Serological Evidence of Exposure to Eurasian-Lineage HPAI H5N1 Clade 2.3.4.4b in Wild Mammals in Ohio, USA, 2024–2025
Abstract
1. Introduction
2. Materials and Methods
3. Results
Species (Common Name) | Species (Scientific Name) | # of Swab Samples | # of Serum Samples | # IAV Seropositive/# of Samples (%) | |
---|---|---|---|---|---|
Marshes | Rehabilitation Centers | ||||
American beaver | Castor canadensis | 2 | 0 | - | - |
American mink | Mustela vison | 3 | 0 | - | - |
Big brown bat | Eptesicus fuscus | 4 | 0 | - | - |
Chipmunk | Tamias striatus | 2 | 2 | - | 0/2 (2) |
Eastern cottontail | Sylvilagus floridanus | 7 | 2 | - | 0/2 (2) |
Fox squirrel | Sciurus niger | 3 | 0 | - | - |
Gray squirrel | Sciurus carolinensisn | 10 | 10 | - | 0/10 (10) |
Groundhog | Marmota monax | 2 | 1 | - | 0/1 (0) |
Muskrat | Ondatra zibethicus | 98 | 0 | - | - |
River otter | Lontra canadensis | 1 | 0 | - | - |
Raccoon | Procyon lotor | 142 | 85 | 60/85 (70.6%) | - |
Red squirrel | Tamiasciurus hudsonicus | 1 | 1 | - | 0/1 (0) |
Stripped skunk | Mephitis mephitis | 1 | 0 | - | - |
Opossum | Didelphis virginiana | 13 | 9 | 1/2 (50%) | 0/7 (0) |
White-footed mouse | Peromyscus leucopus | 1 | 1 | - | 0/1 (0) |
Woodchuck | Marmota monax | 2 | 0 | - | - |
Total | 292 | 111 | 61/87 (70.1%) | 0/24 (0%) | |
Grand Total | 61/111 (54.9%) |
TITER GROUP | VN (EA HP H5) COUNT (%) | VN (NAM. LPAI H5) COUNT (%) | ELLA (N1) COUNT (%) |
---|---|---|---|
<20 | 21 (30) | 44 (62.8) | 14 (19.7) |
20 | 3 (4.3) | 11 (15.7) | 7 (9.8) |
40 | 3 (4.3) | 7 (10) | 1 (1.4) |
80 | 9 (12.8) | 0 (0) | 1 (1.4) |
160 | 9 (12.8) | 7 (10) | 2 (2.8) |
320 | 7 (10) | 1 (1.4) | 2 (2.8) |
640 | 6 (8.6) | 0 (0) | 9 (12.7) |
1280 | 7 (10) | 0 (0) | 9 (12.7) |
2560 | 5 (7.1) | 0 (0) | 26 (36.6) |
TOTAL | 70 (100) | 70 (100) | 71 (100) |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lang, G.; Gagnon, A.; Geraci, J.R. Isolation of an influenza A virus from seals. Arch. Virol. 1981, 68, 189–195. [Google Scholar] [CrossRef]
- Reperant, L.A.; van Amerongen, G.; van de Bildt, M.W.; Rimmelzwaan, G.F.; Dobson, A.P.; Osterhaus, A.D.; Kuiken, T. Highly Pathogenic Avian Influenza Virus (H5N1) Infection in Red Foxes Fed Infected Bird Carcasses. Emerg. Infect. Dis. 2008, 14, 1835–1841. [Google Scholar] [CrossRef]
- Ruy, P.-E.; Ball, S.; Barry, G.; Cuq, B.; McDevitt, A.D.; English, H.M.; Farrell, M.L.; Gormley, E.; O’cOnnor, I.; Romero, P.; et al. Expanding wildlife serosurveillance: A study of influenza A virus exposure in Irish carnivores. Eur. J. Wildl. Res. 2025, 71, 1–14. [Google Scholar] [CrossRef]
