A(H9N2) Viruses Exhibit Differential Replication and Transmission Phenotypes in Mammalian Models. J. Virol. 2020, 94, e00451-20. [Google Scholar] [CrossRef]
- Hu, M.; Chu, H.; Zhang, K.; Singh, K.; Li, C.; Yuan, S.; Chow, B.K.C.; Song, W.; Zhou, J.; Zheng, B.-J. Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus. Sci. Rep. 2016, 6, 37800. [Google Scholar] [CrossRef]
- Song, J.; Feng, H.; Xu, J.; Zhao, D.; Shi, J.; Li, Y.; Deng, G.; Jiang, Y.; Li, X.; Zhu, P.; et al. The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks. J. Virol. 2011, 85, 2180–2188. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.; Shi, J.; Deng, G.; Kong, H.; Tao, S.; Li, C.; Liu, L.; Guan, Y.; Chen, H. Glycine at Position 622 in PB1 Contributes to the Virulence of H5N1 Avian Influenza Virus in Mice. J. Virol. 2016, 90, 1872–1879. [Google Scholar] [CrossRef]
- Song, J.; Xu, J.; Shi, J.; Li, Y.; Chen, H. Synergistic Effect of S224P and N383D Substitutions in the PA of H5N1 Avian Influenza Virus Contributes to Mammalian Adaptation. Sci. Rep. 2015, 5, 10510. [Google Scholar] [CrossRef]
- Kuo, R.-L.; Krug, R.M. Influenza a virus polymerase is an integral component of the CPSF30-NS1A protein complex in infected cells. J. Virol. 2009, 83, 1611–1616. [Google Scholar] [CrossRef]
- Fereidouni, S.R.; Werner, O.; Starick, E.; Beer, M.; Harder, T.C.; Aghakhan, M.; Modirrousta, H.; Amini, H.; Moghaddam, M.K.; Bozorghmehrifard, M.H.; et al. Avian influenza virus monitoring in wintering waterbirds in Iran, 2003–2007. Virol. J. 2010, 7, 43. [Google Scholar] [CrossRef] [PubMed]
AIV H9N2 Isolate and Sample Collection Date | Abbreviation | Accession Number of Sequence in GenBank | Collection Site, Geographic Location |
---|---|---|---|
A/Pintail/North Kazakhstan/6368/2014 (October 2014) | Pt/NK/6368/14 | PV390943-PV390951 | North Kazakhstan, Shyoptykol lake 52°24′01.9″ N, 66°50′05.5″ E |
A/Mallard/North Kazakhstan/6369/2014 (October 2014) | Ml/NK/6369/14 | PV390827-PV390835 | North Kazakhstan, Shyoptykol lake 52°24′01.9″ N, 66°50′05.5″ E |
A/Whooper Swan/Sorbulak/7994/2019 (October 2019) | Ws/Sb/7994/19 | PV390876-PV390884 | South-East Kazakhstan, Lake Sorbulak 43°38′48.4″ N, 76°32′20.5″ E |
A/Chicken/Almaty/220/2020 (August 2020) | Ck/Ay/220/20 | PV390766-PV390774 | South-East Kazakhstan, Almaty suburb 43°21′15.3″ N, 76°51′48.6″ E |
Strains | Receptor-Binding Sites | Cleavage Peptides | N-Linked Potential Glycosylation Sites (H9 Numbering) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S* 127N | H 183N | Q 234L | 236G | 29–31 | 82–84 | 141–143 | 218–220 | 298–300 | 305–307 | 313–315 | 492–494 | 551–553 | ||
Pt/NK/6368/14 | + | + | Q | + | PAASDR↓GLF | NST | NPS | NVT | NRT | NTT | NVS | — | NGT | NGS |
Ml/NK/6369/14 | + | + | Q | + | PAASDR↓GLF | NST | NPS | NVT | NRT | NNT | NVS | — | NGT | NGS |
Ws/Ay/7994/19 | + | + | Q | + | PAASDR↓GLF | NST | NPS | NVT | NRT | NTT | NVS | — | NGT | NGS |
Ck/Ay/220/20 | R | S | + | + | PSRSSR↓GLF | NST | NPS | NVS | — | NTT | NVS | NCS | NGT | NGS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baikara, B.; Karamendin, K.; Kassymbekov, Y.; Daulbayeva, K.; Sabyrzhan, T.; Nuralibekov, S.; Khan, Y.; Sandybayev, N.; Fereidouni, S.; Kydyrmanov, A. Genetic Characterization of Kazakhstan Isolates: Avian Influenza H9N2 Viruses Demonstrate Their Potential to Infect Mammals. Viruses 2025, 17, 685. https://doi.org/10.3390/v17050685
Baikara B, Karamendin K, Kassymbekov Y, Daulbayeva K, Sabyrzhan T, Nuralibekov S, Khan Y, Sandybayev N, Fereidouni S, Kydyrmanov A. Genetic Characterization of Kazakhstan Isolates: Avian Influenza H9N2 Viruses Demonstrate Their Potential to Infect Mammals. Viruses. 2025; 17(5):685. https://doi.org/10.3390/v17050685
Chicago/Turabian StyleBaikara, Barshagul, Kobey Karamendin, Yermukhammet Kassymbekov, Klara Daulbayeva, Temirlan Sabyrzhan, Sardor Nuralibekov, Yelizaveta Khan, Nurlan Sandybayev, Sasan Fereidouni, and Aidyn Kydyrmanov. 2025. "Genetic Characterization of Kazakhstan Isolates: Avian Influenza H9N2 Viruses Demonstrate Their Potential to Infect Mammals" Viruses 17, no. 5: 685. https://doi.org/10.3390/v17050685
APA StyleBaikara, B., Karamendin, K., Kassymbekov, Y., Daulbayeva, K., Sabyrzhan, T., Nuralibekov, S., Khan, Y., Sandybayev, N., Fereidouni, S., & Kydyrmanov, A. (2025). Genetic Characterization of Kazakhstan Isolates: Avian Influenza H9N2 Viruses Demonstrate Their Potential to Infect Mammals. Viruses, 17(5), 685. https://doi.org/10.3390/v17050685