- Hinshaw, V.S.; Bean, W.J.; Webster, R.G.; E Rehg, J.; Fiorelli, P.; Early, G.; Geraci, J.R.; Aubin, D.J.S. Are seals frequently infected with avian influenza viruses? J. Virol. 1984, 51, 863–865. [Google Scholar] [CrossRef]
- Hinshaw, V.S.; Bean, W.J.; Geraci, J.; Fiorelli, P.; Early, G.; Webster, R.G. Characterization of two influenza A viruses from a pilot whale. J. Virol. 1986, 58, 655–656. [Google Scholar] [CrossRef]
- Berg, M.; Englund, L.; Abusugra, I.A.; Klingeborn, B.; Linné, T. Close relationship between mink influenza (H10N4) and concomitantly circulating avian influenza viruses. Arch. Virol. 1990, 113, 61–71. [Google Scholar] [CrossRef]
- Klingeborn, B.; Englund, L.; Rott, R.; Juntti, N.; Rockborn, G. An avian influenza A virus killing a mammalian species—The mink. Arch. Virol. 1985, 86, 347–351. [Google Scholar] [CrossRef]
- Nikitin, A.; Cohen, D.; Todd, J.D.; Lief, F.S. Epidemiological studies of A-Hong Kong-68 virus infection in dogs. Bull. World Health Organ. 1972, 47, 471–479. [Google Scholar]
- Paniker, C.K.; Nair, C.M. Infection with A2 Hong Kong influenza virus in domestic cats. Bull. World Health Organ. 1970, 43, 859–862. [Google Scholar]
- Appel, M.J.G. (Ed.) Virus Infections of Carnivores. 1. Virus Infections of Vertebrates; Elsevier Science: Amsterdam, The Netherlands; New York, NY, USA; Distributors for the U.S. and Canada, Elsevier Science Pub. Co.: New York, NY, USA, 1987; ISBN 978-0-444-42709-0. [Google Scholar]
- Keawcharoen, J.; Oraveerakul, K.; Kuiken, T.; Fouchier, R.A.; Amonsin, A.; Payungporn, S.; Noppornpanth, S.; Wattanodorn, S.; Theamboonlers, A.; Tantilertcharoen, R.; et al. Avian Influenza H5N1 in Tigers and Leopards. Emerg. Infect. Dis. 2004, 10, 2189–2191. [Google Scholar] [CrossRef]
- Kuiken, T.; Rimmelzwaan, G.; van Riel, D.; van Amerongen, G.; Baars, M.; Fouchier, R.; Osterhaus, A. Avian H5N1 Influenza in Cats. Science 2004, 306, 241. [Google Scholar] [CrossRef]
- Songserm, T.; Amonsin, A.; Jam-On, R.; Sae-Heng, N.; Meemak, N.; Pariyothorn, N.; Payungporn, S.; Theamboonlers, A.; Poovorawan, Y. Avian Influenza H5N1 in Naturally Infected Domestic Cat. Emerg. Infect. Dis. 2006, 12, 681–683. [Google Scholar] [CrossRef]
- Roberton, S.; Bell, D.; Smith, G.; Nicholls, J.; Chan, K.; Nguyen, D.; Tran, P.; Streicher, U.; Poon, L.; Chen, H.; et al. Avian influenza H5N1 in viverrids: Implications for wildlife health and conservation. Proc. R. Soc. B Biol. Sci. 2006, 273, 1729–1732. [Google Scholar] [CrossRef]
- Songserm, T.; Amonsin, A.; Jam-On, R.; Sae-Heng, N.; Pariyothorn, N.; Payungporn, S.; Theamboonlers, A.; Chutinimitkul, S.; Thanawongnuwech, R.; Poovorawan, Y. Fatal Avian Influenza A H5N1 in a Dog. Emerg. Infect. Dis. 2006, 12, 1744–1747. [Google Scholar] [CrossRef]
- Klopfleisch, R.; Wolf, P.; Wolf, C.; Harder, T.; Starick, E.; Niebuhr, M.; Mettenleiter, T.; Teifke, J. Encephalitis in a Stone Marten (Martes foina) after Natural Infection with Highly Pathogenic Avian Influenza Virus Subtype H5N1. J. Comp. Pathol. 2007, 137, 155–159. [Google Scholar] [CrossRef]
- Vreman, S.; Kik, M.; Germeraad, E.; Heutink, R.; Harders, F.; Spierenburg, M.; Engelsma, M.; Rijks, J.; Brand, J.v.D.; Beerens, N. Zoonotic Mutation of Highly Pathogenic Avian Influenza H5N1 Virus Identified in the Brain of Multiple Wild Carnivore Species. Pathogens 2023, 12, 168. [Google Scholar] [CrossRef]
- Wan, X. Lessons from Emergence of A/Goose/Guangdong/1996-Like H5N1 Highly Pathogenic Avian Influenza Viruses and Recent Influenza Surveillance Efforts in Southern China. Zoonoses Public Heal. 2012, 59, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Subbarao, K.; Cox, N.J.; Guo, Y. Genetic Characterization of the Pathogenic Influenza A/Goose/Guangdong/1/96 (H5N1) Virus: Similarity of Its Hemagglutinin Gene to Those of H5N1 Viruses from the 1997 Outbreaks in Hong Kong. Virology 1999, 261, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Bevins, S.N.; Shriner, S.A.; Cumbee, J.C.; Dilione, K.E.; Douglass, K.E.; Ellis, J.W.; Killian, M.L.; Torchetti, M.K.; Lenoch, J.B. Intercontinental Movement of Highly Pathogenic Avian Influenza A(H5N1) Clade 2.3.4.4 Virus to the United States, 2021. Emerg. Infect. Dis. 2022, 28, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Youk, S.; Torchetti, M.K.; Lantz, K.; Lenoch, J.B.; Killian, M.L.; Leyson, C.; Bevins, S.N.; Dilione, K.; Ip, H.S.; E Stallknecht, D.; et al. H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021–April 2022. Virology 2023, 587, 109860. [Google Scholar] [CrossRef]
- CDC. H5 Bird Flu: Current Situation. Available online: https://www.cdc.gov/bird-flu/situation-summary/index.html (accessed on 11 March 2025).
- de Vries, E.; Guo, H.; Dai, M.; Rottier, P.J.; van Kuppeveld, F.J.; de Haan, C.A. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant. Emerg. Infect. Dis. 2015, 21, 842–846. [Google Scholar] [CrossRef]
- FAO warns of new strain of avian influenza virus. Vet. Rec. 2014, 175, 343. [CrossRef]
- Lee, D.-H.; Bertran, K.; Kwon, J.-H.; Swayne, D.E. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J. Vet. Sci. 2017, 18, 269–280. [Google Scholar] [CrossRef]
- USDA. Detections of Highly Pathogenic Avian Influenza. Available online: https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections (accessed on 11 March 2025).
- USDA. Detections of Highly Pathogenic Avian Influenza in Mammals. Available online: https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/mammals (accessed on 23 June 2025).
- Gilbertson, B.; Subbarao, K. Mammalian infections with highly pathogenic avian influenza viruses renew concerns of pandemic potential. J. Exp. Med. 2023, 220, e20230447. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Roa, C.; Nelson, M.I.; Ariyama, N.; Aguayo, C.; Almonacid, L.I.; Gonzalez-Reiche, A.S.; Muñoz, G.; Ulloa, M.; Ávila, C.; Navarro, C.; et al. Cross-species and mammal-to-mammal transmission of clade 2.3.4.4b highly pathogenic avian influenza A/H5N1 with PB2 adaptations. Nat. Commun. 2025, 16, 2232. [Google Scholar] [CrossRef]
- Agüero, M.; Monne, I.; Sánchez, A.; Zecchin, B.; Fusaro, A.; Ruano, M.J.; Arrojo, M.d.V.; Fernández-Antonio, R.; Souto, A.M.; Tordable, P.; et al. Highly pathogenic avian influenza A(H5N1) virus infection in farmed minks, Spain, October 2022. Eurosurveillance 2023, 28, 2300001. [Google Scholar] [CrossRef]
- Brown, J.D.; Black, A.; Haman, K.H.; Diel, D.G.; Ramirez, V.E.; Ziejka, R.S.; Fenelon, H.T.; Rabinowitz, P.M.; Stevens, L.; Poulson, R.; et al. Antibodies to Influenza A(H5N1) Virus in Hunting Dogs Retrieving Wild Fowl, Washington, USA. Emerg. Infect. Dis. 2024, 30, 1271–1274. [Google Scholar] [CrossRef]
- Alkie, T.N.; Cox, S.; Embury-Hyatt, C.; Stevens, B.; Pople, N.; Pybus, M.J.; Xu, W.; Hisanaga, T.; Suderman, M.; Koziuk, J.; et al. Characterization of neurotropic HPAI H5N1 viruses with novel genome constellations and mammalian adaptive mutations in free-living mesocarnivores in Canada. Emerg. Microbes Infect. 2023, 12, 2186608. [Google Scholar] [CrossRef]
- Hale, V.L.; Dennis, P.M.; McBride, D.S.; Nolting, J.M.; Madden, C.; Huey, D.; Ehrlich, M.; Grieser, J.; Winston, J.; Lombardi, D.; et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature 2021, 602, 481–486. [Google Scholar] [CrossRef]
- Slemons, R.D.; Johnson, D.C.; Osborn, J.S.; Hayes, F. Type-A Influenza Viruses Isolated from Wild Free-Flying Ducks in California. Avian Dis. 1974, 18, 119–124. [Google Scholar] [CrossRef]
- Ramey, A.M.; Beckmen, K.B.; Saalfeld, D.T.; Nicholson, K.; Mangipane, B.A.; Scott, L.C.; Stallknecht, D.E.; Poulson, R.L. Exposure of Wild Mammals to Influenza A(H5N1) Virus, Alaska, USA, 2020–2023. Emerg. Infect. Dis. 2025, 31, 804–808. [Google Scholar] [CrossRef]
- Reverberi, R. The statistical analysis of immunohaematological data. Blood Transfus. 2008, 6, 37–45. [Google Scholar] [CrossRef]
- Elsmo, E.J.; Wünschmann, A.; Beckmen, K.B.; Broughton-Neiswanger, L.E.; Buckles, E.L.; Ellis, J.; Fitzgerald, S.D.; Gerlach, R.; Hawkins, S.; Ip, H.S.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Clade 2.3.4.4b Infections in Wild Terrestrial Mammals, United States, 2022. Emerg. Infect. Dis. 2023, 29, 2451–2460. [Google Scholar] [CrossRef]
- FAO/WHO/WOAH. Updated Joint FAO/WHO/WOAH Assessment of Recent Influenza A(H5N1) Virus Events in Animals and People. Assessment Based on Data as of 18 July 2024. Available online: https://cdn.who.int/media/docs/default-source/influenza/avian-and-other-zoonotic-influenza/joint-fao-oie-who-preliminary-risk-assessment-associated-with-avian-influenza-a(h5n1)-virus.pdf?sfvrsn=faa6e47e_28&download=true (accessed on 22 November 2024).
- USDA. APHIS Detections of HPAI. Available online: https://www.aphis.usda.gov/h5n1-hpai (accessed on 7 April 2025).
- ENETWILD Consortium; Flavia, O.; Sascha, K.; Carola, S.; Christoph, S.; Valerie, A.; Alina, A.; Sophia, B.; Hannes, B.; Caroline, B.; et al. The role of mammals in Avian Influenza: A review. EFSA Support. Publ. 2024, 21, 8692E. [Google Scholar] [CrossRef]
- Root, J.J.; Bentler, K.T.; Shriner, S.A.; Mooers, N.L.; VanDalen, K.K.; Sullivan, H.J.; Franklin, A.B. Ecological Routes of Avian Influenza Virus Transmission to a Common Mesopredator: An Experimental Evaluation of Alternatives. PLoS ONE 2014, 9, e102964. [Google Scholar] [CrossRef]
- Reperant, L.; Rimmelzwaan, G.; Kuiken, T. Avian influenza viruses in mammals. Rev. Sci. Tech. l’OIE 2009, 28, 137–159. [Google Scholar] [CrossRef]
- Root, J.J.; Porter, S.M.; Lenoch, J.B.; Ellis, J.W.; Bosco-Lauth, A.M. Susceptibilities and viral shedding of peridomestic wildlife infected with clade 2.3.4.4b highly pathogenic avian influenza virus (H5N1). Virology 2024, 600, 110231. [Google Scholar] [CrossRef]
- Baker, A.L.; Arruda, B.; Palmer, M.V.; Boggiatto, P.; Davila, K.S.; Buckley, A.; Zanella, G.C.; Snyder, C.A.; Anderson, T.K.; Hutter, C.R.; et al. Dairy cows inoculated with highly pathogenic avian influenza virus H5N1. Nature 2024, 637, 913–920. [Google Scholar] [CrossRef]
- Ehrlich, M.; Madden, C.; McBride, D.S.; Nolting, J.M.; Huey, D.; Kenney, S.; Wang, Q.; Saif, L.J.; Vlasova, A.; Dennis, P.; et al. Lack of SARS-CoV-2 Viral RNA Detection among a Convenience Sampling of Ohio Wildlife, Companion, and Agricultural Animals, 2020–2021. Animals 2023, 13, 2554. [Google Scholar] [CrossRef]
- Aguiló-Gisbert, J.; Padilla-Blanco, M.; Lizana, V.; Maiques, E.; Muñoz-Baquero, M.; Chillida-Martínez, E.; Cardells, J.; Rubio-Guerri, C. First Description of SARS-CoV-2 Infection in Two Feral American Mink (Neovison vison) Caught in the Wild. Animals 2021, 11, 1422. [Google Scholar] [CrossRef]
- Amman, B.R.; Cossaboom, C.M.; Wendling, N.M.; Harvey, R.R.; Rettler, H.; Taylor, D.; Kainulainen, M.H.; Ahmad, A.; Bunkley, P.; Godino, C.; et al. GPS Tracking of Free-Roaming Cats (Felis catus) on SARS-CoV-2-Infected Mink Farms in Utah. Viruses 2022, 14, 2131. [Google Scholar] [CrossRef] [PubMed]
- Boklund, A.; Hammer, A.S.; Quaade, M.L.; Rasmussen, T.B.; Lohse, L.; Strandbygaard, B.; Jørgensen, C.S.; Olesen, A.S.; Hjerpe, F.B.; Petersen, H.H.; et al. SARS-CoV-2 in Danish Mink Farms: Course of the Epidemic and a Descriptive Analysis of the Outbreaks in 2020. Animals 2021, 11, 164. [Google Scholar] [CrossRef]
- Clair, V.; Chan, E.; Paiero, A.; Fraser, E.; Gunvaldsen, R.; Newhouse, E. One Health Response to SARS-CoV-2-Associated Risk from Mink Farming in British Columbia, Canada, October 2020 to October 2021. Available online: https://www.canada.ca/en/public-health/services/reports-publications/canada-communicable-disease-report-ccdr/monthly-issue/2022-48/issue-6-june-2022/one-health-response-sars-cov-2-risk-mink-farming-british-columbia-2020-2021.html (accessed on 12 June 2023).
- Vale, B.D.; Lopes, A.P.; Fontes, M.d.C.; Silvestre, M.; Cardoso, L.; Coelho, A.C. Bats, pangolins, minks and other animals—Villains or victims of SARS-CoV-2? Vet. Res. Commun. 2021, 45, 1–19. [Google Scholar] [CrossRef]
- Kok, K.-H.; Wong, S.-C.; Chan, W.-M.; Wen, L.; Chu, A.W.-H.; Ip, J.D.; Lee, L.-K.; Wong, I.T.-F.; Lo, H.W.-H.; Cheng, V.C.-C.; et al. Co-circulation of two SARS-CoV-2 variant strains within imported pet hamsters in Hong Kong. Emerg. Microbes Infect. 2022, 11, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.T.-Y.; Jia, N.; Zhang, Y.-W.; Shum, M.H.-H.; Jiang, J.-F.; Zhu, H.-C.; Tong, Y.-G.; Shi, Y.-X.; Ni, X.-B.; Liao, Y.-S.; et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 2020, 583, 282–285. [Google Scholar] [CrossRef]
- Larsen, H.D.; Fonager, J.; Lomholt, F.K.; Dalby, T.; Benedetti, G.; Kristensen, B.; Urth, T.R.; Rasmussen, M.; Lassaunière, R.; Rasmussen, T.B.; et al. Preliminary report of an outbreak of SARS-CoV-2 in mink and mink farmers associated with community spread, Denmark, June to November 2020. Eurosurveillance 2021, 26, 2100009. [Google Scholar] [CrossRef] [PubMed]
- USDA. APHIS NVSL-WI-0023: Avian Sample Collection for Influenza A and Newcastle Disease 2022. Available online: https://www.aphis.usda.gov/sites/default/files/avian-sample-collection-ai-newcastle.pdf (accessed on 23 June 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahid, M.J.; Owsiany, M.C.; Smith, L.M.; Foreman, B.M.; Cao, Z.; Carter, D.L.; Stallknecht, D.E.; Shirkey, B.; Poulson, R.L.; Nolting, J.M. Serological Evidence of Exposure to Eurasian-Lineage HPAI H5N1 Clade 2.3.4.4b in Wild Mammals in Ohio, USA, 2024–2025. Viruses 2025, 17, 1388. https://doi.org/10.3390/v17101388
Jahid MJ, Owsiany MC, Smith LM, Foreman BM, Cao Z, Carter DL, Stallknecht DE, Shirkey B, Poulson RL, Nolting JM. Serological Evidence of Exposure to Eurasian-Lineage HPAI H5N1 Clade 2.3.4.4b in Wild Mammals in Ohio, USA, 2024–2025. Viruses. 2025; 17(10):1388. https://doi.org/10.3390/v17101388
Chicago/Turabian StyleJahid, Mohammad Jawad, Madison C. Owsiany, Lauren M. Smith, Bryant M. Foreman, Zijing Cao, Deborah L. Carter, David E. Stallknecht, Brendan Shirkey, Rebecca L. Poulson, and Jacqueline M. Nolting. 2025. "Serological Evidence of Exposure to Eurasian-Lineage HPAI H5N1 Clade 2.3.4.4b in Wild Mammals in Ohio, USA, 2024–2025" Viruses 17, no. 10: 1388. https://doi.org/10.3390/v17101388
APA StyleJahid, M. J., Owsiany, M. C., Smith, L. M., Foreman, B. M., Cao, Z., Carter, D. L., Stallknecht, D. E., Shirkey, B., Poulson, R. L., & Nolting, J. M. (2025). Serological Evidence of Exposure to Eurasian-Lineage HPAI H5N1 Clade 2.3.4.4b in Wild Mammals in Ohio, USA, 2024–2025. Viruses, 17(10), 1388. https://doi.org/10.3390/v17101388